Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China

A high‐resolution study of bulk properties in a peat sequence from the Xinjiang Altai Mountains of northwestern China has allowed reconstruction of local variations in peat properties and peat C and N accumulation rates (CAR and NAR) during the Holocene. Analyses of peat bulk density, loss on igniti...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Biogeosciences
Main Authors: Zhang, Yan, Yang, Ping, Gao, Chuanyu, Tong, Chuan, Zhang, Xinyan, Liu, Xingtu, Zhang, Shaoqing, Meyers, Philip A.
Format: Article in Journal/Newspaper
Language:unknown
Published: Foundation for Statistical Computing 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/163931
https://doi.org/10.1029/2019JG005615
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/163931
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic peat properties
carbon and nitrogen accumulation rates
Altai Mountains of northwestern China
stable carbon and nitrogen isotopes
Geological Sciences
Science
spellingShingle peat properties
carbon and nitrogen accumulation rates
Altai Mountains of northwestern China
stable carbon and nitrogen isotopes
Geological Sciences
Science
Zhang, Yan
Yang, Ping
Gao, Chuanyu
Tong, Chuan
Zhang, Xinyan
Liu, Xingtu
Zhang, Shaoqing
Meyers, Philip A.
Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China
topic_facet peat properties
carbon and nitrogen accumulation rates
Altai Mountains of northwestern China
stable carbon and nitrogen isotopes
Geological Sciences
Science
description A high‐resolution study of bulk properties in a peat sequence from the Xinjiang Altai Mountains of northwestern China has allowed reconstruction of local variations in peat properties and peat C and N accumulation rates (CAR and NAR) during the Holocene. Analyses of peat bulk density, loss on ignition, and concentrations of total organic carbon (TOC) and total nitrogen (TN) and their elemental ratios and stable isotopic values suggest that changes in peat‐forming vegetation types during different parts of this epoch are the major factors responsible for the variations of peat properties in this sequence. The long‐term peat CAR has been 25.4 ± 7.7 (SD) g C/m2/yr, with lower values during the early Holocene and higher accumulations during the late Holocene, which is opposite to the Holocene variations in CAR in other northern peatlands. In contrast, the long‐term peat NAR is 1.5 ± 0.5 (SD) g N/m2/yr and is higher during the early and middle Holocene and lower during the late Holocene as in other northern peatlands. However, unlike other northern peatlands, long‐term peat NAR does not vary with the CAR, which is influenced by the peat density and accumulation rate. Variations in long‐term peat C and N accumulations in the Altai Mountains can be attributed to changes in primary productivity, in the dominant plant types and in peat decomposition caused by changes in both regional Holocene climate and local conditions.Plain Language SummaryVariations in Holocene carbon and nitrogen accumulations in a peat sequence in the Altai Mountains of northwestern China can be attributed to changes in plant productivity, in the dominant plant types and in peat decomposition caused by changes in both regional climate and site‐specific environmental conditions.Key PointsA high‐resolution study was conducted of bulk properties in a peat sequence from the Xinjiang Altai Mountains of northwest ChinaReconstructions of Holocene peat C and N accumulations in the Altai Mountains of northwest China were doneRegional comparisons imply that ...
format Article in Journal/Newspaper
author Zhang, Yan
Yang, Ping
Gao, Chuanyu
Tong, Chuan
Zhang, Xinyan
Liu, Xingtu
Zhang, Shaoqing
Meyers, Philip A.
author_facet Zhang, Yan
Yang, Ping
Gao, Chuanyu
Tong, Chuan
Zhang, Xinyan
Liu, Xingtu
Zhang, Shaoqing
Meyers, Philip A.
author_sort Zhang, Yan
title Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China
title_short Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China
title_full Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China
title_fullStr Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China
title_full_unstemmed Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China
title_sort peat properties and holocene carbon and nitrogen accumulation rates in a peatland in the xinjiang altai mountains, northwestern china
publisher Foundation for Statistical Computing
publishDate 2020
url https://hdl.handle.net/2027.42/163931
https://doi.org/10.1029/2019JG005615
genre Arctic
genre_facet Arctic
op_relation Zhang, Yan; Yang, Ping; Gao, Chuanyu; Tong, Chuan; Zhang, Xinyan; Liu, Xingtu; Zhang, Shaoqing; Meyers, Philip A. (2020). "Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China." Journal of Geophysical Research: Biogeosciences 125(12): n/a-n/a.
2169-8953
2169-8961
https://hdl.handle.net/2027.42/163931
doi:10.1029/2019JG005615
Journal of Geophysical Research: Biogeosciences
Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A. ( 2002 ). Estimating carbon accumulation rates of undrained mires in Finland‐application to boreal and subarctic regions. The Holocene, 12 ( 1 ), 69 – 80. https://doi.org/10.1191/0959683602hl522rp
Loisel, J., & Garneau, M. ( 2010 ). Late‐Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: Potential and limits of multi‐proxy archives. Palaeogeography, Palaeoclimatology, Palaeoecology, 29, 493 – 533.
Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., & Belyea, L. R. ( 2014 ). A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24 ( 9 ), 1028 – 1042. https://doi.org/10.1177/0959683614538073
Luo, C. X., Zheng, Z., Tarasov, P., Pan, A. D., Huang, K. Y., Beaudouin, C., & An, F. Z. ( 2009 ). Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Review of Palaeobotany and Palynology, 153 ( 3–4 ), 282 – 295. https://doi.org/10.1016/j.revpalbo.2008.08.007
Madsen, D. B., Chen, F., Oviatt, C. G., Zhu, Y., Brantingham, P. J., Elston, R. G., & Bettinger, R. L. ( 2003 ). Late Pleistocene/Holocene wetland events recorded in southeast Tengger Desert lake sediments, NW China. Chinese Science Bulletin, 48 ( 14 ), 1423 – 1429. https://doi.org/10.1360/02wd0257
Malmer, N., Svensson, B. M., & Wallén, B. ( 1994 ). Interactions between Sphagnum mosses and field layer vascular plants in the development of peat‐forming systems. Folia Geobotanica et Phytotaxonomica, 29 ( 4 ), 483 – 496. https://doi.org/10.1007/BF02883146
McLauchlan, K. K., Williams, J. J., Craine, J. M., & Jeffers, E. S. ( 2013 ). Changes in global nitrogen cycling during the Holocene epoch. Nature, 495 ( 7441 ), 352 – 355. https://doi.org/10.1038/nature11916
Moore, T. R., Bubier, J. L., & Frolking, S. ( 2002 ). Plant biomass and production and CO 2 exchange in an ombrotrophic bog. Journal of Ecology, 1, 25 – 36.
Olid, C., Nilsson, M. B., Eriksson, T., & Klaminder, J. ( 2014 ). The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient‐poor boreal mire: Decadal effects assessed using 210 Pb peat chronologies. Journal of Geophysical Research: Biogeosciences, 119, 392 – 403. https://doi.org/10.1002/2013JG002365
Page, S. E., Rieley, J. O., & Wüst, R. ( 2006 ). Lowland tropical peatlands of Southeast Asia. Developments in Earth Surface Processes, 9, 145 – 172. https://doi.org/10.1016/S0928‐2025(06)09007‐9
Panait, A., Diaconu, A., Galka, M., Grindean, R., Hutchinson, S. M., Hickler, T., Lamentowicz, M., Mulch, A., Tanțău, I., Werner, C., & Feurdean, A. ( 2017 ). Hydrological conditions and carbon accumulation rates reconstructed from a mountain raised bog in the Carpathians: A multi‐proxy approach. Catena, 152, 57 – 68. https://doi.org/10.1016/j.catena.2016.12.023
Smith, L., MacDonald, G., Velichko, A., Beilman, D., Borisova, O., Frey, K., Kremenetski, K., & Sheng, Y. ( 2004 ). Siberian peatlands: A net carbon sink and global methane source since the early Holocene. Science, 303 ( 5656 ), 353 – 356. https://doi.org/10.1126/science.1090553
Sun, J. H. ( 2012 ). Holocene environment changes inferred from the plant macrofossil records from the peatlands in Altai Mountains, Xinjiang (Master Thesis). Lanzhou University, Lan Zhou, China, 19.
Tarnocai, C., Canadell, J. G., Schuur, E. A., Kuhry, P., Mazhitova, G., & Zimov, S. ( 2009 ). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023. https://doi.org/10.1029/2008GB003327
Wallén, B., & Malmer, N. ( 1992 ). Distribution of biomass along hummock‐hollow gradients: A comparison between a North American and Scandinavian peat bog. Acta Societatis Botanicorum Poloniae, 61, 75 – 87.
Wang, W., & Zhang, D. ( 2019 ). Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China. Global and Planetary Change, 179, 10 – 22. https://doi.org/10.1016/j.gloplacha.2019.05.003
Wang, Y. J., Cheng, H., Edward, R. L., He, Y. Q., Kong, X. G., An, A. S., & Wu, J. Y. ( 2005 ). The Holocene Asian monsoon: Link to solar changes and North Atlantic climate. Science, 308 ( 5723 ), 854 – 857. https://doi.org/10.1126/science.1106296
Xing, W., Bao, K. S., Guo, W. Y., Lu, X. G., & Wang, G. P. ( 2015 ). Peatland initiation and carbon dynamics in northeast China: Links to Holocene climate variability. Boreas, 3, 575 – 587.
Yang, Y. P., Zhang, D. L., Lan, B., Abdusalih, N., & Feng, Z. D. ( 2019 ). Peat δ 13 C celluose‐signified moisture variations over the past ∼2200 years in the southern Altai Mountains, northwestern China. Journal of Asian Earth Sciences, 174, 59 – 67. https://doi.org/10.1016/j.jseaes.2018.11.019
Yu, Z. ( 2012 ). Northern peatland carbon stocks and dynamics: A review. Biogeosciences, 9 ( 10 ), 4071 – 4085. https://doi.org/10.5194/bg‐9‐4071‐2012
Yu, Z., Beilman, D. W., & Jones, M. C. ( 2009 ). Sensitivity of northern peatland carbon dynamics to Holocene climate change. In A. Baird, L. Belyea, X. Comas, et al. (Eds.), Northern peatlands and carbon cycling (American Geophysical Union Monograph Series) (pp. 55 – 69 ). Washington, DC: American Geophysical Union.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., & Hunt, S. J. ( 2010 ). Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37, L13402. https://doi.org/10.1029/2010GL043584
Zhang, D. L., & Feng, Z. D. ( 2018 ). Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records. Earth‐Science Reviews, 185, 847 – 869. https://doi.org/10.1016/j.earscirev.2018.08.007
Zhang, Y., Meyers, P. A., Liu, X. T., Wang, G. P., Ma, X. H., Li, X. Y., Yuan, Y. X., & Wen, B. L. ( 2016 ). Holocene climate changes in the central Asia mountain region inferred from a peat sequence from Altai Mountains, Xinjiang, northwestern China. Quaternary Science Reviews, 152, 19 – 30. https://doi.org/10.1016/j.quascirev.2016.09.016
Zhang, Y., Yang, P., Tong, C., Liu, X., Zhang, Z., Wang, G., & Meyers, P. A. ( 2018 ). Palynological record of Holocene vegetation and climate changes in a high‐resolution peat profile from the Xinjiang Altai Mountains, northwestern China. Quaternary Science Reviews, 201, 111 – 123. https://doi.org/10.1016/j.quascirev.2018.10.021
Zhao, Y., Yu, Z., Tang, Y., Li, H., Yang, B., Li, F. R., Zhao, W. W., Sun, J. H., Chen, J. H., Li, Q., & Zhou, A. F. ( 2014 ). Peatland initiation and carbon accumulation in China over the last 50,000 years. Earth‐Science Reviews, 128, 139 – 146. https://doi.org/10.1016/j.earscirev.2013.11.003
Zhao, Y., Yu, Z. C., Zhang, J. W., & Yang, B. ( 2009 ). Vegetation response to Holocene climate change in monsoon‐influenced region of China. Earth‐Science Reviews, 97 ( 1–4 ), 242 – 256. https://doi.org/10.1016/j.earscirev.2009.10.007
Andersson, R. A., Meyers, P., Hornibrook, E., Kuhry, P., & Mörth, C. M. ( 2012 ). Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arctic. Journal of Quaternary Science, 27, 545 – 552.
Berger, A., & Loutre, M. F. ( 1991 ). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10 ( 4 ), 297 – 317. https://doi.org/10.1016/0277‐3791(91)90033‐Q
Biester, H., Knorr, K. H., Schellekens, J., Basler, A., & Hermanns, Y. M. ( 2014 ). Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences, 11 ( 10 ), 2691 – 2707. https://doi.org/10.5194/bg‐11‐2691‐2014
Blaauw, M., & Christen, J. A. ( 2011 ). Flexible paleoclimate age‐depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457 – 474.
Blaauw, M., Christen, J. A., Bennett, K. D., & Reimer, P. J. ( 2018 ). Double the dates and go for Bayes—Impacts of model choice, dating density and quality on chronologies. Quaternary Science Reviews, 188, 58 – 66. https://doi.org/10.1016/j.quascirev.2018.03.032
Cai, C., Hong, B., Zhu, Y. X., Hong, Y. T., Wang, Y., & Peng, H. J. ( 2013 ). Holocene Peat carbon accumulation rates and influence factors from the Hani peatland, Northeast China. Earth and Environment, 41, 597 – 604. (In Chinese)
Charman, D. J., Amesbury, M. J., Hinchliffe, W., Hughes, P. D., Mallon, G., Blake, W. H., & Mauquoy, D. ( 2015 ). Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America. Quaternary Science Reviews, 121, 110 – 119. https://doi.org/10.1016/j.quascirev.2015.05.012
Charman, D. J., Beilman, D. W., & Blaauw, M. ( 2013 ). Climate‐related changes in peatland carbon accumulation during the last millennium. Biogeosciences, 10 ( 2 ), 929 – 944. https://doi.org/10.5194/bg‐10‐929‐2013
Charman, D. J., Hohl, V., Blundell, A., Mitchell, F., Newberry, J., & Oksanen, P. ( 2012 ). A 1000‐year reconstruction of summer precipitation from Ireland: Calibration of a peat‐based palaeoclimate record. Quaternary International, 268, 87 – 97. https://doi.org/10.1016/j.quaint.2011.12.011
Chen, F. H., Jia, J., Chen, J. H., Li, G. Q., Zhang, X. J., Xie, H. C., Xia, D. S., Huang, W., & An, C. B. ( 2016 ). A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the lake Holocene, revealed by multi‐proxy analyses of loess‐paleosol sequences in Xinjiang, China. Quaternary Science Reviews, 146, 134 – 146. https://doi.org/10.1016/j.quascirev.2016.06.002
Chen, H., Yang, G., Peng, C., Zhang, Y., Zhu, D., Zhu, Q., Hu, J., Wang, M., Zhan, W., Zhu, E., & Bai, Z. ( 2014 ). The carbon stock of alpine peatlands on the Qinghai‐Tibetan Plateau during the Holocene and their future fate. Quaternary Science Reviews, 95, 151 – 158. https://doi.org/10.1016/j.quascirev.2014.05.003
Core Team, R. ( 2015 ). R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing. https://www.R‐project.org/
Feng, Z. D., Sun, A. Z., Abdusalih, N., Ran, M., Kurban, A., Lan, B., Zhang, D. L., & Yang, Y. P. ( 2017 ). Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene. The Holocene, 27 ( 5 ), 683 – 693. https://doi.org/10.1177/0959683616670469
Forestry Bureau of Altai Mountains in Xinjiang ( 2003 ). Two‐river source comprehensive scientific investigation of Altai Mountains in Xinjing, Urumchi. (in Chinese).
Gorham, E. ( 1991 ). Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1 ( 2 ), 182 – 195. https://doi.org/10.2307/1941811
Heiri, O., Lotter, A. F., & Lemcke, G. ( 2001 ). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25 ( 1 ), 101 – 110. https://doi.org/10.1023/A:1008119611481
Jones, M. C., & Yu, Z. ( 2010 ). Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proceedings of the National Academy of Sciences USA, 107, 7347 – 7352.
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2019JG00561510.5194/bg‐9‐4071‐201210.2307/1941811
container_title Journal of Geophysical Research: Biogeosciences
container_volume 125
container_issue 12
_version_ 1774713613504741376
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/163931 2023-08-20T04:03:12+02:00 Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China Zhang, Yan Yang, Ping Gao, Chuanyu Tong, Chuan Zhang, Xinyan Liu, Xingtu Zhang, Shaoqing Meyers, Philip A. 2020-12 application/pdf https://hdl.handle.net/2027.42/163931 https://doi.org/10.1029/2019JG005615 unknown Foundation for Statistical Computing Wiley Periodicals, Inc. Zhang, Yan; Yang, Ping; Gao, Chuanyu; Tong, Chuan; Zhang, Xinyan; Liu, Xingtu; Zhang, Shaoqing; Meyers, Philip A. (2020). "Peat Properties and Holocene Carbon and Nitrogen Accumulation Rates in a Peatland in the Xinjiang Altai Mountains, Northwestern China." Journal of Geophysical Research: Biogeosciences 125(12): n/a-n/a. 2169-8953 2169-8961 https://hdl.handle.net/2027.42/163931 doi:10.1029/2019JG005615 Journal of Geophysical Research: Biogeosciences Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A. ( 2002 ). Estimating carbon accumulation rates of undrained mires in Finland‐application to boreal and subarctic regions. The Holocene, 12 ( 1 ), 69 – 80. https://doi.org/10.1191/0959683602hl522rp Loisel, J., & Garneau, M. ( 2010 ). Late‐Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: Potential and limits of multi‐proxy archives. Palaeogeography, Palaeoclimatology, Palaeoecology, 29, 493 – 533. Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., & Belyea, L. R. ( 2014 ). A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24 ( 9 ), 1028 – 1042. https://doi.org/10.1177/0959683614538073 Luo, C. X., Zheng, Z., Tarasov, P., Pan, A. D., Huang, K. Y., Beaudouin, C., & An, F. Z. ( 2009 ). Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Review of Palaeobotany and Palynology, 153 ( 3–4 ), 282 – 295. https://doi.org/10.1016/j.revpalbo.2008.08.007 Madsen, D. B., Chen, F., Oviatt, C. G., Zhu, Y., Brantingham, P. J., Elston, R. G., & Bettinger, R. L. ( 2003 ). Late Pleistocene/Holocene wetland events recorded in southeast Tengger Desert lake sediments, NW China. Chinese Science Bulletin, 48 ( 14 ), 1423 – 1429. https://doi.org/10.1360/02wd0257 Malmer, N., Svensson, B. M., & Wallén, B. ( 1994 ). Interactions between Sphagnum mosses and field layer vascular plants in the development of peat‐forming systems. Folia Geobotanica et Phytotaxonomica, 29 ( 4 ), 483 – 496. https://doi.org/10.1007/BF02883146 McLauchlan, K. K., Williams, J. J., Craine, J. M., & Jeffers, E. S. ( 2013 ). Changes in global nitrogen cycling during the Holocene epoch. Nature, 495 ( 7441 ), 352 – 355. https://doi.org/10.1038/nature11916 Moore, T. R., Bubier, J. L., & Frolking, S. ( 2002 ). Plant biomass and production and CO 2 exchange in an ombrotrophic bog. Journal of Ecology, 1, 25 – 36. Olid, C., Nilsson, M. B., Eriksson, T., & Klaminder, J. ( 2014 ). The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient‐poor boreal mire: Decadal effects assessed using 210 Pb peat chronologies. Journal of Geophysical Research: Biogeosciences, 119, 392 – 403. https://doi.org/10.1002/2013JG002365 Page, S. E., Rieley, J. O., & Wüst, R. ( 2006 ). Lowland tropical peatlands of Southeast Asia. Developments in Earth Surface Processes, 9, 145 – 172. https://doi.org/10.1016/S0928‐2025(06)09007‐9 Panait, A., Diaconu, A., Galka, M., Grindean, R., Hutchinson, S. M., Hickler, T., Lamentowicz, M., Mulch, A., Tanțău, I., Werner, C., & Feurdean, A. ( 2017 ). Hydrological conditions and carbon accumulation rates reconstructed from a mountain raised bog in the Carpathians: A multi‐proxy approach. Catena, 152, 57 – 68. https://doi.org/10.1016/j.catena.2016.12.023 Smith, L., MacDonald, G., Velichko, A., Beilman, D., Borisova, O., Frey, K., Kremenetski, K., & Sheng, Y. ( 2004 ). Siberian peatlands: A net carbon sink and global methane source since the early Holocene. Science, 303 ( 5656 ), 353 – 356. https://doi.org/10.1126/science.1090553 Sun, J. H. ( 2012 ). Holocene environment changes inferred from the plant macrofossil records from the peatlands in Altai Mountains, Xinjiang (Master Thesis). Lanzhou University, Lan Zhou, China, 19. Tarnocai, C., Canadell, J. G., Schuur, E. A., Kuhry, P., Mazhitova, G., & Zimov, S. ( 2009 ). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023. https://doi.org/10.1029/2008GB003327 Wallén, B., & Malmer, N. ( 1992 ). Distribution of biomass along hummock‐hollow gradients: A comparison between a North American and Scandinavian peat bog. Acta Societatis Botanicorum Poloniae, 61, 75 – 87. Wang, W., & Zhang, D. ( 2019 ). Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China. Global and Planetary Change, 179, 10 – 22. https://doi.org/10.1016/j.gloplacha.2019.05.003 Wang, Y. J., Cheng, H., Edward, R. L., He, Y. Q., Kong, X. G., An, A. S., & Wu, J. Y. ( 2005 ). The Holocene Asian monsoon: Link to solar changes and North Atlantic climate. Science, 308 ( 5723 ), 854 – 857. https://doi.org/10.1126/science.1106296 Xing, W., Bao, K. S., Guo, W. Y., Lu, X. G., & Wang, G. P. ( 2015 ). Peatland initiation and carbon dynamics in northeast China: Links to Holocene climate variability. Boreas, 3, 575 – 587. Yang, Y. P., Zhang, D. L., Lan, B., Abdusalih, N., & Feng, Z. D. ( 2019 ). Peat δ 13 C celluose‐signified moisture variations over the past ∼2200 years in the southern Altai Mountains, northwestern China. Journal of Asian Earth Sciences, 174, 59 – 67. https://doi.org/10.1016/j.jseaes.2018.11.019 Yu, Z. ( 2012 ). Northern peatland carbon stocks and dynamics: A review. Biogeosciences, 9 ( 10 ), 4071 – 4085. https://doi.org/10.5194/bg‐9‐4071‐2012 Yu, Z., Beilman, D. W., & Jones, M. C. ( 2009 ). Sensitivity of northern peatland carbon dynamics to Holocene climate change. In A. Baird, L. Belyea, X. Comas, et al. (Eds.), Northern peatlands and carbon cycling (American Geophysical Union Monograph Series) (pp. 55 – 69 ). Washington, DC: American Geophysical Union. Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., & Hunt, S. J. ( 2010 ). Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37, L13402. https://doi.org/10.1029/2010GL043584 Zhang, D. L., & Feng, Z. D. ( 2018 ). Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records. Earth‐Science Reviews, 185, 847 – 869. https://doi.org/10.1016/j.earscirev.2018.08.007 Zhang, Y., Meyers, P. A., Liu, X. T., Wang, G. P., Ma, X. H., Li, X. Y., Yuan, Y. X., & Wen, B. L. ( 2016 ). Holocene climate changes in the central Asia mountain region inferred from a peat sequence from Altai Mountains, Xinjiang, northwestern China. Quaternary Science Reviews, 152, 19 – 30. https://doi.org/10.1016/j.quascirev.2016.09.016 Zhang, Y., Yang, P., Tong, C., Liu, X., Zhang, Z., Wang, G., & Meyers, P. A. ( 2018 ). Palynological record of Holocene vegetation and climate changes in a high‐resolution peat profile from the Xinjiang Altai Mountains, northwestern China. Quaternary Science Reviews, 201, 111 – 123. https://doi.org/10.1016/j.quascirev.2018.10.021 Zhao, Y., Yu, Z., Tang, Y., Li, H., Yang, B., Li, F. R., Zhao, W. W., Sun, J. H., Chen, J. H., Li, Q., & Zhou, A. F. ( 2014 ). Peatland initiation and carbon accumulation in China over the last 50,000 years. Earth‐Science Reviews, 128, 139 – 146. https://doi.org/10.1016/j.earscirev.2013.11.003 Zhao, Y., Yu, Z. C., Zhang, J. W., & Yang, B. ( 2009 ). Vegetation response to Holocene climate change in monsoon‐influenced region of China. Earth‐Science Reviews, 97 ( 1–4 ), 242 – 256. https://doi.org/10.1016/j.earscirev.2009.10.007 Andersson, R. A., Meyers, P., Hornibrook, E., Kuhry, P., & Mörth, C. M. ( 2012 ). Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arctic. Journal of Quaternary Science, 27, 545 – 552. Berger, A., & Loutre, M. F. ( 1991 ). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10 ( 4 ), 297 – 317. https://doi.org/10.1016/0277‐3791(91)90033‐Q Biester, H., Knorr, K. H., Schellekens, J., Basler, A., & Hermanns, Y. M. ( 2014 ). Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences, 11 ( 10 ), 2691 – 2707. https://doi.org/10.5194/bg‐11‐2691‐2014 Blaauw, M., & Christen, J. A. ( 2011 ). Flexible paleoclimate age‐depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457 – 474. Blaauw, M., Christen, J. A., Bennett, K. D., & Reimer, P. J. ( 2018 ). Double the dates and go for Bayes—Impacts of model choice, dating density and quality on chronologies. Quaternary Science Reviews, 188, 58 – 66. https://doi.org/10.1016/j.quascirev.2018.03.032 Cai, C., Hong, B., Zhu, Y. X., Hong, Y. T., Wang, Y., & Peng, H. J. ( 2013 ). Holocene Peat carbon accumulation rates and influence factors from the Hani peatland, Northeast China. Earth and Environment, 41, 597 – 604. (In Chinese) Charman, D. J., Amesbury, M. J., Hinchliffe, W., Hughes, P. D., Mallon, G., Blake, W. H., & Mauquoy, D. ( 2015 ). Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America. Quaternary Science Reviews, 121, 110 – 119. https://doi.org/10.1016/j.quascirev.2015.05.012 Charman, D. J., Beilman, D. W., & Blaauw, M. ( 2013 ). Climate‐related changes in peatland carbon accumulation during the last millennium. Biogeosciences, 10 ( 2 ), 929 – 944. https://doi.org/10.5194/bg‐10‐929‐2013 Charman, D. J., Hohl, V., Blundell, A., Mitchell, F., Newberry, J., & Oksanen, P. ( 2012 ). A 1000‐year reconstruction of summer precipitation from Ireland: Calibration of a peat‐based palaeoclimate record. Quaternary International, 268, 87 – 97. https://doi.org/10.1016/j.quaint.2011.12.011 Chen, F. H., Jia, J., Chen, J. H., Li, G. Q., Zhang, X. J., Xie, H. C., Xia, D. S., Huang, W., & An, C. B. ( 2016 ). A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the lake Holocene, revealed by multi‐proxy analyses of loess‐paleosol sequences in Xinjiang, China. Quaternary Science Reviews, 146, 134 – 146. https://doi.org/10.1016/j.quascirev.2016.06.002 Chen, H., Yang, G., Peng, C., Zhang, Y., Zhu, D., Zhu, Q., Hu, J., Wang, M., Zhan, W., Zhu, E., & Bai, Z. ( 2014 ). The carbon stock of alpine peatlands on the Qinghai‐Tibetan Plateau during the Holocene and their future fate. Quaternary Science Reviews, 95, 151 – 158. https://doi.org/10.1016/j.quascirev.2014.05.003 Core Team, R. ( 2015 ). R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing. https://www.R‐project.org/ Feng, Z. D., Sun, A. Z., Abdusalih, N., Ran, M., Kurban, A., Lan, B., Zhang, D. L., & Yang, Y. P. ( 2017 ). Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene. The Holocene, 27 ( 5 ), 683 – 693. https://doi.org/10.1177/0959683616670469 Forestry Bureau of Altai Mountains in Xinjiang ( 2003 ). Two‐river source comprehensive scientific investigation of Altai Mountains in Xinjing, Urumchi. (in Chinese). Gorham, E. ( 1991 ). Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1 ( 2 ), 182 – 195. https://doi.org/10.2307/1941811 Heiri, O., Lotter, A. F., & Lemcke, G. ( 2001 ). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25 ( 1 ), 101 – 110. https://doi.org/10.1023/A:1008119611481 Jones, M. C., & Yu, Z. ( 2010 ). Rapid deglacial and early Holocene expansion of peatlands in Alaska. Proceedings of the National Academy of Sciences USA, 107, 7347 – 7352. IndexNoFollow peat properties carbon and nitrogen accumulation rates Altai Mountains of northwestern China stable carbon and nitrogen isotopes Geological Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1029/2019JG00561510.5194/bg‐9‐4071‐201210.2307/1941811 2023-07-31T21:09:19Z A high‐resolution study of bulk properties in a peat sequence from the Xinjiang Altai Mountains of northwestern China has allowed reconstruction of local variations in peat properties and peat C and N accumulation rates (CAR and NAR) during the Holocene. Analyses of peat bulk density, loss on ignition, and concentrations of total organic carbon (TOC) and total nitrogen (TN) and their elemental ratios and stable isotopic values suggest that changes in peat‐forming vegetation types during different parts of this epoch are the major factors responsible for the variations of peat properties in this sequence. The long‐term peat CAR has been 25.4 ± 7.7 (SD) g C/m2/yr, with lower values during the early Holocene and higher accumulations during the late Holocene, which is opposite to the Holocene variations in CAR in other northern peatlands. In contrast, the long‐term peat NAR is 1.5 ± 0.5 (SD) g N/m2/yr and is higher during the early and middle Holocene and lower during the late Holocene as in other northern peatlands. However, unlike other northern peatlands, long‐term peat NAR does not vary with the CAR, which is influenced by the peat density and accumulation rate. Variations in long‐term peat C and N accumulations in the Altai Mountains can be attributed to changes in primary productivity, in the dominant plant types and in peat decomposition caused by changes in both regional Holocene climate and local conditions.Plain Language SummaryVariations in Holocene carbon and nitrogen accumulations in a peat sequence in the Altai Mountains of northwestern China can be attributed to changes in plant productivity, in the dominant plant types and in peat decomposition caused by changes in both regional climate and site‐specific environmental conditions.Key PointsA high‐resolution study was conducted of bulk properties in a peat sequence from the Xinjiang Altai Mountains of northwest ChinaReconstructions of Holocene peat C and N accumulations in the Altai Mountains of northwest China were doneRegional comparisons imply that ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Journal of Geophysical Research: Biogeosciences 125 12