Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel

Long‐term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context.Many previous studies have only investigated life‐h...

Full description

Bibliographic Details
Published in:Journal of Animal Ecology
Main Authors: Dantzer, Ben, McAdam, Andrew G., Humphries, Murray M., Lane, Jeffrey E., Boutin, Stan
Format: Article in Journal/Newspaper
Language:unknown
Published: Oxford University Press 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/163552
https://doi.org/10.1111/1365-2656.13341
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/163552
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic territoriality
phenotypic plasticity
parental effects
population density
life history
glucocorticoids
Ecology and Evolutionary Biology
Science
spellingShingle territoriality
phenotypic plasticity
parental effects
population density
life history
glucocorticoids
Ecology and Evolutionary Biology
Science
Dantzer, Ben
McAdam, Andrew G.
Humphries, Murray M.
Lane, Jeffrey E.
Boutin, Stan
Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel
topic_facet territoriality
phenotypic plasticity
parental effects
population density
life history
glucocorticoids
Ecology and Evolutionary Biology
Science
description Long‐term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context.Many previous studies have only investigated life‐history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness‐relevant traits to better understand their population‐level responses to those environmental fluctuations.For the past 32 years, we have conducted a long‐term integrative study of individually marked North American red squirrels Tamiasciurus hudsonicus Erxleben in the Yukon, Canada. We have used multi‐year field experiments to examine the physiological and life‐history responses of individual red squirrels to fluctuations in food abundance and conspecific density.Our long‐term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change.As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life‐history plasticity, as does experimental food supplementation.Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life‐history plasticity.Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life‐history plasticity, energetics research in red squirrels has ...
format Article in Journal/Newspaper
author Dantzer, Ben
McAdam, Andrew G.
Humphries, Murray M.
Lane, Jeffrey E.
Boutin, Stan
author_facet Dantzer, Ben
McAdam, Andrew G.
Humphries, Murray M.
Lane, Jeffrey E.
Boutin, Stan
author_sort Dantzer, Ben
title Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel
title_short Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel
title_full Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel
title_fullStr Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel
title_full_unstemmed Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel
title_sort decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: insights from the steward who sits in the shadow of its tail, the north american red squirrel
publisher Oxford University Press
publishDate 2020
url https://hdl.handle.net/2027.42/163552
https://doi.org/10.1111/1365-2656.13341
geographic Canada
Yukon
geographic_facet Canada
Yukon
genre Arctic
Yukon
genre_facet Arctic
Yukon
op_relation Dantzer, Ben; McAdam, Andrew G.; Humphries, Murray M.; Lane, Jeffrey E.; Boutin, Stan (2020). "Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel." Journal of Animal Ecology 89(11): 2397-2414.
0021-8790
1365-2656
https://hdl.handle.net/2027.42/163552
doi:10.1111/1365-2656.13341
Journal of Animal Ecology
Reznick, D., Ghalambor, C., & Nunney, L. ( 2002 ). The evolution of senescence in fish. Mechanisms of Ageing and Development, 123 ( 7 ), 773 – 789. https://doi.org/10.1016/S0047‐6374(01)00423‐7
Speakman, J. R. ( 1999 ). The cost of living: Field metabolic rates of small mammals. Advances in Ecological Research, 30, 177 – 297. https://doi.org/10.1016/S0065‐2504(08)60019‐7
Speakman, J. R., & Król, E. ( 2010 ). Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. Journal of Animal Ecology, 79 ( 4 ), 726 – 746. https://doi.org/10.1111/j.1365‐2656.2010.01689.x
Stearns, S. C. ( 1989 ). The evolutionary significance of phenotypic plasticity. BioScience, 39, 436 – 445. https://doi.org/10.2307/1311135
Stearns, S. C. ( 1992 ). The evolution of life histories. Oxford University Press.
Stuart‐Smith, A. K., & Boutin, S. ( 1995 ). Behavioural differences between surviving and depredated juvenile red squirrels. Ecoscience, 2 ( 1 ), 34 – 40. https://doi.org/10.1080/11956860.1995.11682266
Studd, E. K., Boutin, S., McAdam, A. G., & Humphries, M. M. ( 2016 ). Nest attendance of lactating red squirrels ( Tamiasciurus hudsonicus ): Influences of biological and environmental correlates. Journal of Mammalogy, 97 ( 3 ), 806 – 814. https://doi.org/10.1093/jmammal/gyw010
Studd, E. K., Boutin, S., McAdam, A. G., Krebs, C. J., & Humphries, M. M. ( 2015 ). Predators, energetics and fitness drive neonatal reproductive failure in red squirrels. Journal of Animal Ecology, 84, 249 – 259. https://doi.org/10.1111/1365‐2656.12279
Studd, E. K., Landry‐Cuerrier, M., Menzies, A. K., Boutin, S., McAdam, A. G., Lane, J. E., & Humphries, M. M. ( 2019 ). Behavioral classification of low‐frequency acceleration and temperature data from a free‐ranging small mammal. Ecology and Evolution, 9 ( 1 ), 619 – 630. https://doi.org/10.1002/ece3.4786
Studd, E. K., Menzies, A. K., Siracusa, E. R., Dantzer, B., Lane, J. E., McAdam, A. G., Boutin, S., & Humphries, M. M. ( 2020 ). Optimisation of energetic and reproductive gains explains behavioural responses to environmental variation across seasons and years. Ecology Letters, 23 ( 5 ), 841 – 850. https://doi.org/10.1111/ele.13494
Tafani, M., Cohas, A., Bonenfant, C., Gaillard, J.‐M., & Allaine, D. ( 2013 ). Decreasing litter size of marmots over time: A life history response to climate change? Ecology, 94, 580 – 586. https://doi.org/10.1890/12‐0833.1
Uller, T. ( 2008 ). Developmental plasticity and the evolution of parental effects. Trends in Ecology & Evolution, 23 ( 8 ), 432 – 438. https://doi.org/10.1016/j.tree.2008.04.005
van Kesteren, F., Delehanty, B., Westrick, S. E., Palme, R., Boonstra, R., Lane, J. E., Boutin, S., McAdam, A. G., & Dantzer, B. ( 2019 ). Experimental increases in glucocorticoids alter function of the HPA axis in wild red squirrels without negatively impacting survival and reproduction. Physiological and Biochemical Zoology, 92 ( 5 ), 445 – 458. https://doi.org/10.1086/705121
van Noordwijk, A. J., & de Jong, G. ( 1986 ). Acquisition and allocation of resources: Their influence on variation in life history tactics. The American Naturalist, 128 ( 1 ), 137 – 142. https://doi.org/10.1086/284547
Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. D., & Van Tienderen, P. H. ( 1995 ). Adaptive phenotypic plasticity: Consensus and controversy. Trends in Ecology & Evolution, 10, 212 – 217. https://doi.org/10.1016/S0169‐5347(00)89061‐8
Visser, M. E., Holleman, L. J. M., & Geinapp, P. ( 2006 ). Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia, 147, 164 – 172. https://doi.org/10.1007/S00442‐005‐0299‐6
Wade, M. J., & Kalisz, S. ( 1990 ). The causes of natural selection. Evolution, 44 ( 8 ), 1947 – 1955. https://doi.org/10.1111/j.1558‐5646.1990.tb04301.x
Westrick, S. E., Taylor, R. W., Boutin, S., Lane, J. E., McAdam, A. G., & Dantzer, B. ( 2020 ). Attentive red squirrel mothers have faster‐growing pups and higher lifetime reproductive success. Behavioral Ecology & Sociobiology, 74 ( 6 ). https://doi.org/10.1007/s00265‐020‐02856‐7
Williams, C. T., Lane, J. E., Humphries, M. M., McAdam, A. G., & Boutin, S. ( 2014 ). Reproductive phenology of a food‐hoarding mast‐seed consumer: Resource‐and density‐dependent benefits of early breeding in red squirrels. Oecologia, 174 ( 3 ), 777 – 788. https://doi.org/10.1007/S00442‐013‐2826‐1
Williams, C. T., Wilsterman, K., Kelley, A. D., Breton, A. R., Stark, H., Humphries, M. M., McAdam, A. G., Barnes, B. M., Boutin, S., & Buck, C. L. ( 2014 ). Light loggers reveal weather‐driven changes in the daily activity patterns of arboreal and semifossorial rodents. Journal of Mammalogy, 95, 1230 – 1239. https://doi.org/10.1644/14‐MAMM‐A‐062
Wilson, D. R., Goble, A. R., Boutin, S., Humphries, M. M., Coltman, D. W., Gorrell, J. C., Shonfield, J., & McAdam, A. G. ( 2015 ). Red squirrels use territorial vocalizations for kin discrimination. Animal Behaviour, 107, 79 – 85. https://doi.org/10.1016/j.anbehav.2015.06.011
Wolf, J. B., & Wade, M. J. ( 2009 ). What are maternal effects (and what are they not)? Philosophical Transactions of the Royal Society B: Biological Sciences, 364 ( 1520 ), 1107 – 1115. https://doi.org/10.1098/rstb.2008.0238
Wolff, J. O. ( 1996 ). Population fluctuations of mast‐eating rodents are correlated with production of acorns. Journal of Mammalogy, 77 ( 3 ), 850 – 856. https://doi.org/10.2307/1382690
Wolff, J., & Krebs, C. ( 2008 ). Hypothesis testing and the scientific method revisited. Current Zoology, 54 ( 2 ), 383 – 386.
Yang, L. H., Bastow, J. L., Spence, K. O., & Wright, A. N. ( 2008 ). What can we learn from resource pulses. Ecology, 89 ( 3 ), 621 – 634. https://doi.org/10.1890/07‐0175.1
Yeh, P. J., & Price, T. D. ( 2004 ). Adaptive phenotypic plasticity and the successful colonization of a novel environment. The American Naturalist, 164 ( 4 ), 531 – 542. https://doi.org/10.1086/423825
Zarrow, M. X., Philpott, J. E., & Denenberg, V. H. ( 1970 ). Passage of 14C–4‐corticosterone from the rat mother to the foetus and neonate. Nature, 226 ( 5250 ), 1058 – 1059. https://doi.org/10.1038/2261058a0
Barbazanges, A., Piazza, P. V., Le Moal, M., & Maccari, S. ( 1996 ). Maternal glucocorticoid secretion mediates long‐term effects of prenatal stress. Journal of Neuroscience, 16 ( 12 ), 3943 – 3949. https://doi.org/10.1523/JNEUROSCI.16‐12‐03943.1996
Bassar, R. D., Lopez‐Sepulcre, A., Reznick, D. N., & Travis, J. ( 2013 ). Experimental evidence for density‐dependent regulation and selection on Trinidadian guppy life histories. The American Naturalist, 181 ( 1 ), 25 – 38. https://doi.org/10.1086/668590
Bergeron, P., Réale, D., Humphries, M. M., & Garant, D. ( 2011 ). Anticipation and tracking of pulsed resources drive population dynamics in eastern chipmunks. Ecology, 92 ( 11 ), 2027 – 2034. https://doi.org/10.1890/11‐0766.1
Berghänel, A., Heistermann, M., Schülke, O., & Ostner, J. ( 2017 ). Prenatal stress accelerates offspring growth to compensate for reduced maternal investment across mammals. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 50 ), E10658 – E10666. https://doi.org/10.1073/pnas/1707152114
Berrigan, D., & Scheiner, S. M. ( 2004 ). Modeling the evolution of phenotypic plasticity. In T. J. DeWitt & S. M. Scheiner (Eds.), Phenotypic plasticity: Functional and conceptual approaches (pp. 82 – 97 ). Oxford University Press.
Berteaux, D., & Boutin, S. ( 2000 ). Breeding dispersal in female North American red squirrels. Ecology, 81 ( 5 ), 1311 – 1326. https://doi.org/10.1890/0012‐9658(200)081[1331:BDIFNA]2.0.CO;2
Bonnet, T., Morrissey, M. B., Morris, A., Morris, S., Clutton‐Brock, T. H., Pemberton, J. M., & Kruuk, L. E. B. ( 2019 ). The role of selection and evolution in changing parturition date in a red deer population. PLoS Biology, 17 ( 11 ), e3000493. https://doi.org/10.1371/journal.pbio.3000493
Boonstra, R., Boutin, S., Byrom, A., Karels, T., Hubbs, A., Stuart‐Smith, K., Blower, M., & Antpoehler, S. ( 2001 ). The role of red squirrels and arctic ground squirrels. In C. J. Krebs, S. Boutin, & R. Boonstra (Eds.), Ecosystem dynamics of the boreal forest: The Kluane project (pp. 180 – 214 ). Oxford University Press.
Boutin, S. ( 1990 ). Food supplementation experiments with terrestrial vertebrates: Patterns, problems, and the future. Canadian Journal of Zoology, 68 ( 2 ), 203 – 220. https://doi.org/10.1139/z90‐031
Boutin, S., Larsen, K. W., & Berteaux, D. ( 2000 ). Anticipatory parental care: Acquiring resources for offspring prior to conception. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267 ( 1457 ), 2081 – 2085. https://doi.org/10.1098/rspb.200.1252
Boutin, S., McAdam, A. G., & Humphries, M. M. ( 2013 ). Anticipatory reproduction in squirrels can succeed in the absence of extra food. New Zealand Journal of Zoology, 40 ( 4 ), 337 – 339. https://doi.org/10.1080/03014223.2013.798337
Boutin, S., Tooze, Z., & Price, K. ( 1993 ). Post‐breeding dispersal by female red squirrels ( Tamiasciurus hudsonicus ): The effect of local vacancies. Behavioral Ecology, 4 ( 2 ), 151 – 155. https://doi.org/10.1093/beheco/4.2.151
Boutin, S., Wauters, L. A., McAdam, A. G., Humphries, M. M., Tosi, G., & Dhondt, A. A. ( 2006 ). Anticipatory reproduction and population growth in seed predators. Science, 314, 1928 – 1930. https://doi.org/10.1126/science.1135520
Brigham, R. M., & Geiser, F. ( 2012 ). Do red squirrels (Tamiasciurus hudsonicus) use daily torpor during winter? Ecoscience, 19 ( 2 ), 127 – 132.
Brommer, J. E., Rattiste, K., & Wilson, A. J. ( 2008 ). Exploring plasticity in the wild: Laying date‐temperature reaction norms in the common gull Larus canus. Proceedings of the Royal Society B: Biological Sciences, 275, 687 – 693.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. ( 2004 ). Toward a metabolic theory of ecology. Ecology, 85 ( 7 ), 1771 – 1789. https://doi.org/10.1890/03‐9000
Brummelte, S., & Galea, L. A. ( 2010 ). Chronic corticosterone during pregnancy and postpartum affects maternal care, cell proliferation and depressive‐like behavior in the dam. Hormones and Behavior, 58 ( 5 ), 769 – 779. https://doi.org/10.1016/j.yhbeh.2010.07.012
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/1365-2656.1334110.1016/S0065‐2504(08)60019‐710.2307/131113510.2307/138269010.1139/z90‐03110.1093/icb/23.1.3510.2307/137529010.1016/j.ygcen.2009.04.01610.1111/j.2041‐210X.2012.00203.x10.1111/j.1474‐919X.1991.tb07663.x10.1644/1545‐15
container_title Journal of Animal Ecology
container_volume 89
container_issue 11
container_start_page 2397
op_container_end_page 2414
_version_ 1774713610874912768
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/163552 2023-08-20T04:03:12+02:00 Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel Dantzer, Ben McAdam, Andrew G. Humphries, Murray M. Lane, Jeffrey E. Boutin, Stan 2020-11 application/pdf https://hdl.handle.net/2027.42/163552 https://doi.org/10.1111/1365-2656.13341 unknown Oxford University Press Wiley Periodicals, Inc. Dantzer, Ben; McAdam, Andrew G.; Humphries, Murray M.; Lane, Jeffrey E.; Boutin, Stan (2020). "Decoupling the effects of food and density on life‐history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel." Journal of Animal Ecology 89(11): 2397-2414. 0021-8790 1365-2656 https://hdl.handle.net/2027.42/163552 doi:10.1111/1365-2656.13341 Journal of Animal Ecology Reznick, D., Ghalambor, C., & Nunney, L. ( 2002 ). The evolution of senescence in fish. Mechanisms of Ageing and Development, 123 ( 7 ), 773 – 789. https://doi.org/10.1016/S0047‐6374(01)00423‐7 Speakman, J. R. ( 1999 ). The cost of living: Field metabolic rates of small mammals. Advances in Ecological Research, 30, 177 – 297. https://doi.org/10.1016/S0065‐2504(08)60019‐7 Speakman, J. R., & Król, E. ( 2010 ). Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. Journal of Animal Ecology, 79 ( 4 ), 726 – 746. https://doi.org/10.1111/j.1365‐2656.2010.01689.x Stearns, S. C. ( 1989 ). The evolutionary significance of phenotypic plasticity. BioScience, 39, 436 – 445. https://doi.org/10.2307/1311135 Stearns, S. C. ( 1992 ). The evolution of life histories. Oxford University Press. Stuart‐Smith, A. K., & Boutin, S. ( 1995 ). Behavioural differences between surviving and depredated juvenile red squirrels. Ecoscience, 2 ( 1 ), 34 – 40. https://doi.org/10.1080/11956860.1995.11682266 Studd, E. K., Boutin, S., McAdam, A. G., & Humphries, M. M. ( 2016 ). Nest attendance of lactating red squirrels ( Tamiasciurus hudsonicus ): Influences of biological and environmental correlates. Journal of Mammalogy, 97 ( 3 ), 806 – 814. https://doi.org/10.1093/jmammal/gyw010 Studd, E. K., Boutin, S., McAdam, A. G., Krebs, C. J., & Humphries, M. M. ( 2015 ). Predators, energetics and fitness drive neonatal reproductive failure in red squirrels. Journal of Animal Ecology, 84, 249 – 259. https://doi.org/10.1111/1365‐2656.12279 Studd, E. K., Landry‐Cuerrier, M., Menzies, A. K., Boutin, S., McAdam, A. G., Lane, J. E., & Humphries, M. M. ( 2019 ). Behavioral classification of low‐frequency acceleration and temperature data from a free‐ranging small mammal. Ecology and Evolution, 9 ( 1 ), 619 – 630. https://doi.org/10.1002/ece3.4786 Studd, E. K., Menzies, A. K., Siracusa, E. R., Dantzer, B., Lane, J. E., McAdam, A. G., Boutin, S., & Humphries, M. M. ( 2020 ). Optimisation of energetic and reproductive gains explains behavioural responses to environmental variation across seasons and years. Ecology Letters, 23 ( 5 ), 841 – 850. https://doi.org/10.1111/ele.13494 Tafani, M., Cohas, A., Bonenfant, C., Gaillard, J.‐M., & Allaine, D. ( 2013 ). Decreasing litter size of marmots over time: A life history response to climate change? Ecology, 94, 580 – 586. https://doi.org/10.1890/12‐0833.1 Uller, T. ( 2008 ). Developmental plasticity and the evolution of parental effects. Trends in Ecology & Evolution, 23 ( 8 ), 432 – 438. https://doi.org/10.1016/j.tree.2008.04.005 van Kesteren, F., Delehanty, B., Westrick, S. E., Palme, R., Boonstra, R., Lane, J. E., Boutin, S., McAdam, A. G., & Dantzer, B. ( 2019 ). Experimental increases in glucocorticoids alter function of the HPA axis in wild red squirrels without negatively impacting survival and reproduction. Physiological and Biochemical Zoology, 92 ( 5 ), 445 – 458. https://doi.org/10.1086/705121 van Noordwijk, A. J., & de Jong, G. ( 1986 ). Acquisition and allocation of resources: Their influence on variation in life history tactics. The American Naturalist, 128 ( 1 ), 137 – 142. https://doi.org/10.1086/284547 Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. D., & Van Tienderen, P. H. ( 1995 ). Adaptive phenotypic plasticity: Consensus and controversy. Trends in Ecology & Evolution, 10, 212 – 217. https://doi.org/10.1016/S0169‐5347(00)89061‐8 Visser, M. E., Holleman, L. J. M., & Geinapp, P. ( 2006 ). Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia, 147, 164 – 172. https://doi.org/10.1007/S00442‐005‐0299‐6 Wade, M. J., & Kalisz, S. ( 1990 ). The causes of natural selection. Evolution, 44 ( 8 ), 1947 – 1955. https://doi.org/10.1111/j.1558‐5646.1990.tb04301.x Westrick, S. E., Taylor, R. W., Boutin, S., Lane, J. E., McAdam, A. G., & Dantzer, B. ( 2020 ). Attentive red squirrel mothers have faster‐growing pups and higher lifetime reproductive success. Behavioral Ecology & Sociobiology, 74 ( 6 ). https://doi.org/10.1007/s00265‐020‐02856‐7 Williams, C. T., Lane, J. E., Humphries, M. M., McAdam, A. G., & Boutin, S. ( 2014 ). Reproductive phenology of a food‐hoarding mast‐seed consumer: Resource‐and density‐dependent benefits of early breeding in red squirrels. Oecologia, 174 ( 3 ), 777 – 788. https://doi.org/10.1007/S00442‐013‐2826‐1 Williams, C. T., Wilsterman, K., Kelley, A. D., Breton, A. R., Stark, H., Humphries, M. M., McAdam, A. G., Barnes, B. M., Boutin, S., & Buck, C. L. ( 2014 ). Light loggers reveal weather‐driven changes in the daily activity patterns of arboreal and semifossorial rodents. Journal of Mammalogy, 95, 1230 – 1239. https://doi.org/10.1644/14‐MAMM‐A‐062 Wilson, D. R., Goble, A. R., Boutin, S., Humphries, M. M., Coltman, D. W., Gorrell, J. C., Shonfield, J., & McAdam, A. G. ( 2015 ). Red squirrels use territorial vocalizations for kin discrimination. Animal Behaviour, 107, 79 – 85. https://doi.org/10.1016/j.anbehav.2015.06.011 Wolf, J. B., & Wade, M. J. ( 2009 ). What are maternal effects (and what are they not)? Philosophical Transactions of the Royal Society B: Biological Sciences, 364 ( 1520 ), 1107 – 1115. https://doi.org/10.1098/rstb.2008.0238 Wolff, J. O. ( 1996 ). Population fluctuations of mast‐eating rodents are correlated with production of acorns. Journal of Mammalogy, 77 ( 3 ), 850 – 856. https://doi.org/10.2307/1382690 Wolff, J., & Krebs, C. ( 2008 ). Hypothesis testing and the scientific method revisited. Current Zoology, 54 ( 2 ), 383 – 386. Yang, L. H., Bastow, J. L., Spence, K. O., & Wright, A. N. ( 2008 ). What can we learn from resource pulses. Ecology, 89 ( 3 ), 621 – 634. https://doi.org/10.1890/07‐0175.1 Yeh, P. J., & Price, T. D. ( 2004 ). Adaptive phenotypic plasticity and the successful colonization of a novel environment. The American Naturalist, 164 ( 4 ), 531 – 542. https://doi.org/10.1086/423825 Zarrow, M. X., Philpott, J. E., & Denenberg, V. H. ( 1970 ). Passage of 14C–4‐corticosterone from the rat mother to the foetus and neonate. Nature, 226 ( 5250 ), 1058 – 1059. https://doi.org/10.1038/2261058a0 Barbazanges, A., Piazza, P. V., Le Moal, M., & Maccari, S. ( 1996 ). Maternal glucocorticoid secretion mediates long‐term effects of prenatal stress. Journal of Neuroscience, 16 ( 12 ), 3943 – 3949. https://doi.org/10.1523/JNEUROSCI.16‐12‐03943.1996 Bassar, R. D., Lopez‐Sepulcre, A., Reznick, D. N., & Travis, J. ( 2013 ). Experimental evidence for density‐dependent regulation and selection on Trinidadian guppy life histories. The American Naturalist, 181 ( 1 ), 25 – 38. https://doi.org/10.1086/668590 Bergeron, P., Réale, D., Humphries, M. M., & Garant, D. ( 2011 ). Anticipation and tracking of pulsed resources drive population dynamics in eastern chipmunks. Ecology, 92 ( 11 ), 2027 – 2034. https://doi.org/10.1890/11‐0766.1 Berghänel, A., Heistermann, M., Schülke, O., & Ostner, J. ( 2017 ). Prenatal stress accelerates offspring growth to compensate for reduced maternal investment across mammals. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 50 ), E10658 – E10666. https://doi.org/10.1073/pnas/1707152114 Berrigan, D., & Scheiner, S. M. ( 2004 ). Modeling the evolution of phenotypic plasticity. In T. J. DeWitt & S. M. Scheiner (Eds.), Phenotypic plasticity: Functional and conceptual approaches (pp. 82 – 97 ). Oxford University Press. Berteaux, D., & Boutin, S. ( 2000 ). Breeding dispersal in female North American red squirrels. Ecology, 81 ( 5 ), 1311 – 1326. https://doi.org/10.1890/0012‐9658(200)081[1331:BDIFNA]2.0.CO;2 Bonnet, T., Morrissey, M. B., Morris, A., Morris, S., Clutton‐Brock, T. H., Pemberton, J. M., & Kruuk, L. E. B. ( 2019 ). The role of selection and evolution in changing parturition date in a red deer population. PLoS Biology, 17 ( 11 ), e3000493. https://doi.org/10.1371/journal.pbio.3000493 Boonstra, R., Boutin, S., Byrom, A., Karels, T., Hubbs, A., Stuart‐Smith, K., Blower, M., & Antpoehler, S. ( 2001 ). The role of red squirrels and arctic ground squirrels. In C. J. Krebs, S. Boutin, & R. Boonstra (Eds.), Ecosystem dynamics of the boreal forest: The Kluane project (pp. 180 – 214 ). Oxford University Press. Boutin, S. ( 1990 ). Food supplementation experiments with terrestrial vertebrates: Patterns, problems, and the future. Canadian Journal of Zoology, 68 ( 2 ), 203 – 220. https://doi.org/10.1139/z90‐031 Boutin, S., Larsen, K. W., & Berteaux, D. ( 2000 ). Anticipatory parental care: Acquiring resources for offspring prior to conception. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267 ( 1457 ), 2081 – 2085. https://doi.org/10.1098/rspb.200.1252 Boutin, S., McAdam, A. G., & Humphries, M. M. ( 2013 ). Anticipatory reproduction in squirrels can succeed in the absence of extra food. New Zealand Journal of Zoology, 40 ( 4 ), 337 – 339. https://doi.org/10.1080/03014223.2013.798337 Boutin, S., Tooze, Z., & Price, K. ( 1993 ). Post‐breeding dispersal by female red squirrels ( Tamiasciurus hudsonicus ): The effect of local vacancies. Behavioral Ecology, 4 ( 2 ), 151 – 155. https://doi.org/10.1093/beheco/4.2.151 Boutin, S., Wauters, L. A., McAdam, A. G., Humphries, M. M., Tosi, G., & Dhondt, A. A. ( 2006 ). Anticipatory reproduction and population growth in seed predators. Science, 314, 1928 – 1930. https://doi.org/10.1126/science.1135520 Brigham, R. M., & Geiser, F. ( 2012 ). Do red squirrels (Tamiasciurus hudsonicus) use daily torpor during winter? Ecoscience, 19 ( 2 ), 127 – 132. Brommer, J. E., Rattiste, K., & Wilson, A. J. ( 2008 ). Exploring plasticity in the wild: Laying date‐temperature reaction norms in the common gull Larus canus. Proceedings of the Royal Society B: Biological Sciences, 275, 687 – 693. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. ( 2004 ). Toward a metabolic theory of ecology. Ecology, 85 ( 7 ), 1771 – 1789. https://doi.org/10.1890/03‐9000 Brummelte, S., & Galea, L. A. ( 2010 ). Chronic corticosterone during pregnancy and postpartum affects maternal care, cell proliferation and depressive‐like behavior in the dam. Hormones and Behavior, 58 ( 5 ), 769 – 779. https://doi.org/10.1016/j.yhbeh.2010.07.012 IndexNoFollow territoriality phenotypic plasticity parental effects population density life history glucocorticoids Ecology and Evolutionary Biology Science Article 2020 ftumdeepblue https://doi.org/10.1111/1365-2656.1334110.1016/S0065‐2504(08)60019‐710.2307/131113510.2307/138269010.1139/z90‐03110.1093/icb/23.1.3510.2307/137529010.1016/j.ygcen.2009.04.01610.1111/j.2041‐210X.2012.00203.x10.1111/j.1474‐919X.1991.tb07663.x10.1644/1545‐15 2023-07-31T21:14:46Z Long‐term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context.Many previous studies have only investigated life‐history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness‐relevant traits to better understand their population‐level responses to those environmental fluctuations.For the past 32 years, we have conducted a long‐term integrative study of individually marked North American red squirrels Tamiasciurus hudsonicus Erxleben in the Yukon, Canada. We have used multi‐year field experiments to examine the physiological and life‐history responses of individual red squirrels to fluctuations in food abundance and conspecific density.Our long‐term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change.As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life‐history plasticity, as does experimental food supplementation.Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life‐history plasticity.Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life‐history plasticity, energetics research in red squirrels has ... Article in Journal/Newspaper Arctic Yukon University of Michigan: Deep Blue Canada Yukon Journal of Animal Ecology 89 11 2397 2414