Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights

We present retrievals of infrared spectral surface emissivities spanning the far infrared and mid‐infrared from aircraft observations over Greenland, taken at an altitude of 9.2 km above sea level. We describe the flight campaign, available measurements, and the retrieval method. The principal barri...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Murray, Jonathan E., Brindley, Helen E., Fox, Stuart, Bellisario, Christophe, Pickering, Juliet C., Fox, Cathryn, Harlow, Chawn, Smith, Maureen, Anderson, Doug, Huang, Xianglei, Chen, Xiuhong, Last, Alan, Bantges, Richard
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/163589
https://doi.org/10.1029/2020JD033672
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/163589
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic surface spectral emissivity
surface temperature and emissivity retrieval
surface radiation budget
ice‐emissivity feedback
far‐infrared radiation
Atmospheric and Oceanic Sciences
Science
spellingShingle surface spectral emissivity
surface temperature and emissivity retrieval
surface radiation budget
ice‐emissivity feedback
far‐infrared radiation
Atmospheric and Oceanic Sciences
Science
Murray, Jonathan E.
Brindley, Helen E.
Fox, Stuart
Bellisario, Christophe
Pickering, Juliet C.
Fox, Cathryn
Harlow, Chawn
Smith, Maureen
Anderson, Doug
Huang, Xianglei
Chen, Xiuhong
Last, Alan
Bantges, Richard
Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights
topic_facet surface spectral emissivity
surface temperature and emissivity retrieval
surface radiation budget
ice‐emissivity feedback
far‐infrared radiation
Atmospheric and Oceanic Sciences
Science
description We present retrievals of infrared spectral surface emissivities spanning the far infrared and mid‐infrared from aircraft observations over Greenland, taken at an altitude of 9.2 km above sea level. We describe the flight campaign, available measurements, and the retrieval method. The principal barriers to reducing uncertainty in the emissivity retrievals are found to be instrumental noise and our ability to simultaneously retrieve the underlying surface temperature. However, our results indicate that using the instrumentation available to us it is possible to retrieve emissivities from altitude with an uncertainty of ~0.02 or better across much of the infrared. They confirm that the far‐infrared emissivity of snow and ice surfaces can depart substantially from unity, reaching values as low as 0.9 between 400 and 450 cm−1. They also show good consistency with retrievals from the same flight made from near‐surface observations giving confidence in the methodology used and the results obtained for this more challenging viewing configuration. To the best of our knowledge, this is the first time that far‐infrared surface emissivity has been retrieved from altitude and demonstrates that the methodology has the potential to be extended to planned satellite far‐infrared missions.Key PointsRetrievals of surface emissivity and temperature across the thermal infrared from high‐altitude aircraft measurements are reportedRetrieved far‐infrared emissivities are significantly less than unity, showing consistency with near‐surface retrievals in the same flightThis emissivity and surface temperature retrieval methodology is applicable to proposed satellite instruments covering the thermal infrared Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/163589/2/jgrd56608_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/163589/1/jgrd56608.pdf
format Article in Journal/Newspaper
author Murray, Jonathan E.
Brindley, Helen E.
Fox, Stuart
Bellisario, Christophe
Pickering, Juliet C.
Fox, Cathryn
Harlow, Chawn
Smith, Maureen
Anderson, Doug
Huang, Xianglei
Chen, Xiuhong
Last, Alan
Bantges, Richard
author_facet Murray, Jonathan E.
Brindley, Helen E.
Fox, Stuart
Bellisario, Christophe
Pickering, Juliet C.
Fox, Cathryn
Harlow, Chawn
Smith, Maureen
Anderson, Doug
Huang, Xianglei
Chen, Xiuhong
Last, Alan
Bantges, Richard
author_sort Murray, Jonathan E.
title Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights
title_short Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights
title_full Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights
title_fullStr Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights
title_full_unstemmed Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights
title_sort retrievals of high‐latitude surface emissivity across the infrared from high‐altitude aircraft flights
publisher Wiley Periodicals, Inc.
publishDate 2020
url https://hdl.handle.net/2027.42/163589
https://doi.org/10.1029/2020JD033672
geographic Greenland
geographic_facet Greenland
genre Arctic
Greenland
genre_facet Arctic
Greenland
op_relation Murray, Jonathan E.; Brindley, Helen E.; Fox, Stuart; Bellisario, Christophe; Pickering, Juliet C.; Fox, Cathryn; Harlow, Chawn; Smith, Maureen; Anderson, Doug; Huang, Xianglei; Chen, Xiuhong; Last, Alan; Bantges, Richard (2020). "Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights." Journal of Geophysical Research: Atmospheres 125(22): n/a-n/a.
2169-897X
2169-8996
https://hdl.handle.net/2027.42/163589
doi:10.1029/2020JD033672
Journal of Geophysical Research: Atmospheres
Miloshevich, L., Vomel, H., Whiteman, D., & Leblanc, T. ( 2009 ). Accuracy assessment and correction of Vaisala RS92 radiosonde water vapour measurements. Journal of Geophysical Research, 114, D11305. https://doi.org/10.1029/2008JD011565
Bantges, R., Brindley, H., Murray, J., Last, A., Fox, C., Fox, S., Harlow, C., O’Shea, S., Bower, K., Baum, B., Yang, P., & Pickering, J. ( 2020 ). A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid‐ and far‐infrared. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp‐2019‐1181
Bellisario, C., Brindley, H., Murray, J., Last, A., Pickering, J., Harlow, C., Fox, S., Fox, C., Newman, S., Smith, M., Anderson, D., Huang, X., & Chen, X. ( 2017 ). Retrievals of the far infrared surface emissivity over the Greenland Plateau using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). Journal of Geophysical Research: Atmospheres, 122, 12,152 – 12,166. https://doi.org/10.1002/2017JD027328
Canas, T. A., Murray, J. E., & Harries, J. E. ( 1997 ). Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). Satellite remote sensing of clouds and the atmosphere II, 3220, 91 – 102. Proceedings Volume 3220, Satellite Remote Sensing of Clouds and the Atmosphere II. https://doi.org/10.1117/12.301139
Chen, X., Huang, X., & Flanner, M. G. ( 2014 ). Sensitivity of modeled far‐IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties. Geophysical Research Letters, 41, 6530 – 6537. https://doi.org/10.1002/2014GL061216
Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady‐Pereira, K., et al. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91 ( 2 ), 233 – 244. https://doi.org/10.1016/j.jqsrt.2004.05.058
Conway, T., & Steele, L. ( 1989 ). Carbon dioxide and methane in the Arctic atmosphere. Journal of Atmospheric Chemistry, 9, 81 – 99. https://doi.org/10.1007/bf00052826
Copernicus Climate Change Service (C3S) ( 2017 ). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home
Cox, C., Harries, J., Taylor, J., Green, P., Baran, A., Pickering, J., Last, A., & Murray, J. ( 2010 ). Measurements and simulation of mid and far infrared spectra in the presence of cirrus. Quarterly Journal of the Royal Meteorological Society, 136, 718 – 739. https://doi.org/10.1002/qj.596
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.‐J., Park, B.‐K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.‐N., & Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597. https://doi.org/10.1002/qj.828
Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J., & Thoning, K. W. ( 2019 ). Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968–2018, Version: 2019‐07. https://doi.org/10.15138/wkgj‐f215
Feldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. ( 2014 ). Far‐infrared surface emissivity and climate. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 46 ), 16,297 – 16,302. https://doi.org/10.1073/pnas.1413640111
GLOBE Task Team, Hastings, D. A., Dunbar, P. K., Elphingstone, G. M., Bootz, M., Murakami, H., & MacDonald, J. S. ( 1999 ). The Global Land One Kilometer Base Elevation (GLOBE) digital elevation model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, CO. Digital data base on the World Wide Web. Retrieved from http://www.ngdc.noaa.gov/mgg/topo/globe.html and CDROMs.
Green, P., Newman, S., Beeby, R., Murray, J., Pickering, J., & Harries, J. ( 2012 ). Recent advances in measurement of the water vapour continuum in the far‐IR spectral region. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370, 2637 – 2655. https://doi.org/10.1098/rsta.2011.0263
Harries, J., Carli, B., Rizzi, R., Serio, C., Mlynczak, M., Palchetti, L., Maestri, T., Brindley, H., & Masiello, G. ( 2008 ). The far‐infrared Earth. Reviews of Geophysics, 46, RG4004. https://doi.org/10.1029/2007RG000233
Hori, M., Aoki, T., Tanikawa, T., Motoyoshi, H., Hachikubo, A., Sugiura, K., Yasunari, T. J., Eide, H., Storvold, R., Nakajima, Y., & Takahashi, F. ( 2006 ). In‐situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window. Remote Sensing of Environment, 100 ( 4 ), 486 – 502. https://doi.org/10.1016/j.rse.2005.11.001
Huang, X., Chen, X., Flanner, M., Yang, P., Feldman, D., & Kuo, C. ( 2018 ). Improved representation of surface spectral emissivity in a global climate model and its impact on simulated climate. Journal of Climate, 31, 3711 – 3727. https://doi.org/10.1175/jcli‐d‐17‐0125.1
Knuteson, R., Best, F., DeSlover, D., Osborne, B., Revercomb, H., & Smith, W. Sr. ( 2004 ). Infrared land surface remote sensing using high spectral resolution aircraft observations. Advances in Space Research, 33 ( 7 ), 1114 – 1119. https://doi.org/10.1016/S02731177(03)00752‐X
Kuo, C., Feldman, D., Huang, X., Flanner, M., Yang, P., & Chen, X. ( 2018 ). Time‐dependent cryospheric longwave surface emissivity feedback in the Community Earth System Model. Journal of Geophysical Research: Atmospheres, 123, 789 – 813. https://doi.org/10.1002/2017JD027595
Li, Z.‐L., Wu, H., Wang, N., Qiu, S., Sobrino, J., Wan, Z., et al. ( 2013 ). Land surface emissivity retrieval from satellite data. International Journal of Remote Sensing, 34, 3084 – 3127. https://doi.org/10.1080/01431161.2012.716540
Martin, D. H., & Puplett, E. ( 1969 ). Polarised interferometric spectrometry for the millimeter and submillimeter spectrum. Infrared Physics, 10, 105 – 109. https://doi.org/10.1016/0020‐0891(70)90006‐0
Mlawer, E., Turner, D., Paine, S., Palchetti, L., Bianchini, G., Payne, V., Cady‐Pereira, K., Pernak, R., Alvarado, M. J., Gombos, D., Delamere, J. S., Mlynczak, M. G., & Mast, J. C. ( 2019 ). Analysis of water vapor absorption in the far‐infrared and submillimetre regions using surface radiometric measurments from extremely dry locations. Journal of Geophysical Research: Atmospheres, 124, 8134 – 8160. https://doi.org/10.1029/2018JD029508
Newman, S. M., Smith, J. A., Glew, M. D., Rogers, S. M., & Taylor, J. P. ( 2005 ). Temperature and salinity dependence of sea surface emissivity inthe thermal infrared. Quarterly Journal of the Royal Meteorological Society, 131 ( 610 ), 2539 – 2557. https://doi.org/10.1256/qj.04.150
Palchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy‐Peyret, C., Carli, B., Cortesi, U., Del Bianco, S., Di Natale, G., Dinelli, B. M., Feldman, D., Huang, X. L., Labonnote, L. C., Libois, Q., Maestri, T., Mlynczak, M. G., Murray, J. E., Oetjen, H., Ridolfi, M., Riese, M., Russell, J., Saunders, R., & Serio, C. ( 2020 ). FORUM: Unique far‐infrared satellite observations to understand how Earth radiates energy to space. Bulletin of the American Meteorological Society. https://doi.org/10.1175/bams‐d‐19‐0322.1
Palchetti, L., Olivieri, M., Pompei, C., Labate, D., Brindley, H., Di Natale, G., Bianchini, G. and the FORUM team ( 2016 ). The far infrared FTS for the FORUM mission, in Light, Energy and the Environment, OSA Technical Digest (online) Optical Society of America, 2016, paper FTu3C.1.
Rathke, C., Fisher, J., Neshyba, S., & Shupe, M. ( 2002 ). Improving IR cloud phase determination with 20 μm spectral observation. Geophysical Research Letters, 29, 501 – 504. https://doi.org/10.1029/2001GL014594
Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J., Andrews, A., Lang, P., Neff, D., Dlugokencky, E., Miller, J. B., Montzka, S. A., Miller, B. R., Masarie, K. A., Biraud, S. C., Novelli, P. C., Crotwell, M., Crotwell, A. M., Thoning, K., & Tans, P. ( 2015 ). Seasonal climatology of CO 2 across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120, 5155 – 5190. https://doi.org/10.1002/2014JD022591
Vance, A. K., Abel, S. J., Cotton, R. J., & Woolley, A. M. ( 2015 ). Performance of WVSS‐II hygrometers on the FAAM research aircraft. Atmospheric Measurement Techniques, 8 ( 3 ), 1617 – 1625. https://doi.org/10.5194/amt‐8‐1617‐2015
Vomel, H., Hock, T., Potts, N., Goodstein, M., Arendt, C., Tudor, L. & Young, K. ( 2016 ) “ Overview of NCAR Dropsonde technologies for targeted observations in severe systems and for research ”, Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, September 27–30, Madrid, Spain.
Wan, Z., Ng, D., & Dozier, J. ( 1994 ). Spectral emissivity measurements of land‐surface materials and related radiative transfer simulations. Advances in Space Research, 14, 91 – 94. https://doi.org/10.1016/0273‐1177(94)90197‐x
Wang, D., Prigent, C., Kilic, L., Fox, S., Harlow, C., Jimenez, C., Aires, F., Grassotti, F., & Karbou, F. ( 2017 ). Surface emissivity at microwave to millimeter waves overs polar regions: Parameterization and evaluation with aircraft experiments. Journal of Atmospheric and Oceanic Technology, 34, 1039 – 1059. https://doi.org/10.1175/JTECH‐D‐16‐0188.1
Wilson, S. H. S., Atkinson, N. C., & Smith, J. A. ( 1999 ). The development of an airborne infrared interferometer for meteorological sounding studies. Journal of Atmospheric and Oceanic Technology, 16 ( 12 ), 1912 – 1927. https://doi.org/10.1175/1520‐0426(1999)016%3C1912:TDOAAI%3E2.0.CO;2
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2020JD03367210.1016/j.jqsrt.2004.05.05810.1080/01431161.2012.716540
container_title Journal of Geophysical Research: Atmospheres
container_volume 125
container_issue 22
_version_ 1774713610663100416
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/163589 2023-08-20T04:03:12+02:00 Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights Murray, Jonathan E. Brindley, Helen E. Fox, Stuart Bellisario, Christophe Pickering, Juliet C. Fox, Cathryn Harlow, Chawn Smith, Maureen Anderson, Doug Huang, Xianglei Chen, Xiuhong Last, Alan Bantges, Richard 2020-11-27 application/pdf https://hdl.handle.net/2027.42/163589 https://doi.org/10.1029/2020JD033672 unknown Wiley Periodicals, Inc. Murray, Jonathan E.; Brindley, Helen E.; Fox, Stuart; Bellisario, Christophe; Pickering, Juliet C.; Fox, Cathryn; Harlow, Chawn; Smith, Maureen; Anderson, Doug; Huang, Xianglei; Chen, Xiuhong; Last, Alan; Bantges, Richard (2020). "Retrievals of High‐Latitude Surface Emissivity Across the Infrared From High‐Altitude Aircraft Flights." Journal of Geophysical Research: Atmospheres 125(22): n/a-n/a. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/163589 doi:10.1029/2020JD033672 Journal of Geophysical Research: Atmospheres Miloshevich, L., Vomel, H., Whiteman, D., & Leblanc, T. ( 2009 ). Accuracy assessment and correction of Vaisala RS92 radiosonde water vapour measurements. Journal of Geophysical Research, 114, D11305. https://doi.org/10.1029/2008JD011565 Bantges, R., Brindley, H., Murray, J., Last, A., Fox, C., Fox, S., Harlow, C., O’Shea, S., Bower, K., Baum, B., Yang, P., & Pickering, J. ( 2020 ). A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid‐ and far‐infrared. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp‐2019‐1181 Bellisario, C., Brindley, H., Murray, J., Last, A., Pickering, J., Harlow, C., Fox, S., Fox, C., Newman, S., Smith, M., Anderson, D., Huang, X., & Chen, X. ( 2017 ). Retrievals of the far infrared surface emissivity over the Greenland Plateau using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). Journal of Geophysical Research: Atmospheres, 122, 12,152 – 12,166. https://doi.org/10.1002/2017JD027328 Canas, T. A., Murray, J. E., & Harries, J. E. ( 1997 ). Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). Satellite remote sensing of clouds and the atmosphere II, 3220, 91 – 102. Proceedings Volume 3220, Satellite Remote Sensing of Clouds and the Atmosphere II. https://doi.org/10.1117/12.301139 Chen, X., Huang, X., & Flanner, M. G. ( 2014 ). Sensitivity of modeled far‐IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties. Geophysical Research Letters, 41, 6530 – 6537. https://doi.org/10.1002/2014GL061216 Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady‐Pereira, K., et al. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91 ( 2 ), 233 – 244. https://doi.org/10.1016/j.jqsrt.2004.05.058 Conway, T., & Steele, L. ( 1989 ). Carbon dioxide and methane in the Arctic atmosphere. Journal of Atmospheric Chemistry, 9, 81 – 99. https://doi.org/10.1007/bf00052826 Copernicus Climate Change Service (C3S) ( 2017 ). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home Cox, C., Harries, J., Taylor, J., Green, P., Baran, A., Pickering, J., Last, A., & Murray, J. ( 2010 ). Measurements and simulation of mid and far infrared spectra in the presence of cirrus. Quarterly Journal of the Royal Meteorological Society, 136, 718 – 739. https://doi.org/10.1002/qj.596 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.‐J., Park, B.‐K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.‐N., & Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597. https://doi.org/10.1002/qj.828 Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J., & Thoning, K. W. ( 2019 ). Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968–2018, Version: 2019‐07. https://doi.org/10.15138/wkgj‐f215 Feldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. ( 2014 ). Far‐infrared surface emissivity and climate. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 46 ), 16,297 – 16,302. https://doi.org/10.1073/pnas.1413640111 GLOBE Task Team, Hastings, D. A., Dunbar, P. K., Elphingstone, G. M., Bootz, M., Murakami, H., & MacDonald, J. S. ( 1999 ). The Global Land One Kilometer Base Elevation (GLOBE) digital elevation model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, CO. Digital data base on the World Wide Web. Retrieved from http://www.ngdc.noaa.gov/mgg/topo/globe.html and CDROMs. Green, P., Newman, S., Beeby, R., Murray, J., Pickering, J., & Harries, J. ( 2012 ). Recent advances in measurement of the water vapour continuum in the far‐IR spectral region. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370, 2637 – 2655. https://doi.org/10.1098/rsta.2011.0263 Harries, J., Carli, B., Rizzi, R., Serio, C., Mlynczak, M., Palchetti, L., Maestri, T., Brindley, H., & Masiello, G. ( 2008 ). The far‐infrared Earth. Reviews of Geophysics, 46, RG4004. https://doi.org/10.1029/2007RG000233 Hori, M., Aoki, T., Tanikawa, T., Motoyoshi, H., Hachikubo, A., Sugiura, K., Yasunari, T. J., Eide, H., Storvold, R., Nakajima, Y., & Takahashi, F. ( 2006 ). In‐situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window. Remote Sensing of Environment, 100 ( 4 ), 486 – 502. https://doi.org/10.1016/j.rse.2005.11.001 Huang, X., Chen, X., Flanner, M., Yang, P., Feldman, D., & Kuo, C. ( 2018 ). Improved representation of surface spectral emissivity in a global climate model and its impact on simulated climate. Journal of Climate, 31, 3711 – 3727. https://doi.org/10.1175/jcli‐d‐17‐0125.1 Knuteson, R., Best, F., DeSlover, D., Osborne, B., Revercomb, H., & Smith, W. Sr. ( 2004 ). Infrared land surface remote sensing using high spectral resolution aircraft observations. Advances in Space Research, 33 ( 7 ), 1114 – 1119. https://doi.org/10.1016/S02731177(03)00752‐X Kuo, C., Feldman, D., Huang, X., Flanner, M., Yang, P., & Chen, X. ( 2018 ). Time‐dependent cryospheric longwave surface emissivity feedback in the Community Earth System Model. Journal of Geophysical Research: Atmospheres, 123, 789 – 813. https://doi.org/10.1002/2017JD027595 Li, Z.‐L., Wu, H., Wang, N., Qiu, S., Sobrino, J., Wan, Z., et al. ( 2013 ). Land surface emissivity retrieval from satellite data. International Journal of Remote Sensing, 34, 3084 – 3127. https://doi.org/10.1080/01431161.2012.716540 Martin, D. H., & Puplett, E. ( 1969 ). Polarised interferometric spectrometry for the millimeter and submillimeter spectrum. Infrared Physics, 10, 105 – 109. https://doi.org/10.1016/0020‐0891(70)90006‐0 Mlawer, E., Turner, D., Paine, S., Palchetti, L., Bianchini, G., Payne, V., Cady‐Pereira, K., Pernak, R., Alvarado, M. J., Gombos, D., Delamere, J. S., Mlynczak, M. G., & Mast, J. C. ( 2019 ). Analysis of water vapor absorption in the far‐infrared and submillimetre regions using surface radiometric measurments from extremely dry locations. Journal of Geophysical Research: Atmospheres, 124, 8134 – 8160. https://doi.org/10.1029/2018JD029508 Newman, S. M., Smith, J. A., Glew, M. D., Rogers, S. M., & Taylor, J. P. ( 2005 ). Temperature and salinity dependence of sea surface emissivity inthe thermal infrared. Quarterly Journal of the Royal Meteorological Society, 131 ( 610 ), 2539 – 2557. https://doi.org/10.1256/qj.04.150 Palchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy‐Peyret, C., Carli, B., Cortesi, U., Del Bianco, S., Di Natale, G., Dinelli, B. M., Feldman, D., Huang, X. L., Labonnote, L. C., Libois, Q., Maestri, T., Mlynczak, M. G., Murray, J. E., Oetjen, H., Ridolfi, M., Riese, M., Russell, J., Saunders, R., & Serio, C. ( 2020 ). FORUM: Unique far‐infrared satellite observations to understand how Earth radiates energy to space. Bulletin of the American Meteorological Society. https://doi.org/10.1175/bams‐d‐19‐0322.1 Palchetti, L., Olivieri, M., Pompei, C., Labate, D., Brindley, H., Di Natale, G., Bianchini, G. and the FORUM team ( 2016 ). The far infrared FTS for the FORUM mission, in Light, Energy and the Environment, OSA Technical Digest (online) Optical Society of America, 2016, paper FTu3C.1. Rathke, C., Fisher, J., Neshyba, S., & Shupe, M. ( 2002 ). Improving IR cloud phase determination with 20 μm spectral observation. Geophysical Research Letters, 29, 501 – 504. https://doi.org/10.1029/2001GL014594 Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J., Andrews, A., Lang, P., Neff, D., Dlugokencky, E., Miller, J. B., Montzka, S. A., Miller, B. R., Masarie, K. A., Biraud, S. C., Novelli, P. C., Crotwell, M., Crotwell, A. M., Thoning, K., & Tans, P. ( 2015 ). Seasonal climatology of CO 2 across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research: Atmospheres, 120, 5155 – 5190. https://doi.org/10.1002/2014JD022591 Vance, A. K., Abel, S. J., Cotton, R. J., & Woolley, A. M. ( 2015 ). Performance of WVSS‐II hygrometers on the FAAM research aircraft. Atmospheric Measurement Techniques, 8 ( 3 ), 1617 – 1625. https://doi.org/10.5194/amt‐8‐1617‐2015 Vomel, H., Hock, T., Potts, N., Goodstein, M., Arendt, C., Tudor, L. & Young, K. ( 2016 ) “ Overview of NCAR Dropsonde technologies for targeted observations in severe systems and for research ”, Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, September 27–30, Madrid, Spain. Wan, Z., Ng, D., & Dozier, J. ( 1994 ). Spectral emissivity measurements of land‐surface materials and related radiative transfer simulations. Advances in Space Research, 14, 91 – 94. https://doi.org/10.1016/0273‐1177(94)90197‐x Wang, D., Prigent, C., Kilic, L., Fox, S., Harlow, C., Jimenez, C., Aires, F., Grassotti, F., & Karbou, F. ( 2017 ). Surface emissivity at microwave to millimeter waves overs polar regions: Parameterization and evaluation with aircraft experiments. Journal of Atmospheric and Oceanic Technology, 34, 1039 – 1059. https://doi.org/10.1175/JTECH‐D‐16‐0188.1 Wilson, S. H. S., Atkinson, N. C., & Smith, J. A. ( 1999 ). The development of an airborne infrared interferometer for meteorological sounding studies. Journal of Atmospheric and Oceanic Technology, 16 ( 12 ), 1912 – 1927. https://doi.org/10.1175/1520‐0426(1999)016%3C1912:TDOAAI%3E2.0.CO;2 IndexNoFollow surface spectral emissivity surface temperature and emissivity retrieval surface radiation budget ice‐emissivity feedback far‐infrared radiation Atmospheric and Oceanic Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1029/2020JD03367210.1016/j.jqsrt.2004.05.05810.1080/01431161.2012.716540 2023-07-31T20:44:17Z We present retrievals of infrared spectral surface emissivities spanning the far infrared and mid‐infrared from aircraft observations over Greenland, taken at an altitude of 9.2 km above sea level. We describe the flight campaign, available measurements, and the retrieval method. The principal barriers to reducing uncertainty in the emissivity retrievals are found to be instrumental noise and our ability to simultaneously retrieve the underlying surface temperature. However, our results indicate that using the instrumentation available to us it is possible to retrieve emissivities from altitude with an uncertainty of ~0.02 or better across much of the infrared. They confirm that the far‐infrared emissivity of snow and ice surfaces can depart substantially from unity, reaching values as low as 0.9 between 400 and 450 cm−1. They also show good consistency with retrievals from the same flight made from near‐surface observations giving confidence in the methodology used and the results obtained for this more challenging viewing configuration. To the best of our knowledge, this is the first time that far‐infrared surface emissivity has been retrieved from altitude and demonstrates that the methodology has the potential to be extended to planned satellite far‐infrared missions.Key PointsRetrievals of surface emissivity and temperature across the thermal infrared from high‐altitude aircraft measurements are reportedRetrieved far‐infrared emissivities are significantly less than unity, showing consistency with near‐surface retrievals in the same flightThis emissivity and surface temperature retrieval methodology is applicable to proposed satellite instruments covering the thermal infrared Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/163589/2/jgrd56608_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/163589/1/jgrd56608.pdf Article in Journal/Newspaper Arctic Greenland University of Michigan: Deep Blue Greenland Journal of Geophysical Research: Atmospheres 125 22