Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners

Soil organic carbon (SOC) regulates terrestrial ecosystem functioning, provides diverse energy sources for soil microorganisms, governs soil structure, and regulates the availability of organically bound nutrients. Investigators in increasingly diverse disciplines recognize how quantifying SOC attri...

Full description

Bibliographic Details
Published in:PhytoKeys
Main Authors: Billings, S. A., Lajtha, K., Malhotra, A., Berhe, A. A., Graaff, M.‐a., Earl, S., Fraterrigo, J., Georgiou, K., Grandy, S., Hobbie, S. E., Moore, J. A. M., Nadelhoffer, K., Pierson, D., Rasmussen, C., Silver, W. L., Sulman, B. N., Weintraub, S., Wieder, W.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2021
Subjects:
Online Access:https://hdl.handle.net/2027.42/167061
https://doi.org/10.1002/eap.2290
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167061
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic global C cycle
standardized soil methods
soil- climate feedbacks
Ecology and Evolutionary Biology
Science
spellingShingle global C cycle
standardized soil methods
soil- climate feedbacks
Ecology and Evolutionary Biology
Science
Billings, S. A.
Lajtha, K.
Malhotra, A.
Berhe, A. A.
Graaff, M.‐a.
Earl, S.
Fraterrigo, J.
Georgiou, K.
Grandy, S.
Hobbie, S. E.
Moore, J. A. M.
Nadelhoffer, K.
Pierson, D.
Rasmussen, C.
Silver, W. L.
Sulman, B. N.
Weintraub, S.
Wieder, W.
Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners
topic_facet global C cycle
standardized soil methods
soil- climate feedbacks
Ecology and Evolutionary Biology
Science
description Soil organic carbon (SOC) regulates terrestrial ecosystem functioning, provides diverse energy sources for soil microorganisms, governs soil structure, and regulates the availability of organically bound nutrients. Investigators in increasingly diverse disciplines recognize how quantifying SOC attributes can provide insight about ecological states and processes. Today, multiple research networks collect and provide SOC data, and robust, new technologies are available for managing, sharing, and analyzing large data sets. We advocate that the scientific community capitalize on these developments to augment SOC data sets via standardized protocols. We describe why such efforts are important and the breadth of disciplines for which it will be helpful, and outline a tiered approach for standardized sampling of SOC and ancillary variables that ranges from simple to more complex. We target scientists ranging from those with little to no background in soil science to those with more soil- related expertise, and offer examples of the ways in which the resulting data can be organized, shared, and discoverable. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/167061/1/eap2290_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/167061/2/eap2290.pdf
format Article in Journal/Newspaper
author Billings, S. A.
Lajtha, K.
Malhotra, A.
Berhe, A. A.
Graaff, M.‐a.
Earl, S.
Fraterrigo, J.
Georgiou, K.
Grandy, S.
Hobbie, S. E.
Moore, J. A. M.
Nadelhoffer, K.
Pierson, D.
Rasmussen, C.
Silver, W. L.
Sulman, B. N.
Weintraub, S.
Wieder, W.
author_facet Billings, S. A.
Lajtha, K.
Malhotra, A.
Berhe, A. A.
Graaff, M.‐a.
Earl, S.
Fraterrigo, J.
Georgiou, K.
Grandy, S.
Hobbie, S. E.
Moore, J. A. M.
Nadelhoffer, K.
Pierson, D.
Rasmussen, C.
Silver, W. L.
Sulman, B. N.
Weintraub, S.
Wieder, W.
author_sort Billings, S. A.
title Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners
title_short Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners
title_full Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners
title_fullStr Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners
title_full_unstemmed Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners
title_sort soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners
publisher Wiley Periodicals, Inc.
publishDate 2021
url https://hdl.handle.net/2027.42/167061
https://doi.org/10.1002/eap.2290
genre Arctic
genre_facet Arctic
op_relation Billings, S. A.; Lajtha, K.; Malhotra, A.; Berhe, A. A.; Graaff, M.‐a.
Earl, S.; Fraterrigo, J.; Georgiou, K.; Grandy, S.; Hobbie, S. E.; Moore, J. A. M.; Nadelhoffer, K.; Pierson, D.; Rasmussen, C.; Silver, W. L.; Sulman, B. N.; Weintraub, S.; Wieder, W. (2021). "Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners." Ecological Applications 31(3): n/a-n/a.
1051-0761
1939-5582
https://hdl.handle.net/2027.42/167061
doi:10.1002/eap.2290
Ecological Applications
Robinson, D. A., J. W. Hopmans, V. Filipovic, M. van der Ploeg, I. Lebron, S. B. Jones, S. Reinsch, N. Jarvis, and M. Tuller. 2019. Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Global Change Biology 25: 1895 - 1904.
Jastrow, J. D. 1996. Soil aggregate formation and the accrual of particulate and mineral- associated organic matter. Soil Biology and Biochemistry 28: 665 - 676.
Lawrence, C. R., et al. 2020. An open- source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth System Science Data 12: 61 - 76.
Throop, H. L., S. R. Archer, H. C. Monger, and S. Waltman. 2012. When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. Journal of Arid Environments 77: 66 - 71.
Swift, R. S. 1996. Organic matter characterization. Pages 1011 - 1069 in D. L. Sparks, editor. Methods of soil analysis: Part 3: chemical methods. SSSA Book Series. No. 5. Soil Science Society of America, Madison, Wisconsin, USA.
Thomas, G. W. 1996. Soil pH and soil acidity. Pages 475 - 489 in D. L. Sparks, editor. Methods of soil analysis: Part 3- chemical methods. Book Series No. 5. Soils Science Society of America, Madison, Wisconsin, USA.
Tiemann, L. K., A. S. Grandy, E. E. Atkinson, E. Marin- Spiotta, and M. D. McDanial. 2015. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters 18: 761 - 771.
Tisdall, J. M., and J. M. Oades. 1982. Organic matter and water- stable aggregates in soils. Journal of Soil Science 33: 141 - 163.
Todd- Brown, K. E. O., et al. 2014. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11: 2341 - 2356.
Tombacz, E., Z. Libor, E. Illes, and A. Majzik. 2004. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry 35: 257 - 267.
Torn, M. S., S. E. Trumbore, O. A. Chadwick, P. M. Vitousek, and D. M. Hendricks. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389: 170 - 173.
Upton, R. N., E. M. Bach, and K. S. Hofmockel. 2019. Spatio- temporal microbial community dynamics within soil aggregates. Soil Biology and Biochemistry 132: 58 - 68.
USDA NRCS. 2014. Kellogg soil survey laboratory methods manual. Report No. 42, Version 5.0, Soil Survey Investigations, Lincoln, Nebraska, USA.
van Gestel, M., R. Merckx, and K. Vlassak. 1996. Spatial distribution of microbial biomass in microaggregates of a silty- loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biology and Biochemistry 28: 503 - 510.
van Wesemael, B., et al. 2011. How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO 2 fluxes in agricultural soils? Plant and Soil 338: 247 - 259.
Verde Arregoitia, L. D., N. Cooper, and G. D’Elía. 2018. Good practices for sharing analysis- ready data in mammalogy and biodiversity research. Hystrix, the Italian Journal of Mammalogy 29: 155 - 161.
Vicca, S., et al. 2018. Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environmental Research Letters 13: 125006. https://doi.org/10.1088/1748- 9326/aaeae7
Viera, M., and R. Rodríguez- Soalleiro. 2019. A complete assessment of carbon stocks in above and belowground biomass components of a hybrid eucalyptus plantation in southern Brazil. Forests 10: 536.
von Lützow, M., I. Kögel- Knabner, K. Ekschmittb, H. Fless, G. Guggenberger, E. Matzner, and B. Marschner. 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry 39: 2183 - 2207.
Wagai, R., L. M. Mayer, and K. Kitayama. 2009. Nature of the occluded low- density fraction in soil organic matter studies: a critical review. Soil Science and Plant Nutrition 55: 13 - 25.
Walter, K., A. Don, B. Tiemeyer, and A. Freibauer. 2016. Determining soil bulk density for carbon stock calculations: a systematic method comparison. Soil Science Society of America Journal 80: 579 - 591.
Walthert, L., U. Graf, A. Kammer, J. Luster, D. Pezzotta, S. Zimmermann, and F. Hagedorn. 2010. Determination of organic and inorganic carbon, δ 13 C, and nitrogen in soils containing carbonates after acid fumigation with HCl. Journal of Plant Nutrition and Soil Science 173: 207 - 216.
Wang, S., H. Y. Chen, Y. Tan, H. Fan, and H. Ruan. 2016. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Scientific Reports 6: 1 - 10.
Webster, R., and M. A. Oliver. 2001. Geostatistics for environmental scientists. John Wiley and Sons, Chichester, UK.
Weintraub, S. R., et al. 2019. Leveraging environmental research and observation networks to advance soil carbon science. Journal of Geophysical Research Biogeosciences 124: 1047 - 1055.
Wendt, J. W., and S. Hauser. 2013. An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers. European Journal of Soil Science 64: 58 - 65.
White, E. P., E. Baldridge, Z. T. Brym, K. J. Locey, D. J. McGlinn, and S. R. Supp. 2013. Nine simple ways to make it easier to (re) use your data. Ideas in Ecology and Evolution 6: 1 - 10.
White, D., W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40: 51 - 62.
Wickham, H. 2014. Tidy data. Journal of Statistical Software 59: 23.
Wieder, W. R., et al. 2020. SOils DAta Harmonization database (SoDaH): an open- source synthesis of soil data from research networks ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4
Wieder, W. R., A. S. Grandy, C. M. Kallenbach, and G. B. Bonan. 2014. Integrating microbial physiology and physiochemical principles in soils with the MIcrobial- MIneral Carbon Stabilization (MIMICS) model. Biogeosciences 11: 3899 - 3917.
Wieder, W. R., M. D. Hartman, B. N. Sulman, Y.- P. Wang, C. D. Koven, and G. C. Bonan. 2018. Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models. Global Change Biology 24: 1563 - 1579. https://doi.org/10.1111/gcb.13979
Wieder, W. R., B. N. Sulman, M. D. Hartman, C. D. Koven, and M. A. Bradford. 2019. Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophysical Research Letters 46: 14486 - 14495.
Wilkinson, M. D., et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3: 160018.
Williams, E. K., M. L. Fogel, A. A. Berhe, and A. F. Plante. 2018. Distinct bioenergetic signatures in particulate versus mineral- associated soil organic matter. Geoderma 330: 107 - 116.
Wuest, S. B. 2009. Correction of bulk density and sampling method biases using soil mass per unit area. Soil Science Society of America Journal 73: 312 - 316.
Yang, Y., D. Tilman, G. Furey, and C. Lehman. 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications 10: 718.
Yeasmin, S., B. Singh, C. T. Johnston, and D. L. Sparks. 2017. Organic carbon characteristics in density fractions of soils with contrasting mineralogies. Geochimica et Cosmochimica Acta 218: 215 - 236.
Zhang, H., et al. 2020. Microbial dynamics and soil physicochemical properties explain large- scale variations in soil organic carbon. Glob Change Biology 16: 1 - 18.
Zhao, K., X. Jing, N. J. Sanders, L. Chen, Y. Shi, D. F. B. Flynn, Y. Wang, H. Chu, W. Liang, and J.- S. He. 2017. On the controls of abundance for soil- dwelling organisms on the Tibetan Plateau. Ecosphere 8: e01901.
Al- Shammary, A. A. G., A. Z. Kouzani, A. Kaynak, S. Y. Khoo, M. Norton, and W. Gates. 2018. Soil bulk density estimation methods: a review. Pedosphere 28: 581 - 596.
Amundson, R., A. A. Berhe, J. W. Hopmans, C. Olson, A. E. Sztein, and D. L. Sparks. 2015. Soil and human security in the 21st century. Science 348: 1261071.
Amundson, R., and L. Biardeau. 2018. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proceedings of the National Academy of Sciences USA 115: 11652 - 11656.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/eap.229010.1088/174810.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b410.1111/gcb.1397910.1029/2018WR02390310.1111/204110.1111/gcb.1389610.1371/journal.pone.016974810.1111/gcb1485910.3389/fmicb.2016.0208310.1016/j.scitotenv.2018.03.378
container_title PhytoKeys
container_volume 52
container_start_page 23
op_container_end_page 79
_version_ 1774713604103208960
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/167061 2023-08-20T04:03:12+02:00 Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners Billings, S. A. Lajtha, K. Malhotra, A. Berhe, A. A. Graaff, M.‐a. Earl, S. Fraterrigo, J. Georgiou, K. Grandy, S. Hobbie, S. E. Moore, J. A. M. Nadelhoffer, K. Pierson, D. Rasmussen, C. Silver, W. L. Sulman, B. N. Weintraub, S. Wieder, W. 2021-04 application/pdf https://hdl.handle.net/2027.42/167061 https://doi.org/10.1002/eap.2290 unknown Wiley Periodicals, Inc. Oxford University Press Billings, S. A.; Lajtha, K.; Malhotra, A.; Berhe, A. A.; Graaff, M.‐a. Earl, S.; Fraterrigo, J.; Georgiou, K.; Grandy, S.; Hobbie, S. E.; Moore, J. A. M.; Nadelhoffer, K.; Pierson, D.; Rasmussen, C.; Silver, W. L.; Sulman, B. N.; Weintraub, S.; Wieder, W. (2021). "Soil organic carbon is not just for soil scientists: measurement recommendations for diverse practitioners." Ecological Applications 31(3): n/a-n/a. 1051-0761 1939-5582 https://hdl.handle.net/2027.42/167061 doi:10.1002/eap.2290 Ecological Applications Robinson, D. A., J. W. Hopmans, V. Filipovic, M. van der Ploeg, I. Lebron, S. B. Jones, S. Reinsch, N. Jarvis, and M. Tuller. 2019. Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Global Change Biology 25: 1895 - 1904. Jastrow, J. D. 1996. Soil aggregate formation and the accrual of particulate and mineral- associated organic matter. Soil Biology and Biochemistry 28: 665 - 676. Lawrence, C. R., et al. 2020. An open- source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth System Science Data 12: 61 - 76. Throop, H. L., S. R. Archer, H. C. Monger, and S. Waltman. 2012. When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. Journal of Arid Environments 77: 66 - 71. Swift, R. S. 1996. Organic matter characterization. Pages 1011 - 1069 in D. L. Sparks, editor. Methods of soil analysis: Part 3: chemical methods. SSSA Book Series. No. 5. Soil Science Society of America, Madison, Wisconsin, USA. Thomas, G. W. 1996. Soil pH and soil acidity. Pages 475 - 489 in D. L. Sparks, editor. Methods of soil analysis: Part 3- chemical methods. Book Series No. 5. Soils Science Society of America, Madison, Wisconsin, USA. Tiemann, L. K., A. S. Grandy, E. E. Atkinson, E. Marin- Spiotta, and M. D. McDanial. 2015. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters 18: 761 - 771. Tisdall, J. M., and J. M. Oades. 1982. Organic matter and water- stable aggregates in soils. Journal of Soil Science 33: 141 - 163. Todd- Brown, K. E. O., et al. 2014. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11: 2341 - 2356. Tombacz, E., Z. Libor, E. Illes, and A. Majzik. 2004. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry 35: 257 - 267. Torn, M. S., S. E. Trumbore, O. A. Chadwick, P. M. Vitousek, and D. M. Hendricks. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389: 170 - 173. Upton, R. N., E. M. Bach, and K. S. Hofmockel. 2019. Spatio- temporal microbial community dynamics within soil aggregates. Soil Biology and Biochemistry 132: 58 - 68. USDA NRCS. 2014. Kellogg soil survey laboratory methods manual. Report No. 42, Version 5.0, Soil Survey Investigations, Lincoln, Nebraska, USA. van Gestel, M., R. Merckx, and K. Vlassak. 1996. Spatial distribution of microbial biomass in microaggregates of a silty- loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biology and Biochemistry 28: 503 - 510. van Wesemael, B., et al. 2011. How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO 2 fluxes in agricultural soils? Plant and Soil 338: 247 - 259. Verde Arregoitia, L. D., N. Cooper, and G. D’Elía. 2018. Good practices for sharing analysis- ready data in mammalogy and biodiversity research. Hystrix, the Italian Journal of Mammalogy 29: 155 - 161. Vicca, S., et al. 2018. Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environmental Research Letters 13: 125006. https://doi.org/10.1088/1748- 9326/aaeae7 Viera, M., and R. Rodríguez- Soalleiro. 2019. A complete assessment of carbon stocks in above and belowground biomass components of a hybrid eucalyptus plantation in southern Brazil. Forests 10: 536. von Lützow, M., I. Kögel- Knabner, K. Ekschmittb, H. Fless, G. Guggenberger, E. Matzner, and B. Marschner. 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry 39: 2183 - 2207. Wagai, R., L. M. Mayer, and K. Kitayama. 2009. Nature of the occluded low- density fraction in soil organic matter studies: a critical review. Soil Science and Plant Nutrition 55: 13 - 25. Walter, K., A. Don, B. Tiemeyer, and A. Freibauer. 2016. Determining soil bulk density for carbon stock calculations: a systematic method comparison. Soil Science Society of America Journal 80: 579 - 591. Walthert, L., U. Graf, A. Kammer, J. Luster, D. Pezzotta, S. Zimmermann, and F. Hagedorn. 2010. Determination of organic and inorganic carbon, δ 13 C, and nitrogen in soils containing carbonates after acid fumigation with HCl. Journal of Plant Nutrition and Soil Science 173: 207 - 216. Wang, S., H. Y. Chen, Y. Tan, H. Fan, and H. Ruan. 2016. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Scientific Reports 6: 1 - 10. Webster, R., and M. A. Oliver. 2001. Geostatistics for environmental scientists. John Wiley and Sons, Chichester, UK. Weintraub, S. R., et al. 2019. Leveraging environmental research and observation networks to advance soil carbon science. Journal of Geophysical Research Biogeosciences 124: 1047 - 1055. Wendt, J. W., and S. Hauser. 2013. An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers. European Journal of Soil Science 64: 58 - 65. White, E. P., E. Baldridge, Z. T. Brym, K. J. Locey, D. J. McGlinn, and S. R. Supp. 2013. Nine simple ways to make it easier to (re) use your data. Ideas in Ecology and Evolution 6: 1 - 10. White, D., W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40: 51 - 62. Wickham, H. 2014. Tidy data. Journal of Statistical Software 59: 23. Wieder, W. R., et al. 2020. SOils DAta Harmonization database (SoDaH): an open- source synthesis of soil data from research networks ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 Wieder, W. R., A. S. Grandy, C. M. Kallenbach, and G. B. Bonan. 2014. Integrating microbial physiology and physiochemical principles in soils with the MIcrobial- MIneral Carbon Stabilization (MIMICS) model. Biogeosciences 11: 3899 - 3917. Wieder, W. R., M. D. Hartman, B. N. Sulman, Y.- P. Wang, C. D. Koven, and G. C. Bonan. 2018. Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models. Global Change Biology 24: 1563 - 1579. https://doi.org/10.1111/gcb.13979 Wieder, W. R., B. N. Sulman, M. D. Hartman, C. D. Koven, and M. A. Bradford. 2019. Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophysical Research Letters 46: 14486 - 14495. Wilkinson, M. D., et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3: 160018. Williams, E. K., M. L. Fogel, A. A. Berhe, and A. F. Plante. 2018. Distinct bioenergetic signatures in particulate versus mineral- associated soil organic matter. Geoderma 330: 107 - 116. Wuest, S. B. 2009. Correction of bulk density and sampling method biases using soil mass per unit area. Soil Science Society of America Journal 73: 312 - 316. Yang, Y., D. Tilman, G. Furey, and C. Lehman. 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications 10: 718. Yeasmin, S., B. Singh, C. T. Johnston, and D. L. Sparks. 2017. Organic carbon characteristics in density fractions of soils with contrasting mineralogies. Geochimica et Cosmochimica Acta 218: 215 - 236. Zhang, H., et al. 2020. Microbial dynamics and soil physicochemical properties explain large- scale variations in soil organic carbon. Glob Change Biology 16: 1 - 18. Zhao, K., X. Jing, N. J. Sanders, L. Chen, Y. Shi, D. F. B. Flynn, Y. Wang, H. Chu, W. Liang, and J.- S. He. 2017. On the controls of abundance for soil- dwelling organisms on the Tibetan Plateau. Ecosphere 8: e01901. Al- Shammary, A. A. G., A. Z. Kouzani, A. Kaynak, S. Y. Khoo, M. Norton, and W. Gates. 2018. Soil bulk density estimation methods: a review. Pedosphere 28: 581 - 596. Amundson, R., A. A. Berhe, J. W. Hopmans, C. Olson, A. E. Sztein, and D. L. Sparks. 2015. Soil and human security in the 21st century. Science 348: 1261071. Amundson, R., and L. Biardeau. 2018. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proceedings of the National Academy of Sciences USA 115: 11652 - 11656. IndexNoFollow global C cycle standardized soil methods soil- climate feedbacks Ecology and Evolutionary Biology Science Article 2021 ftumdeepblue https://doi.org/10.1002/eap.229010.1088/174810.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b410.1111/gcb.1397910.1029/2018WR02390310.1111/204110.1111/gcb.1389610.1371/journal.pone.016974810.1111/gcb1485910.3389/fmicb.2016.0208310.1016/j.scitotenv.2018.03.378 2023-07-31T21:00:38Z Soil organic carbon (SOC) regulates terrestrial ecosystem functioning, provides diverse energy sources for soil microorganisms, governs soil structure, and regulates the availability of organically bound nutrients. Investigators in increasingly diverse disciplines recognize how quantifying SOC attributes can provide insight about ecological states and processes. Today, multiple research networks collect and provide SOC data, and robust, new technologies are available for managing, sharing, and analyzing large data sets. We advocate that the scientific community capitalize on these developments to augment SOC data sets via standardized protocols. We describe why such efforts are important and the breadth of disciplines for which it will be helpful, and outline a tiered approach for standardized sampling of SOC and ancillary variables that ranges from simple to more complex. We target scientists ranging from those with little to no background in soil science to those with more soil- related expertise, and offer examples of the ways in which the resulting data can be organized, shared, and discoverable. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/167061/1/eap2290_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/167061/2/eap2290.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue PhytoKeys 52 23 79