Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018

Recent studies have indicated a slowdown of the decline of CFC‐11 concentration since 2012. Ground‐based observations used in such studies have their limitations in terms of global coverage. Here we show that the CFC‐11 time‐varying behaviors can be seen by double differencing nadir‐view, clear‐sky...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Chen, Xiuhong, Huang, Xianglei, Strow, L. Larrabee
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/163636
https://doi.org/10.1029/2020JD033051
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/163636
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Atmospheric and Oceanic Sciences
Science
spellingShingle Atmospheric and Oceanic Sciences
Science
Chen, Xiuhong
Huang, Xianglei
Strow, L. Larrabee
Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018
topic_facet Atmospheric and Oceanic Sciences
Science
description Recent studies have indicated a slowdown of the decline of CFC‐11 concentration since 2012. Ground‐based observations used in such studies have their limitations in terms of global coverage. Here we show that the CFC‐11 time‐varying behaviors can be seen by double differencing nadir‐view, clear‐sky brightness temperatures of four AIRS (Atmospheric Infrared Sounder) channels in an infrared CFC‐11 absorption band. Assuming that CFC‐11 is vertically well mixed through the troposphere, we retrieve CFC‐11 surface concentration and its secular trend using such AIRS observations over the near globe (55°S to 55°N) from January 2003 to December 2018. The retrieved trends of CFC‐11 at the 11 ground sites agree well with the trends derived from in situ measurements at those sites. Our results show that, from 55°S to 55°N, the CFC‐11 trends from January 2003 to December 2012 are all negative, ranging from −2.5 to −1 ppt/year. The trends from January 2003 to December 2018 are less negative by as much as ~0.5–1 ppt/year over the Shandong peninsula, the Arabian Peninsula, and north India and Nepal area, and such differences in the trends are statistically significant. Factors other than the CFC‐11 that can affect the retrievals and trends are also discussed. These findings can help us depict the near‐global spatial distribution of the CFC‐11 trends from 2003 to 2018. The analysis described here has the potential to be used with current and future hyperspectral sounders to help monitor the CFC‐11 from space.Key PointsCFC‐11 long‐term signals can be extracted from the nadir‐viewed infrared sounders such as AIRS using a double differential methodCFC‐11 long‐term trends over each 30° by 10° grid from 55°S to 55°N are estimated from the AIRS clear‐sky radiances from 2003 to 2018The result suggested possible regional slowdowns of the CFC‐11 trend since 2013 Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/163636/2/jgrd56600_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/163636/1/jgrd56600.pdf
format Article in Journal/Newspaper
author Chen, Xiuhong
Huang, Xianglei
Strow, L. Larrabee
author_facet Chen, Xiuhong
Huang, Xianglei
Strow, L. Larrabee
author_sort Chen, Xiuhong
title Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018
title_short Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018
title_full Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018
title_fullStr Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018
title_full_unstemmed Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018
title_sort near‐global cfc‐11 trends as observed by atmospheric infrared sounder from 2003 to 2018
publisher Wiley Periodicals, Inc.
publishDate 2020
url https://hdl.handle.net/2027.42/163636
https://doi.org/10.1029/2020JD033051
genre Arctic
genre_facet Arctic
op_relation Chen, Xiuhong; Huang, Xianglei; Strow, L. Larrabee (2020). "Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018." Journal of Geophysical Research: Atmospheres 125(22): n/a-n/a.
2169-897X
2169-8996
https://hdl.handle.net/2027.42/163636
doi:10.1029/2020JD033051
Journal of Geophysical Research: Atmospheres
Prinn, R. G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L., Fraser, P. J., Ganesan, A. L., Gasore, J., Harth, C. M., Hermansen, O., Kim, J., Krummel, P. B., Li, S., Loh, Z. M., Lunder, C. R., Maione, M., Manning, A. J., Miller, B. R., Mitrevski, B., Mühle, J., O’Doherty, S., Park, S., Reimann, S., Rigby, M., Saito, T., Salameh, P. K., Schmidt, R., Simmonds, P. G., Steele, L. P., Vollmer, M. K., Wang, R. H., Yao, B., Yokouchi, Y., Young, D., & Zhou, L. ( 2018 ). History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth System Science Data, 10 ( 2 ), 985 – 1018. https://doi.org/10.5194/essd‐10‐985‐2018
Minnis, P., Sun‐Mack, S., Young, D., Heck, P. W., Garber, D., & Chen, Y. ( 2011 ). CERES edition‐2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—part I: Algorithms. IEEE Transactions on Geoscience and Remote Sensing, 49 ( 11 ), 4374 – 4400. https://doi.org/10.1109/TGRS.2011.2144601
Minschwaner, K., Hoffmann, L., Brown, A., Riese, M., Müller, R., & Bernath, P. F. ( 2013 ). Stratospheric loss and atmospheric lifetimes of CFC‐11 and CFC‐12 derived from satellite observations. Atmospheric Chemistry and Physics, 13 ( 8 ), 4253 – 4263. https://doi.org/10.5194/acp‐13‐4253‐2013
Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, J. D., Rigby, M., Manning, A. J., Hu, L., Moore, F., Miller, B. R., & Elkins, J. W. ( 2018 ). An unexpected and persistent increase in global emissions of ozone depleting CFC‐11. Nature, 557 ( 7705 ), 413 – 417. https://doi.org/10.1038/s41586‐018‐0106‐2
Pagano, T. S., Aumann, H. H., Hagan, D. E., & Overoye, K. ( 2003 ). Prelaunch and in‐flight radiometric calibration of the Atmospheric Infrared Sounder (AIRS). IEEE Transactions on Geoscience and Remote Sensing, 41 ( 2 ), 265 – 273. https://doi.org/10.1109/TGRS.2002.808324
Pan, F., & Huang, X. L. ( 2018 ). The spectral dimension of modeled relative humidity feedbacks in the CMIP5 experiments. Journal of Climate, 31 ( 24 ), 10,021 – 10,038. https://doi.org/10.1175/JCLI‐D‐17‐0491.1
Pan, F., Huang, X. L., Guo, H., & Strow, L. L. ( 2015 ). Linear trends and closures of 10‐year observations of AIRS stratospheric channels. Journal of Climate, 28 ( 22 ), 8939 – 8950. https://doi.org/10.1175/JCLI‐D‐15‐0418
Peterson, C. A., Chen, X., Yue, Q., & Huang, X. ( 2019 ). The spectral dimension of Arctic outgoing longwave radiation and greenhouse efficiency trends from 2003 to 2016. Journal of Geophysical Research: Atmospheres, 124, 8467 – 8480. https://doi.org/10.1029/2019JD030428
Rigby, M., Park, S., Saito, T., Western, L. M., Redington, A. L., Fang, X., Henne, S., Manning, A. J., Prinn, R. G., Dutton, G. S., Fraser, P. J., Ganesan, A. L., Hall, B. D., Harth, C. M., Kim, J., Kim, K. R., Krummel, P. B., Lee, T., Li, S., Liang, Q., Lunt, M. F., Montzka, S. A., Mühle, J., O’Doherty, S., Park, M. K., Reimann, S., Salameh, P. K., Simmonds, P., Tunnicliffe, R. L., Weiss, R. F., Yokouchi, Y., & Young, D. ( 2019 ). Increase in CFC‐11 emissions from eastern China based on atmospheric observations. Nature, 569 ( 7757 ), 546 – 550. https://doi.org/10.1038/s41586‐019‐1193‐4
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J. P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J. M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen‐Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi‐Cross, A., Rinsland, C. P., Rotger, M., Šimečková, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., & Vander Auwera, J. ( 2009 ). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiation Transfer, 110 ( 9–10 ), 533 – 572. https://doi.org/10.1016/j.jqsrt.2009.02.013
Simpson, I. J., Blake, D. R., Barletta, B., Meinardi, S., Blake, N. J., Wang, T., et al., ( 2019 ). Recent CFC‐11 Enhancements in China, Nepal, Pakistan, Saudi Arabia and South Korea. Abstract A33T‐2896, 2019 Fall AGU meeting, San Francisco, Dec 9‐13, 2019.
Strow, L. L., & Hannon, S. E. ( 2008 ). A 4‐year zonal climatology of lower tropospheric CO2 derived from ocean‐only Atmospheric Infrared Sounder observations. Journal of Geophysical Research, 113, D18302. https://doi.org/10.1029/2007JD009713
Strow, L. L., Hannon, S. E., Machado, S. D., Motteler, H. E., & Tobin, D. C. ( 2006 ). Validation of the Atmospheric Infrared Sounder radiative transfer algorithm. Journal of Geophysical Research, 111, D09S06. https://doi.org/10.1029/2005JD006146
Strow, L. L., Motteler, H., Tobin, D., Revercomb, H., Hannon, S., Buijs, H., Predina, J., Suwinski, L., & Glumb, R. ( 2013 ). Spectral calibration and validation of the Cross‐track Infrared Sounder (CrIS) on the Suomi NPP satellite. Journal of Geophysical Research: Atmospheres, 118, 12,486 – 12,496. https://doi.org/10.1002/2013JD020480
Trepte, Q. Z., Minnis, P., Sun‐Mack, S., Yost, C. R., Chen, Y., Jin, Z., Hong, G., Chang, F.‐L., Smith, W. L. Jr., Bedka, K. M., & Chee, T. L. ( 2019 ). Global cloud detection for CERES edition 4 using Terra and Aqua MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 57, 9410 – 9449. https://doi.org/10.1109/TGRS.2019.2926620
Western, L. M., Rougier, J. C., Watson, I. M., & Francis, P. N. ( 2020 ). Evaluating nonlinear maximum likelihood optimal estimation uncertainty in cloud and aerosol remote sensing. Atmospheric Science Letters, 21 ( 8 ).
World Meteorological Organization (WMO) ( 2011 ). Scientific Assessment of Ozone Depletion: 2010 (p. 516). Geneva, Switzerland: Global Ozone Research and Monitoring Project—Report No. 52.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., & Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597. https://doi.org/10.1002/qj.828
Anderson, G. P., Berk, A., Chetwynd, J. H., Harder, J., Fontenla, J. M., Shettle, E. P., Saunders, R., Snell, H. E., Pilewskie, P., Kindel, B. C., Gardner, J. A., Hoke, M. L., Felde, G. W., Lockwood, R. B., & Acharya, P. K. ( 2007 ). Using the MODTRAN™5 radiative transfer algorithm with NASA satellite data: AIRS and SORCE. Proceedings of SPIE, 6565, 65651O. https://doi.org/10.1117/12.721184
Aumann, H. H., Broberg, S., Elliott, D., Gaiser, S., & Gregorich, D. ( 2006 ). Three years of AIRS radiometric calibration validation using sea surface temperatures. Journal of Geophysical Research, 111, D16S90. https://doi.org/10.1029/2005JD006822
Aumann, H. H., Broberg, S., Manning, E., & Pagano, T. S. ( 2019 ). Radiometric stability validation of 17 years of AIRS data using sea surface temperatures. Geophysical Research Letters, 46, 12,504 – 12,510. https://doi.org/10.1029/2019GL085098
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., & Susskind, J. ( 2003 ). AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience and Remote Sensing, 41 ( 2 ), 253 – 264. https://doi.org/10.1109/TGRS.2002.808356
Aumann, H. H., & Pagano, T. S. ( 2008 ). Using AIRS and IASI data to evaluate absolute radiometric accuracy and stability for climate applications. Paper presented at Conference on Atmospheric and Environmental Remote Sensing Data Processing and Utilization IV ‐ Readiness for GEOSS II, Spie‐Int Soc Optical Engineering, San Diego, CA. https://doi.org/10.1117/12.795225
Baldridge, A. M., Hook, S. J., Grove, C. I., & Rivera, G. ( 2009 ). The ASTER spectral library version 2.0. Remote Sensing of Environment, 113 ( 4 ), 711 – 715. https://doi.org/10.1016/j.rse.2008.11.007
Borbas, E. E., Hulley, G., Feltz, M., Knuteson, R., & Hook, S. ( 2018 ). The Combined ASTER MODIS Emissivity over Land (CAMEL) part 1: Methodology and high spectral resolution application. Remote Sensing, 10 ( 4 ), 643. https://doi.org/10.3390/rs10040643
Brown, A. T., Volk, C. M., Schoeberl, M. R., Boone, C. D., & Bernath, P. F. ( 2013 ). Stratospheric lifetimes of CFC‐12, CCl4, CH4, CH3Cl and N2O from measurements made by the Atmospheric Chemistry Experiment‐Fourier Transform Spectrometer (ACE‐FTS). Atmospheric Chemistry and Physics, 13 ( 14 ), 6921 – 6950. https://doi.org/10.5194/acp‐13‐6921‐2013
Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Bernet, C., Blaisdell, J., Chen, L., Divakarla, M., Fetzer, E. J., Goldberg, M., Gautier, C., Granger, S., Hannon, S., Irion, F. W., Kakar, R., Kalnay, E., Lambrigtsen, B. H., Lee, S.‐Y., Le Marshall, J., McMillan, W. W., McMillin, L., Olsen, E. T., Revercomb, H., Rosenkranz, P., Smith, W. L., Staelin, D., Strow, L. L., Susskind, J., Tobin, D., Wolf, W., & Zhou, L. ( 2006 ). AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bulletin of the American Meteorological Society, 87 ( 7 ), 911 – 926. https://doi.org/10.1175/BAMS‐87‐7‐911
Chen, X. H., & Huang, X. L. ( 2014 ). Usage of differential absorption method in the thermal IR: A case study of quick estimate of clear‐sky column water vapor. Journal of Quantitative Spectroscopy and Radiation Transfer, 140, 99 – 106. https://doi.org/10.1016/j.jqsrt.2014.02.019
Chen, X. H., Huang, X. L., Loeb, N. G., & Wei, H. L. ( 2013 ). Comparisons of clear‐sky outgoing far‐IR flux inferred from satellite observations and computed from three most recent reanalysis products. Journal of Climate, 26 ( 2 ), 478 – 494. https://doi.org/10.1175/JCLI‐D‐12‐00212.1
Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A., & Zhang, N. ( 1994 ). Evidence for interannual variability of the carbon cycle from the NOAMCMDL global air sampling network. Journal of Geophysical Research, 99 ( D11 ), 22,831 – 22,855. https://doi.org/10.1029/94JD01951
Feltz, M., Borbas, E., Knuteson, R., Hulley, G., & Hook, S. ( 2018 ). The Combined ASTER MODIS Emissivity over Land (CAMEL) part 2: Uncertainty and validation. Remote Sensing, 10 ( 5 ), 664. https://doi.org/10.3390/rs10050664
Han, Y., Revercomb, H., Cromp, M., Gu, D. G., Johnson, D., Mooney, D., Scott, D., Strow, L. L., Bingham, G., Borg, L., Chen, Y., DeSlover, D., Esplin, M., Hagan, D., Jin, X., Knuteson, R., Motteler, H., Predina, J., Suwinski, L., Taylor, J., Tobin, D., Tremblay, D., Wang, C. M., Wang, L. H., Wang, L. K., & Zavyalov, V. ( 2013 ). Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. Journal of Geophysical Research: Atmospheres, 118, 12,734 – 12,748. https://doi.org/10.1002/2013JD020344
Hilton, F., Armante, R., August, T., Barnet, C., Bouchard, A., Camy‐Peyret, C., Capelle, V., Clarisse, L., Clerbaux, C., Coheur, P. F., Collard, A., Crevoisier, C., Dufour, G., Edwards, D., Faijan, F., Fourrié, N., Gambacorta, A., Goldberg, M., Guidard, V., Hurtmans, D., Illingworth, S., Jacquinet‐Husson, N., Kerzenmacher, T., Klaes, D., Lavanant, L., Masiello, G., Matricardi, M., McNally, A., Newman, S., Pavelin, E., Payan, S., Péquignot, E., Peyridieu, S., Phulpin, T., Remedios, J., Schlüssel, P., Serio, C., Strow, L., Stubenrauch, C., Taylor, J., Tobin, D., Wolf, W., & Zhou, D. ( 2012 ). Hyperspectral Earth observation from IASI: Five years of accomplishments. Bulletin of the American Meteorological Society, 93 ( 3 ), 347 – 370. https://doi.org/10.1175/BAMS‐D‐11‐00027.1
Hoffmann, L., Kaufmann, M., Spang, R., Müller, R., Remedios, J. J., Moore, D. P., Volk, C. M., von Clarmann, T., & Riese, M. ( 2008 ). Envisat MIPAS measurements of CFC‐11: Retrieval, validation, and climatology. Atmospheric Chemistry and Physics, 8 ( 13 ), 3671 – 3688. https://doi.org/10.5194/acp‐8‐3671‐2008
Huang, X. L., Chen, X. H., Potter, G. L., Oreopoulos, L., Cole, J. N. S., Lee, D. M., & Loeb, N. G. ( 2014 ). A global climatology of outgoing longwave spectral cloud radiative effect and associated effective cloud properties. Journal of Climate, 27 ( 19 ), 7475 – 7492. https://doi.org/10.1175/JCLI‐D‐13‐00663.1
Huang, X. L., Chen, X. H., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band‐by‐band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 – 3555. https://doi.org/10.1175/jas‐d‐15‐0355.1
Huang, X. L., Loeb, N. G., & Yang, W. Z. ( 2010 ). Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 2. Cloudy sky and band‐by‐band cloud radiative forcing over the tropical oceans. Journal of Geophysical Research, 115, D21101. https://doi.org/10.1029/2010JD013932
Huang, X. L., Yang, W. Z., Loeb, N. G., & Ramaswamy, V. ( 2008 ). Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 1. Clear sky over the tropical oceans. Journal of Geophysical Research, 113, D09110. https://doi.org/10.1029/2007JD009219
Hulley, G. C., Hook, S. J., Manning, E., Lee, S.‐Y., & Fetzer, E. ( 2009 ). Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts. Journal of Geophysical Research, 114, D19104. https://doi.org/10.1029/2009JD012351
Japan Meteorological Agency and World Meteorological Organization ( 2012 ). WMO WDCGG data summary No. 36, Tokyo. https://gaw.kishou.go.jp/static/publications/summary /sum36/sum36.pdf.
Lin, Y. J., Gong, D. C., Lv, S. J., Ding, Y. Z., Wu, G. C., Wang, H., Li, Y. L., Wang, Y. J., Zhou, L., & Wang, B. G. ( 2019 ). Observations of high levels of ozone‐depleting CFC‐11 at a remote mountain‐top site in southern China. Environmental Science & Technology Letters, 6 ( 3 ), 114 – 118. https://doi.org/10.1021/acs.estlett.9b00022
Loveland, T., Reed, B., Brown, J., Ohlen, D., Zhu, Z., Yang, L., & Merchant, J. ( 2000 ). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21 ( 6–7 ), 1303 – 1330. https://doi.org/10.1080/014311600210191
McClatchey, R., Fenn, R., Selby, J., Volz, F., & Garing, J. ( 1972 ). Optical properties of the atmosphere, Tech. Rep. AFCRL‐72‐0497, AFGL (OPI), Hanscom AFB, MA 01731.
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2020JD033051
container_title Journal of Geophysical Research: Atmospheres
container_volume 125
container_issue 22
_version_ 1774713618802147328
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/163636 2023-08-20T04:03:13+02:00 Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018 Chen, Xiuhong Huang, Xianglei Strow, L. Larrabee 2020-11-27 application/pdf https://hdl.handle.net/2027.42/163636 https://doi.org/10.1029/2020JD033051 unknown Wiley Periodicals, Inc. Chen, Xiuhong; Huang, Xianglei; Strow, L. Larrabee (2020). "Near‐Global CFC‐11 Trends as Observed by Atmospheric Infrared Sounder From 2003 to 2018." Journal of Geophysical Research: Atmospheres 125(22): n/a-n/a. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/163636 doi:10.1029/2020JD033051 Journal of Geophysical Research: Atmospheres Prinn, R. G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L., Fraser, P. J., Ganesan, A. L., Gasore, J., Harth, C. M., Hermansen, O., Kim, J., Krummel, P. B., Li, S., Loh, Z. M., Lunder, C. R., Maione, M., Manning, A. J., Miller, B. R., Mitrevski, B., Mühle, J., O’Doherty, S., Park, S., Reimann, S., Rigby, M., Saito, T., Salameh, P. K., Schmidt, R., Simmonds, P. G., Steele, L. P., Vollmer, M. K., Wang, R. H., Yao, B., Yokouchi, Y., Young, D., & Zhou, L. ( 2018 ). History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth System Science Data, 10 ( 2 ), 985 – 1018. https://doi.org/10.5194/essd‐10‐985‐2018 Minnis, P., Sun‐Mack, S., Young, D., Heck, P. W., Garber, D., & Chen, Y. ( 2011 ). CERES edition‐2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—part I: Algorithms. IEEE Transactions on Geoscience and Remote Sensing, 49 ( 11 ), 4374 – 4400. https://doi.org/10.1109/TGRS.2011.2144601 Minschwaner, K., Hoffmann, L., Brown, A., Riese, M., Müller, R., & Bernath, P. F. ( 2013 ). Stratospheric loss and atmospheric lifetimes of CFC‐11 and CFC‐12 derived from satellite observations. Atmospheric Chemistry and Physics, 13 ( 8 ), 4253 – 4263. https://doi.org/10.5194/acp‐13‐4253‐2013 Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, J. D., Rigby, M., Manning, A. J., Hu, L., Moore, F., Miller, B. R., & Elkins, J. W. ( 2018 ). An unexpected and persistent increase in global emissions of ozone depleting CFC‐11. Nature, 557 ( 7705 ), 413 – 417. https://doi.org/10.1038/s41586‐018‐0106‐2 Pagano, T. S., Aumann, H. H., Hagan, D. E., & Overoye, K. ( 2003 ). Prelaunch and in‐flight radiometric calibration of the Atmospheric Infrared Sounder (AIRS). IEEE Transactions on Geoscience and Remote Sensing, 41 ( 2 ), 265 – 273. https://doi.org/10.1109/TGRS.2002.808324 Pan, F., & Huang, X. L. ( 2018 ). The spectral dimension of modeled relative humidity feedbacks in the CMIP5 experiments. Journal of Climate, 31 ( 24 ), 10,021 – 10,038. https://doi.org/10.1175/JCLI‐D‐17‐0491.1 Pan, F., Huang, X. L., Guo, H., & Strow, L. L. ( 2015 ). Linear trends and closures of 10‐year observations of AIRS stratospheric channels. Journal of Climate, 28 ( 22 ), 8939 – 8950. https://doi.org/10.1175/JCLI‐D‐15‐0418 Peterson, C. A., Chen, X., Yue, Q., & Huang, X. ( 2019 ). The spectral dimension of Arctic outgoing longwave radiation and greenhouse efficiency trends from 2003 to 2016. Journal of Geophysical Research: Atmospheres, 124, 8467 – 8480. https://doi.org/10.1029/2019JD030428 Rigby, M., Park, S., Saito, T., Western, L. M., Redington, A. L., Fang, X., Henne, S., Manning, A. J., Prinn, R. G., Dutton, G. S., Fraser, P. J., Ganesan, A. L., Hall, B. D., Harth, C. M., Kim, J., Kim, K. R., Krummel, P. B., Lee, T., Li, S., Liang, Q., Lunt, M. F., Montzka, S. A., Mühle, J., O’Doherty, S., Park, M. K., Reimann, S., Salameh, P. K., Simmonds, P., Tunnicliffe, R. L., Weiss, R. F., Yokouchi, Y., & Young, D. ( 2019 ). Increase in CFC‐11 emissions from eastern China based on atmospheric observations. Nature, 569 ( 7757 ), 546 – 550. https://doi.org/10.1038/s41586‐019‐1193‐4 Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J. P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J. M., Gamache, R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J., Mandin, J. Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E., Moazzen‐Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V. I., Perrin, A., Predoi‐Cross, A., Rinsland, C. P., Rotger, M., Šimečková, M., Smith, M. A. H., Sung, K., Tashkun, S. A., Tennyson, J., Toth, R. A., Vandaele, A. C., & Vander Auwera, J. ( 2009 ). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiation Transfer, 110 ( 9–10 ), 533 – 572. https://doi.org/10.1016/j.jqsrt.2009.02.013 Simpson, I. J., Blake, D. R., Barletta, B., Meinardi, S., Blake, N. J., Wang, T., et al., ( 2019 ). Recent CFC‐11 Enhancements in China, Nepal, Pakistan, Saudi Arabia and South Korea. Abstract A33T‐2896, 2019 Fall AGU meeting, San Francisco, Dec 9‐13, 2019. Strow, L. L., & Hannon, S. E. ( 2008 ). A 4‐year zonal climatology of lower tropospheric CO2 derived from ocean‐only Atmospheric Infrared Sounder observations. Journal of Geophysical Research, 113, D18302. https://doi.org/10.1029/2007JD009713 Strow, L. L., Hannon, S. E., Machado, S. D., Motteler, H. E., & Tobin, D. C. ( 2006 ). Validation of the Atmospheric Infrared Sounder radiative transfer algorithm. Journal of Geophysical Research, 111, D09S06. https://doi.org/10.1029/2005JD006146 Strow, L. L., Motteler, H., Tobin, D., Revercomb, H., Hannon, S., Buijs, H., Predina, J., Suwinski, L., & Glumb, R. ( 2013 ). Spectral calibration and validation of the Cross‐track Infrared Sounder (CrIS) on the Suomi NPP satellite. Journal of Geophysical Research: Atmospheres, 118, 12,486 – 12,496. https://doi.org/10.1002/2013JD020480 Trepte, Q. Z., Minnis, P., Sun‐Mack, S., Yost, C. R., Chen, Y., Jin, Z., Hong, G., Chang, F.‐L., Smith, W. L. Jr., Bedka, K. M., & Chee, T. L. ( 2019 ). Global cloud detection for CERES edition 4 using Terra and Aqua MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 57, 9410 – 9449. https://doi.org/10.1109/TGRS.2019.2926620 Western, L. M., Rougier, J. C., Watson, I. M., & Francis, P. N. ( 2020 ). Evaluating nonlinear maximum likelihood optimal estimation uncertainty in cloud and aerosol remote sensing. Atmospheric Science Letters, 21 ( 8 ). World Meteorological Organization (WMO) ( 2011 ). Scientific Assessment of Ozone Depletion: 2010 (p. 516). Geneva, Switzerland: Global Ozone Research and Monitoring Project—Report No. 52. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., & Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597. https://doi.org/10.1002/qj.828 Anderson, G. P., Berk, A., Chetwynd, J. H., Harder, J., Fontenla, J. M., Shettle, E. P., Saunders, R., Snell, H. E., Pilewskie, P., Kindel, B. C., Gardner, J. A., Hoke, M. L., Felde, G. W., Lockwood, R. B., & Acharya, P. K. ( 2007 ). Using the MODTRAN™5 radiative transfer algorithm with NASA satellite data: AIRS and SORCE. Proceedings of SPIE, 6565, 65651O. https://doi.org/10.1117/12.721184 Aumann, H. H., Broberg, S., Elliott, D., Gaiser, S., & Gregorich, D. ( 2006 ). Three years of AIRS radiometric calibration validation using sea surface temperatures. Journal of Geophysical Research, 111, D16S90. https://doi.org/10.1029/2005JD006822 Aumann, H. H., Broberg, S., Manning, E., & Pagano, T. S. ( 2019 ). Radiometric stability validation of 17 years of AIRS data using sea surface temperatures. Geophysical Research Letters, 46, 12,504 – 12,510. https://doi.org/10.1029/2019GL085098 Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., & Susskind, J. ( 2003 ). AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience and Remote Sensing, 41 ( 2 ), 253 – 264. https://doi.org/10.1109/TGRS.2002.808356 Aumann, H. H., & Pagano, T. S. ( 2008 ). Using AIRS and IASI data to evaluate absolute radiometric accuracy and stability for climate applications. Paper presented at Conference on Atmospheric and Environmental Remote Sensing Data Processing and Utilization IV ‐ Readiness for GEOSS II, Spie‐Int Soc Optical Engineering, San Diego, CA. https://doi.org/10.1117/12.795225 Baldridge, A. M., Hook, S. J., Grove, C. I., & Rivera, G. ( 2009 ). The ASTER spectral library version 2.0. Remote Sensing of Environment, 113 ( 4 ), 711 – 715. https://doi.org/10.1016/j.rse.2008.11.007 Borbas, E. E., Hulley, G., Feltz, M., Knuteson, R., & Hook, S. ( 2018 ). The Combined ASTER MODIS Emissivity over Land (CAMEL) part 1: Methodology and high spectral resolution application. Remote Sensing, 10 ( 4 ), 643. https://doi.org/10.3390/rs10040643 Brown, A. T., Volk, C. M., Schoeberl, M. R., Boone, C. D., & Bernath, P. F. ( 2013 ). Stratospheric lifetimes of CFC‐12, CCl4, CH4, CH3Cl and N2O from measurements made by the Atmospheric Chemistry Experiment‐Fourier Transform Spectrometer (ACE‐FTS). Atmospheric Chemistry and Physics, 13 ( 14 ), 6921 – 6950. https://doi.org/10.5194/acp‐13‐6921‐2013 Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Bernet, C., Blaisdell, J., Chen, L., Divakarla, M., Fetzer, E. J., Goldberg, M., Gautier, C., Granger, S., Hannon, S., Irion, F. W., Kakar, R., Kalnay, E., Lambrigtsen, B. H., Lee, S.‐Y., Le Marshall, J., McMillan, W. W., McMillin, L., Olsen, E. T., Revercomb, H., Rosenkranz, P., Smith, W. L., Staelin, D., Strow, L. L., Susskind, J., Tobin, D., Wolf, W., & Zhou, L. ( 2006 ). AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bulletin of the American Meteorological Society, 87 ( 7 ), 911 – 926. https://doi.org/10.1175/BAMS‐87‐7‐911 Chen, X. H., & Huang, X. L. ( 2014 ). Usage of differential absorption method in the thermal IR: A case study of quick estimate of clear‐sky column water vapor. Journal of Quantitative Spectroscopy and Radiation Transfer, 140, 99 – 106. https://doi.org/10.1016/j.jqsrt.2014.02.019 Chen, X. H., Huang, X. L., Loeb, N. G., & Wei, H. L. ( 2013 ). Comparisons of clear‐sky outgoing far‐IR flux inferred from satellite observations and computed from three most recent reanalysis products. Journal of Climate, 26 ( 2 ), 478 – 494. https://doi.org/10.1175/JCLI‐D‐12‐00212.1 Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A., & Zhang, N. ( 1994 ). Evidence for interannual variability of the carbon cycle from the NOAMCMDL global air sampling network. Journal of Geophysical Research, 99 ( D11 ), 22,831 – 22,855. https://doi.org/10.1029/94JD01951 Feltz, M., Borbas, E., Knuteson, R., Hulley, G., & Hook, S. ( 2018 ). The Combined ASTER MODIS Emissivity over Land (CAMEL) part 2: Uncertainty and validation. Remote Sensing, 10 ( 5 ), 664. https://doi.org/10.3390/rs10050664 Han, Y., Revercomb, H., Cromp, M., Gu, D. G., Johnson, D., Mooney, D., Scott, D., Strow, L. L., Bingham, G., Borg, L., Chen, Y., DeSlover, D., Esplin, M., Hagan, D., Jin, X., Knuteson, R., Motteler, H., Predina, J., Suwinski, L., Taylor, J., Tobin, D., Tremblay, D., Wang, C. M., Wang, L. H., Wang, L. K., & Zavyalov, V. ( 2013 ). Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality. Journal of Geophysical Research: Atmospheres, 118, 12,734 – 12,748. https://doi.org/10.1002/2013JD020344 Hilton, F., Armante, R., August, T., Barnet, C., Bouchard, A., Camy‐Peyret, C., Capelle, V., Clarisse, L., Clerbaux, C., Coheur, P. F., Collard, A., Crevoisier, C., Dufour, G., Edwards, D., Faijan, F., Fourrié, N., Gambacorta, A., Goldberg, M., Guidard, V., Hurtmans, D., Illingworth, S., Jacquinet‐Husson, N., Kerzenmacher, T., Klaes, D., Lavanant, L., Masiello, G., Matricardi, M., McNally, A., Newman, S., Pavelin, E., Payan, S., Péquignot, E., Peyridieu, S., Phulpin, T., Remedios, J., Schlüssel, P., Serio, C., Strow, L., Stubenrauch, C., Taylor, J., Tobin, D., Wolf, W., & Zhou, D. ( 2012 ). Hyperspectral Earth observation from IASI: Five years of accomplishments. Bulletin of the American Meteorological Society, 93 ( 3 ), 347 – 370. https://doi.org/10.1175/BAMS‐D‐11‐00027.1 Hoffmann, L., Kaufmann, M., Spang, R., Müller, R., Remedios, J. J., Moore, D. P., Volk, C. M., von Clarmann, T., & Riese, M. ( 2008 ). Envisat MIPAS measurements of CFC‐11: Retrieval, validation, and climatology. Atmospheric Chemistry and Physics, 8 ( 13 ), 3671 – 3688. https://doi.org/10.5194/acp‐8‐3671‐2008 Huang, X. L., Chen, X. H., Potter, G. L., Oreopoulos, L., Cole, J. N. S., Lee, D. M., & Loeb, N. G. ( 2014 ). A global climatology of outgoing longwave spectral cloud radiative effect and associated effective cloud properties. Journal of Climate, 27 ( 19 ), 7475 – 7492. https://doi.org/10.1175/JCLI‐D‐13‐00663.1 Huang, X. L., Chen, X. H., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band‐by‐band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 – 3555. https://doi.org/10.1175/jas‐d‐15‐0355.1 Huang, X. L., Loeb, N. G., & Yang, W. Z. ( 2010 ). Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 2. Cloudy sky and band‐by‐band cloud radiative forcing over the tropical oceans. Journal of Geophysical Research, 115, D21101. https://doi.org/10.1029/2010JD013932 Huang, X. L., Yang, W. Z., Loeb, N. G., & Ramaswamy, V. ( 2008 ). Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 1. Clear sky over the tropical oceans. Journal of Geophysical Research, 113, D09110. https://doi.org/10.1029/2007JD009219 Hulley, G. C., Hook, S. J., Manning, E., Lee, S.‐Y., & Fetzer, E. ( 2009 ). Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts. Journal of Geophysical Research, 114, D19104. https://doi.org/10.1029/2009JD012351 Japan Meteorological Agency and World Meteorological Organization ( 2012 ). WMO WDCGG data summary No. 36, Tokyo. https://gaw.kishou.go.jp/static/publications/summary /sum36/sum36.pdf. Lin, Y. J., Gong, D. C., Lv, S. J., Ding, Y. Z., Wu, G. C., Wang, H., Li, Y. L., Wang, Y. J., Zhou, L., & Wang, B. G. ( 2019 ). Observations of high levels of ozone‐depleting CFC‐11 at a remote mountain‐top site in southern China. Environmental Science & Technology Letters, 6 ( 3 ), 114 – 118. https://doi.org/10.1021/acs.estlett.9b00022 Loveland, T., Reed, B., Brown, J., Ohlen, D., Zhu, Z., Yang, L., & Merchant, J. ( 2000 ). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21 ( 6–7 ), 1303 – 1330. https://doi.org/10.1080/014311600210191 McClatchey, R., Fenn, R., Selby, J., Volz, F., & Garing, J. ( 1972 ). Optical properties of the atmosphere, Tech. Rep. AFCRL‐72‐0497, AFGL (OPI), Hanscom AFB, MA 01731. IndexNoFollow Atmospheric and Oceanic Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1029/2020JD033051 2023-07-31T21:19:28Z Recent studies have indicated a slowdown of the decline of CFC‐11 concentration since 2012. Ground‐based observations used in such studies have their limitations in terms of global coverage. Here we show that the CFC‐11 time‐varying behaviors can be seen by double differencing nadir‐view, clear‐sky brightness temperatures of four AIRS (Atmospheric Infrared Sounder) channels in an infrared CFC‐11 absorption band. Assuming that CFC‐11 is vertically well mixed through the troposphere, we retrieve CFC‐11 surface concentration and its secular trend using such AIRS observations over the near globe (55°S to 55°N) from January 2003 to December 2018. The retrieved trends of CFC‐11 at the 11 ground sites agree well with the trends derived from in situ measurements at those sites. Our results show that, from 55°S to 55°N, the CFC‐11 trends from January 2003 to December 2012 are all negative, ranging from −2.5 to −1 ppt/year. The trends from January 2003 to December 2018 are less negative by as much as ~0.5–1 ppt/year over the Shandong peninsula, the Arabian Peninsula, and north India and Nepal area, and such differences in the trends are statistically significant. Factors other than the CFC‐11 that can affect the retrievals and trends are also discussed. These findings can help us depict the near‐global spatial distribution of the CFC‐11 trends from 2003 to 2018. The analysis described here has the potential to be used with current and future hyperspectral sounders to help monitor the CFC‐11 from space.Key PointsCFC‐11 long‐term signals can be extracted from the nadir‐viewed infrared sounders such as AIRS using a double differential methodCFC‐11 long‐term trends over each 30° by 10° grid from 55°S to 55°N are estimated from the AIRS clear‐sky radiances from 2003 to 2018The result suggested possible regional slowdowns of the CFC‐11 trend since 2013 Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/163636/2/jgrd56600_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/163636/1/jgrd56600.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Journal of Geophysical Research: Atmospheres 125 22