Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices

Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. This study compares the occurrence and amplitude of nigh...

Full description

Bibliographic Details
Published in:Space Weather
Main Authors: Engebretson, Mark J., Pilipenko, Viacheslav A., Steinmetz, Erik S., Moldwin, Mark B., Connors, Martin G., Boteler, David H., Singer, Howard J., Opgenoorth, Hermann, Schillings, Audrey, Ohtani, Shin, Gjerloev, Jesper, Russell, Christopher T.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/167091
https://doi.org/10.1029/2020SW002526
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167091
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic omega bands
substorms
magnetic storms
magnetic perturbation events
geomagnetically induced currents
Electrical Engineering
Engineering
spellingShingle omega bands
substorms
magnetic storms
magnetic perturbation events
geomagnetically induced currents
Electrical Engineering
Engineering
Engebretson, Mark J.
Pilipenko, Viacheslav A.
Steinmetz, Erik S.
Moldwin, Mark B.
Connors, Martin G.
Boteler, David H.
Singer, Howard J.
Opgenoorth, Hermann
Schillings, Audrey
Ohtani, Shin
Gjerloev, Jesper
Russell, Christopher T.
Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices
topic_facet omega bands
substorms
magnetic storms
magnetic perturbation events
geomagnetically induced currents
Electrical Engineering
Engineering
description Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. This study compares the occurrence and amplitude of nighttime MPEs with |dB/dt| ≥ 6 nT/s observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of magnetic local time (MLT), the SME (SuperMAG version of AE) and SYM/H magnetic indices, and time delay after substorm onsets. Although most MPEs occurred within 30 min after a substorm onset, ∼10% of those observed at the four lower latitude stations occurred over two hours after the most recent onset. A broad distribution in local time appeared at all five stations between 1700 and 0100 MLT, and a narrower distribution appeared at the lower latitude stations between 0200 and 0700 MLT. There was little or no correlation between MPE amplitude and the SYM/H index; most MPEs at all stations occurred for SYM/H values between −40 and 0 nT. SME index values for MPEs observed >1 h after the most recent substorm onset fell in the lower half of the range of SME values for events during substorms, and dipolarizations in synchronous orbit at GOES 13 during these events were weaker or more often nonexistent. These observations suggest that substorms are neither necessary nor sufficient to cause MPEs, and hence predictions of GICs cannot focus solely on substorms.Key PointsWe present 2 years of observations of ≥6 nT/s magnetic perturbation events (MPEs) from five high‐latitude Arctic stationsMost MPEs occurred within 30 min of a substorm onset, but substorms were neither necessary nor sufficient to cause MPEsPre‐ and postmidnight MPEs had different temporal relations to substorms and occurred at slightly different latitudes Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/167091/1/swe21104.pdf ...
format Article in Journal/Newspaper
author Engebretson, Mark J.
Pilipenko, Viacheslav A.
Steinmetz, Erik S.
Moldwin, Mark B.
Connors, Martin G.
Boteler, David H.
Singer, Howard J.
Opgenoorth, Hermann
Schillings, Audrey
Ohtani, Shin
Gjerloev, Jesper
Russell, Christopher T.
author_facet Engebretson, Mark J.
Pilipenko, Viacheslav A.
Steinmetz, Erik S.
Moldwin, Mark B.
Connors, Martin G.
Boteler, David H.
Singer, Howard J.
Opgenoorth, Hermann
Schillings, Audrey
Ohtani, Shin
Gjerloev, Jesper
Russell, Christopher T.
author_sort Engebretson, Mark J.
title Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices
title_short Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices
title_full Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices
title_fullStr Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices
title_full_unstemmed Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices
title_sort nighttime magnetic perturbation events observed in arctic canada: 3. occurrence and amplitude as functions of magnetic latitude, local time, and magnetic disturbance indices
publisher Wiley Periodicals, Inc.
publishDate 2021
url https://hdl.handle.net/2027.42/167091
https://doi.org/10.1029/2020SW002526
geographic Arctic
Canada
geographic_facet Arctic
Canada
genre Arctic
Arctic
genre_facet Arctic
Arctic
op_relation Engebretson, Mark J.; Pilipenko, Viacheslav A.; Steinmetz, Erik S.; Moldwin, Mark B.; Connors, Martin G.; Boteler, David H.; Singer, Howard J.; Opgenoorth, Hermann; Schillings, Audrey; Ohtani, Shin; Gjerloev, Jesper; Russell, Christopher T. (2021). "Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices." Space Weather 19(3): n/a-n/a.
1542-7390
https://hdl.handle.net/2027.42/167091
doi:10.1029/2020SW002526
Space Weather
Newell, P. T., & Gjerloev, J. W. ( 2011a ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779
Carrington, R. C. ( 1860 ). Description of a singular appearance seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society, 20, 13 – 15.
Connors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth, Planets and Space, 68. https://doi.org/10.1186/s40623‐015‐0354‐4
Dimmock, A. P., Rosenqvist, L., Hall, J.‐O., Viljanen, A., Yordanova, E., Honkonen, I., et al. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7‐8 September 2017 geomagnetic storm. Space Weather, 17, 989 – 1010. https://doi.org/10.1029/2018SW002132
Dimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. ( 2020 ). On the regional variability of d B /d t and its significance to GIC. Space Weather, 18, e2020SW002497. https://doi.org/10.1029/2020SW002497
Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J., Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100, 19371 – 19386. https://doi.org/10.1029/95JA00768
Engebretson, M. J., Kirkevold, K. R., Steinmetz, E. S., Pilipenko, V. A., Moldwin, M. B., McCuen, B. A., et al. ( 2020 ). Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs. Journal of Geophysical Research: Space Physics, 125, e2020JA028128. https://doi.org/10.1029/2020JA028128
Engebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E. S., Moldwin, M. B., et al. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124, 7442 – 7458. https://doi.org/10.1029/2019JA026794
Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., et al. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐instrument observations. Journal of Geophysical Research: Space Physics, 124, 7459 – 7476. https://doi.org/10.1029/2019JA026797
Freeman, M. P., Forsyth, C., & Rae, I. J. ( 2019 ). The influence of substorms on extreme rates of change of the surface horizontal magnetic field in the United Kingdom. Space Weather, 17, 827 – 844. https://doi.org/10.1029/2018SW002148
Frey, H. U., Mende, S. B., Angelopoulos, V., & Donovan, E. F. ( 2004 ). Substorm onset observations by IMAGE‐FUV. Journal of Geophysical Research, 109, A10304. https://doi.org/10.1029/2004JA010607
Gabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. ( 2014 ). Statistical characteristics of particle injections throughout the equatorial magnetotail. Journal of Geophysical Research: Space Physics, 119, 2512 – 2535. https://doi.org/10.1002/2013JA019638
Gjerloev, J. W., Hoffman, R. A., Friel, M. M., Frank, L. A., & Sigwarth, J. B. ( 2004 ). Substorm behavior of the auroral electrojet indices. Annales Geophysicae, 22, 2135 – 2149. https://doi.org/10.5194/angeo‐22‐2135‐2004
Juusola, L., Viljanen, A., van de Kamp, M., Tanskanen, E. I., Vanhamäki, H., Partamies, N., & Kauristie, K. ( 2015 ). High‐latitude ionospheric equivalent currents during strong space storms: Regional perspective. Space Weather, 13, 49 – 60. https://doi.org/10.1002/2014SW001139
Kamide, Y., & Kokubun, S. ( 1996 ). Two‐component auroral electrojet: Importance for substorm studies. Journal of Geophysical Research, 101 ( 13 ), 027 – 13. https://doi.org/10.1029/96JA00142
Kappenman, J. G. ( 2005 ). An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent sun‐earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather, 3, S08C01. https://doi.org/10.1029/2004SW000128
Knipp, D. J. ( 2015 ). Synthesis of geomagnetically induced currents: Commentary and research. Space Weather, 13, 727 – 729. https://doi.org/10.1002/2015SW001317
Liu, J., Angelopoulos, V., Chu, X., Zhou, X.‐Z., & Yue, C. ( 2015 ). Substorm current wedge composition by wedgelets. Geophysical Research Letters, 42, 1669 – 1676. https://doi.org/10.1002/2015GL063289
Newell, P. T., & Gjerloev, J. W. ( 2011b ). Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. Journal of Geophysical Research, 116, A12232. https://doi.org/10.1029/2011JA016936
Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061
Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local d Bdt variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911
Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386
Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. ( 2018 ). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16, 636 – 647. https://doi.org/10.1029/2018SW001880
Palin, L., Jacquey, C., Opgenoorth, H., Connors, M., Sergeev, V., Sauvaud, J.‐A., et al. ( 2015 ). Three‐dimensional current systems and ionospheric effects associated with small dipolarization fronts. Journal of Geophysical Research: Space Physics, 120, 3739 – 3757. https://doi.org/10.1002/2015JA021040
Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., et al. ( 2009 ). THEMIS observations of an earthward propagatingdipolarization front. Geophysical Research Letters, 36, L14106. https://doi.org/10.1029/2009GL038980
Runov, A., Angelopoulos, V., Zhou, X.‐Z., Zhang, X.‐J., Li, S., Plaschke, F., & Bonnell, J. ( 2011 ). A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. Journal of Geophysical Research, 116, A05216. https://doi.org/10.1029/2010JA016316
Singer, H. J., Matheson, L., Grubb, R., Newman, A., & Bouwer, S. D. ( 1996 ). Monitoring space weather with the GOES magnetometers. In E. R. Washwell (Ed.), SPIE Conference Proceedings (Vol. 2812, pp. 299 – 308 ). Bellingham, Wash: GOES‐8 and Beyond, SPIE.
Syrjäsuo, M. T., & Donovan, E. F. ( 2004 ). Diurnal auroral occurrence statistics obtained via machine vision. Annales Geophysicae, 22, 1103 – 1113. https://doi.org/10.5194/angeo‐22‐1103‐2004
Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538
Viljanen, A., Nevanlinna, H., Pajunpää, K., & Pulkkinen, A. ( 2001 ). Time derivative of the horizontal geomagnetic field as an activity indicator. Annales Geophysicae, 19 ( 9 ), 1107 – 1118. https://doi.org/10.5194/angeo‐19‐1107‐2001
Viljanen, A., & Tanskanen, E. ( 2011 ). Climatology of rapid geomagnetic variations at high latitudes over two solar cycles. Annales Geophysicae, 29, 1783 – 1792. https://doi.org/10.5194/angeo‐29‐1783‐2011
Viljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24, 725 – 733. https://doi.org/10.5194/angeo‐24‐725‐2006
Vorobev, A., Pilipenko, V., Sakharov, Y., & Selivanov, V. ( 2019 ). Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents. Solar‐Terrestrial Physics, 5, 35 – 42. https://doi.org/10.12737/stp‐51201905
Akasofu, S.‐I. ( 1974 ). A study of auroral displays photographed from the DMSP‐2 satellite and from the Alaska meridian chain of stations. Space Science Reviews, 16, 617 – 725.
Akasofu, S.‐I., & Kimball, D. S. ( 1964 ). The dynamics of the aurora, 1, Instabilities of the aurora. Journal of Atmospheric and Terrestrial Physics, 26, 205 – 211. https://doi.org/10.1016/0021‐9169(64)90147‐3
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., et al. ( 1992 ). Bursty Bulk Flows in the inner central plasma sheet. Journal of Geophysical Research, 97, 4027 – 4039. https://doi.org/10.1029/91JA02701
Apatenkov, S. V., Pilipenko, V. A., Gordeev, E. I., Viljanen, A., Juusola, L., Belakhovsky, V. B., et al. ( 2020 ). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47, e2019GL086677. https://doi.org/10.1029/2019GL086677
Belakhovsky, V., Pilipenko, V., Engebretson, M., Sakharov, Y., & Selivanov, V. ( 2019 ). Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. Journal of Space Weather and Space Climate, 9, A18. https://doi.org/10.1051/swsc/2019015
Boteler, D. H., Pirjola, R. J., & Nevanlinna, H. ( 1998 ). The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Advances in Space Research, 22 ( 1 ), 17 – 27. https://doi.org/10.1016/S0273‐1177(97)01096‐X
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2020SW00252610.1029/2018SW00213210.1029/2020JA02812810.1029/2019JA02679410.1029/2019JA02679710.1029/2004SW00012810.1002/2015SW00131710.1029/2018SW00188010.1002/2015JA02104010.1029/2009GL03898010.1029/97GL0053810.1029/91JA0270110.10
container_title Space Weather
container_volume 19
container_issue 3
_version_ 1774713587133054976
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167091 2023-08-20T04:03:11+02:00 Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices Engebretson, Mark J. Pilipenko, Viacheslav A. Steinmetz, Erik S. Moldwin, Mark B. Connors, Martin G. Boteler, David H. Singer, Howard J. Opgenoorth, Hermann Schillings, Audrey Ohtani, Shin Gjerloev, Jesper Russell, Christopher T. 2021-03 application/pdf https://hdl.handle.net/2027.42/167091 https://doi.org/10.1029/2020SW002526 unknown Wiley Periodicals, Inc. GOES‐8 and Beyond, SPIE Engebretson, Mark J.; Pilipenko, Viacheslav A.; Steinmetz, Erik S.; Moldwin, Mark B.; Connors, Martin G.; Boteler, David H.; Singer, Howard J.; Opgenoorth, Hermann; Schillings, Audrey; Ohtani, Shin; Gjerloev, Jesper; Russell, Christopher T. (2021). "Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 3. Occurrence and Amplitude as Functions of Magnetic Latitude, Local Time, and Magnetic Disturbance Indices." Space Weather 19(3): n/a-n/a. 1542-7390 https://hdl.handle.net/2027.42/167091 doi:10.1029/2020SW002526 Space Weather Newell, P. T., & Gjerloev, J. W. ( 2011a ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779 Carrington, R. C. ( 1860 ). Description of a singular appearance seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society, 20, 13 – 15. Connors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth, Planets and Space, 68. https://doi.org/10.1186/s40623‐015‐0354‐4 Dimmock, A. P., Rosenqvist, L., Hall, J.‐O., Viljanen, A., Yordanova, E., Honkonen, I., et al. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7‐8 September 2017 geomagnetic storm. Space Weather, 17, 989 – 1010. https://doi.org/10.1029/2018SW002132 Dimmock, A. P., Rosenqvist, L., Welling, D. T., Viljanen, A., Honkonen, I., Boynton, R. J., & Yordanova, E. ( 2020 ). On the regional variability of d B /d t and its significance to GIC. Space Weather, 18, e2020SW002497. https://doi.org/10.1029/2020SW002497 Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J., Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100, 19371 – 19386. https://doi.org/10.1029/95JA00768 Engebretson, M. J., Kirkevold, K. R., Steinmetz, E. S., Pilipenko, V. A., Moldwin, M. B., McCuen, B. A., et al. ( 2020 ). Interhemispheric comparisons of large nighttime magnetic perturbation events relevant to GICs. Journal of Geophysical Research: Space Physics, 125, e2020JA028128. https://doi.org/10.1029/2020JA028128 Engebretson, M. J., Pilipenko, V. A., Ahmed, L. Y., Posch, J. L., Steinmetz, E. S., Moldwin, M. B., et al. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. Journal of Geophysical Research: Space Physics, 124, 7442 – 7458. https://doi.org/10.1029/2019JA026794 Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., et al. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐instrument observations. Journal of Geophysical Research: Space Physics, 124, 7459 – 7476. https://doi.org/10.1029/2019JA026797 Freeman, M. P., Forsyth, C., & Rae, I. J. ( 2019 ). The influence of substorms on extreme rates of change of the surface horizontal magnetic field in the United Kingdom. Space Weather, 17, 827 – 844. https://doi.org/10.1029/2018SW002148 Frey, H. U., Mende, S. B., Angelopoulos, V., & Donovan, E. F. ( 2004 ). Substorm onset observations by IMAGE‐FUV. Journal of Geophysical Research, 109, A10304. https://doi.org/10.1029/2004JA010607 Gabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. ( 2014 ). Statistical characteristics of particle injections throughout the equatorial magnetotail. Journal of Geophysical Research: Space Physics, 119, 2512 – 2535. https://doi.org/10.1002/2013JA019638 Gjerloev, J. W., Hoffman, R. A., Friel, M. M., Frank, L. A., & Sigwarth, J. B. ( 2004 ). Substorm behavior of the auroral electrojet indices. Annales Geophysicae, 22, 2135 – 2149. https://doi.org/10.5194/angeo‐22‐2135‐2004 Juusola, L., Viljanen, A., van de Kamp, M., Tanskanen, E. I., Vanhamäki, H., Partamies, N., & Kauristie, K. ( 2015 ). High‐latitude ionospheric equivalent currents during strong space storms: Regional perspective. Space Weather, 13, 49 – 60. https://doi.org/10.1002/2014SW001139 Kamide, Y., & Kokubun, S. ( 1996 ). Two‐component auroral electrojet: Importance for substorm studies. Journal of Geophysical Research, 101 ( 13 ), 027 – 13. https://doi.org/10.1029/96JA00142 Kappenman, J. G. ( 2005 ). An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent sun‐earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather, 3, S08C01. https://doi.org/10.1029/2004SW000128 Knipp, D. J. ( 2015 ). Synthesis of geomagnetically induced currents: Commentary and research. Space Weather, 13, 727 – 729. https://doi.org/10.1002/2015SW001317 Liu, J., Angelopoulos, V., Chu, X., Zhou, X.‐Z., & Yue, C. ( 2015 ). Substorm current wedge composition by wedgelets. Geophysical Research Letters, 42, 1669 – 1676. https://doi.org/10.1002/2015GL063289 Newell, P. T., & Gjerloev, J. W. ( 2011b ). Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. Journal of Geophysical Research, 116, A12232. https://doi.org/10.1029/2011JA016936 Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061 Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local d Bdt variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911 Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386 Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. ( 2018 ). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16, 636 – 647. https://doi.org/10.1029/2018SW001880 Palin, L., Jacquey, C., Opgenoorth, H., Connors, M., Sergeev, V., Sauvaud, J.‐A., et al. ( 2015 ). Three‐dimensional current systems and ionospheric effects associated with small dipolarization fronts. Journal of Geophysical Research: Space Physics, 120, 3739 – 3757. https://doi.org/10.1002/2015JA021040 Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., et al. ( 2009 ). THEMIS observations of an earthward propagatingdipolarization front. Geophysical Research Letters, 36, L14106. https://doi.org/10.1029/2009GL038980 Runov, A., Angelopoulos, V., Zhou, X.‐Z., Zhang, X.‐J., Li, S., Plaschke, F., & Bonnell, J. ( 2011 ). A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. Journal of Geophysical Research, 116, A05216. https://doi.org/10.1029/2010JA016316 Singer, H. J., Matheson, L., Grubb, R., Newman, A., & Bouwer, S. D. ( 1996 ). Monitoring space weather with the GOES magnetometers. In E. R. Washwell (Ed.), SPIE Conference Proceedings (Vol. 2812, pp. 299 – 308 ). Bellingham, Wash: GOES‐8 and Beyond, SPIE. Syrjäsuo, M. T., & Donovan, E. F. ( 2004 ). Diurnal auroral occurrence statistics obtained via machine vision. Annales Geophysicae, 22, 1103 – 1113. https://doi.org/10.5194/angeo‐22‐1103‐2004 Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538 Viljanen, A., Nevanlinna, H., Pajunpää, K., & Pulkkinen, A. ( 2001 ). Time derivative of the horizontal geomagnetic field as an activity indicator. Annales Geophysicae, 19 ( 9 ), 1107 – 1118. https://doi.org/10.5194/angeo‐19‐1107‐2001 Viljanen, A., & Tanskanen, E. ( 2011 ). Climatology of rapid geomagnetic variations at high latitudes over two solar cycles. Annales Geophysicae, 29, 1783 – 1792. https://doi.org/10.5194/angeo‐29‐1783‐2011 Viljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24, 725 – 733. https://doi.org/10.5194/angeo‐24‐725‐2006 Vorobev, A., Pilipenko, V., Sakharov, Y., & Selivanov, V. ( 2019 ). Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents. Solar‐Terrestrial Physics, 5, 35 – 42. https://doi.org/10.12737/stp‐51201905 Akasofu, S.‐I. ( 1974 ). A study of auroral displays photographed from the DMSP‐2 satellite and from the Alaska meridian chain of stations. Space Science Reviews, 16, 617 – 725. Akasofu, S.‐I., & Kimball, D. S. ( 1964 ). The dynamics of the aurora, 1, Instabilities of the aurora. Journal of Atmospheric and Terrestrial Physics, 26, 205 – 211. https://doi.org/10.1016/0021‐9169(64)90147‐3 Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., et al. ( 1992 ). Bursty Bulk Flows in the inner central plasma sheet. Journal of Geophysical Research, 97, 4027 – 4039. https://doi.org/10.1029/91JA02701 Apatenkov, S. V., Pilipenko, V. A., Gordeev, E. I., Viljanen, A., Juusola, L., Belakhovsky, V. B., et al. ( 2020 ). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47, e2019GL086677. https://doi.org/10.1029/2019GL086677 Belakhovsky, V., Pilipenko, V., Engebretson, M., Sakharov, Y., & Selivanov, V. ( 2019 ). Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines. Journal of Space Weather and Space Climate, 9, A18. https://doi.org/10.1051/swsc/2019015 Boteler, D. H., Pirjola, R. J., & Nevanlinna, H. ( 1998 ). The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Advances in Space Research, 22 ( 1 ), 17 – 27. https://doi.org/10.1016/S0273‐1177(97)01096‐X IndexNoFollow omega bands substorms magnetic storms magnetic perturbation events geomagnetically induced currents Electrical Engineering Engineering Article 2021 ftumdeepblue https://doi.org/10.1029/2020SW00252610.1029/2018SW00213210.1029/2020JA02812810.1029/2019JA02679410.1029/2019JA02679710.1029/2004SW00012810.1002/2015SW00131710.1029/2018SW00188010.1002/2015JA02104010.1029/2009GL03898010.1029/97GL0053810.1029/91JA0270110.10 2023-07-31T20:42:03Z Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. This study compares the occurrence and amplitude of nighttime MPEs with |dB/dt| ≥ 6 nT/s observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of magnetic local time (MLT), the SME (SuperMAG version of AE) and SYM/H magnetic indices, and time delay after substorm onsets. Although most MPEs occurred within 30 min after a substorm onset, ∼10% of those observed at the four lower latitude stations occurred over two hours after the most recent onset. A broad distribution in local time appeared at all five stations between 1700 and 0100 MLT, and a narrower distribution appeared at the lower latitude stations between 0200 and 0700 MLT. There was little or no correlation between MPE amplitude and the SYM/H index; most MPEs at all stations occurred for SYM/H values between −40 and 0 nT. SME index values for MPEs observed >1 h after the most recent substorm onset fell in the lower half of the range of SME values for events during substorms, and dipolarizations in synchronous orbit at GOES 13 during these events were weaker or more often nonexistent. These observations suggest that substorms are neither necessary nor sufficient to cause MPEs, and hence predictions of GICs cannot focus solely on substorms.Key PointsWe present 2 years of observations of ≥6 nT/s magnetic perturbation events (MPEs) from five high‐latitude Arctic stationsMost MPEs occurred within 30 min of a substorm onset, but substorms were neither necessary nor sufficient to cause MPEsPre‐ and postmidnight MPEs had different temporal relations to substorms and occurred at slightly different latitudes Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/167091/1/swe21104.pdf ... Article in Journal/Newspaper Arctic Arctic University of Michigan: Deep Blue Arctic Canada Space Weather 19 3