Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar

Accessory mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount of feldspar over time, allowing accessory mineral U‐Pb dates to be linked to the progressive crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. However, changes in Eu/...

Full description

Bibliographic Details
Published in:Geochemistry, Geophysics, Geosystems
Main Authors: Holder, R. M., Yakymchuk, C., Viete, D. R.
Format: Article in Journal/Newspaper
Language:unknown
Published: Mineralogical Society of America 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/156481
https://doi.org/10.1029/2020GC009052
_version_ 1835008603373699072
author Holder, R. M.
Yakymchuk, C.
Viete, D. R.
author_facet Holder, R. M.
Yakymchuk, C.
Viete, D. R.
author_sort Holder, R. M.
collection Unknown
container_issue 8
container_title Geochemistry, Geophysics, Geosystems
container_volume 21
description Accessory mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount of feldspar over time, allowing accessory mineral U‐Pb dates to be linked to the progressive crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. However, changes in Eu/Eu* can reflect any process that changes the relative availability of Eu2+ and Eu3+. We constructed partitioning budgets for Sm, Eu2+, Eu3+, and Gd in suprasolidus metasedimentary rocks to investigate processes that can influence accessory mineral Eu anomalies. We modeled three scenarios: (1) closed‐system, equilibrium crystallization; (2) fractionation of Eu by feldspar growth during melt crystallization; and (3) removal of Eu by melt extraction. In the closed‐system equilibrium model, accessory mineral Eu/Eu* changes as a function of fO2 and monazite stability; Eu/Eu* changes up to 0.3 over a pressure‐temperature range of 4–12 kbar and 700–950°C. Fractionation of Eu by feldspar growth is modeled to decrease accessory mineral Eu/Eu* by ~0.05–0.15 per 10 wt% feldspar crystallized. Melt extraction has a smaller effect; removal of 10% melt decreases accessory mineral Eu/Eu* in the residue by ≤0.05. Although these models demonstrate that fractionation of Eu by feldspar growth can be a dominant control on a rocks u budget, they also show that the common interpretation that Eu/Eu* only records feldspar growth and breakdown is an oversimplification that could lead to incorrect interpretation about the duration and rates of tectonic processes. Consideration of other processes that influence Eu anomalies will allow for a broader range of geological processes to be investigated by petrochronology.Plain Language SummaryMetamorphic rocks—rocks in which new minerals grew in response to increase in pressure and temperature related to deep burial or subduction—and igneous rocks—rocks that formed as magmas cool and crystallize—provide a direct record of how Earth’s continents have moved and changed through time. To read this record, ...
format Article in Journal/Newspaper
genre Antarctica Journal
genre_facet Antarctica Journal
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/156481
institution Open Polar
language unknown
op_collection_id ftumdeepblue
op_relation https://hdl.handle.net/2027.42/156481
doi:10.1029/2020GC009052
Geochemistry, Geophysics, Geosystems
Sawyer, E. W. ( 1987 ). The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. Journal of Petrology, 28 ( 3 ), 445 – 473. https://doi.org/10.1093/petrology/28.3.445
Rubatto, D. ( 2017 ). Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 261 – 295. https://doi.org/10.2138/rmg.2017.83.10
Rubatto, D., & Hermann, J. ( 2007 ). Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241 ( 1–2 ), 38 – 61. https://doi.org/10.1016/j.chemgeo.2007.01.027
Rubatto, D., Hermann, J., & Buick, I. S. ( 2006 ). Temperature and bulk composition control on the growth of monazite and zircon during low‐pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47 ( 10 ), 1973 – 1996. https://doi.org/10.1093/petrology/egl033
Shannon, R. D. ( 1976 ). Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides. Acta Crystallographica, A32, 751 – 767.
Shrestha, S., Larson, K. P., Duesterhoeft, E., Soret, M., & Cottle, J. M. ( 2019 ). Thermodynamic modelling of phosphate minerals and its implications for the development of P‐T‐t histories: A case study in garnet ‐ monazite bearing metapelites. Lithos, 334‐335, 141 – 160. https://doi.org/10.1016/j.lithos.2019.03.021
Spear, F. S. ( 2010 ). Monazite–allanite phase relations in metapelites. Chemical Geology, 279 ( 1–2 ), 55 – 62. https://doi.org/10.1016/j.chemgeo.2010.10.004
Spear, F. S., & Pyle, J. M. ( 2010 ). Theoretical modeling of monazite growth in a low‐Ca metapelite. Chemical Geology, 273 ( 1–2 ), 111 – 119. https://doi.org/10.1016/j.chemgeo.2010.02.016
Spear, F. S. ( 1993 ). Metamorphic phase equilibria and pressure‐temperature‐time paths. Monograph/Mineralogical Society of America. Washington, D.C.: Mineralogical Society of America.
Stepanov, A. S., Hermann, J., Rubatto, D., & Rapp, R. P. ( 2012 ). Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300‐301, 200 – 220. https://doi.org/10.1016/j.chemgeo.2012.01.007
Sun, C., Graff, M., & Liang, Y. ( 2017 ). Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochimica et Cosmochimica Acta, 206, 273 – 295. https://doi.org/10.1016/j.gca.2017.03.003
Taylor, R. J. M., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., & Kelly, N. M. ( 2015 ). Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high‐T crustal processes. Journal of Metamorphic Geology, 33 ( 3 ), 231 – 248. https://doi.org/10.1111/jmg.12118
Warren, C. J., Greenwood, L. V., Argles, T. W., Roberts, N. M. W., Parrish, R. R., & Harris, N. B. W. ( 2019 ). Garnet‐monazite rare earth element relationships in sub‐solidus Metapelites: A case study from Bhutan. Geological Society Special Publication, 478 ( 1 ), 145 – 166. https://doi.org/10.1144/SP478.1
Yakymchuk, C. ( 2017 ). Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth. Lithos, 274‐275, 412 – 426. https://doi.org/10.1016/j.lithos.2017.01.009
Yakymchuk, C., Clark, C., & White, R. W. ( 2017 ). Phase relations, reactions sequences and petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 13 – 53. https://doi.org/10.2138/rmg.2017.83.2
Yakymchuk, C., Rehm, A., Liao, Z., & Cottle, J. M. ( 2019 ). Petrochronology of oxidized granulites from southern Peru. Journal of Metamorphic Geology, 37 ( 6 ), 839 – 862. https://doi.org/10.1111/jmg.12501
Zack, T., & Kooijman, E. ( 2017 ). Petrology and geochronology of rutile. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 443 – 467. https://doi.org/10.2138/rmg.2017.83.14
Boger, S. D., White, R. W., & Schulte, B. ( 2012 ). The importance of iron speciation (Fe +2 /Fe +3 ) in determining mineral assemblages: An example from the high‐grade aluminous metapelites of southeastern Madagascar. Journal of Metamorphic Geology, 30 ( 9 ), 997 – 1018. https://doi.org/10.1111/jmg.12001
Brown, C. R., Yakymchuk, C., Brown, M., Fanning, C. M., Korhonen, F. J., Piccoli, P. M., & Siddoway, C. S. ( 2016 ). From source to sink: Petrogenesis of Cretaceous anatectic granites from the Fosdick migmatite‐granite complex, West Antarctica. Journal of Petrology, 57 ( 7 ), 1241 – 1278. https://doi.org/10.1093/petrology/egw039
Buick, I. S., Hermann, J., Williams, I. S., Gibson, R. L., & Rubatto, D. ( 2006 ). A SHRIMP U–Pb and LA‐ICP‐MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the central zone of the Limpopo Belt, South Africa. Lithos, 88 ( 1–4 ), 150 – 172. https://doi.org/10.1016/j.lithos.2005.09.001
Burnham, A. D., Berry, A. J., Halse, H. R., Schofield, P. F., Cibin, G., & Mosselmans, J. F. W. ( 2015 ). The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature. Chemical Geology, 411, 248 – 259. https://doi.org/10.1016/j.chemgeo.2015.07.002
Cioffi, C. R., Campos Neto, M. C., Möller, A., & Rocha, B. C. ( 2019 ). Titanite petrochronology of the southern Brasília Orogen basement: Effects of retrograde net‐transfer reactions on titanite trace element compositions. Lithos, 344‐345, 393 – 408. https://doi.org/10.1016/j.lithos.2019.06.035
Engi, M. ( 2017 ). Petrochronology based on REE‐minerals: Monazite, allanite, xenotime, apatite. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 365 – 418. https://doi.org/10.2138/rmg.2017.83.12
Engi, M., Lanari, P., & Kohn, M. J. ( 2017 ). Significant ages—An introduction to petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 1 – 12. https://doi.org/10.2138/rmg.2017.83.1
Finger, F., & Krenn, E. ( 2007 ). Three metamorphic monazite generations in a high‐pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95 ( 1–2 ), 103 – 115. https://doi.org/10.1016/j.lithos.2006.06.003
Garber, J. M., Hacker, B. R., Kylander‐Clark, A. R. C., Stearns, M. A., & Seward, G. ( 2017 ). Controls on trace element uptake in metamorphic titanite: Implications for petrochronology. Journal of Petrology, 58 ( 6 ), 1031 – 1057. https://doi.org/10.1093/petrology/egx046
Hacker, B., Kylander‐Clark, A., & Holder, R. ( 2019 ). REE partitioning between monazite and garnet: Implications for petrochronology. Journal of Metamorphic Geology, 37 ( 2 ), 227 – 237. https://doi.org/10.1111/jmg.12458
Hokada, T., & Harley, S. L. ( 2004 ). Zircon growth in UHT leucosome: Constraints from zircon‐garnet rare earth elements (REE) relations in Napier complex, East Antarctica. Journal of Mineralogical and Petrological Sciences, 99 ( 4 ), 180 – 190. https://doi.org/10.2465/jmps.99.180
Holder, R., Yakymchuk, C., Viete, D. ( 2020 ). Modeled mineral Eu anomalies in suprasolidus metasediments, version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/111590
Holder, R. M., Hacker, B. R., Horton, F., & Rakotondrazafy, A. F. M. ( 2018 ). Ultrahigh‐temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long‐lived high‐ T orogen. Journal of Metamorphic Geology, 36 ( 7 ), 855 – 880. https://doi.org/10.1111/jmg.12316
Holder, R. M., Hacker, B. R., Kylander‐Clark, A. R. C., & Cottle, J. M. ( 2015 ). Monazite trace‐element and isotopic signatures of (ultra)high‐pressure metamorphism: Examples from the Western Gneiss region, Norway. Chemical Geology, 409, 99 – 111. https://doi.org/10.1016/j.chemgeo.2015.04.021
Kelly, N. M., Clarke, G. L., & Harley, S. L. ( 2006 ). Monazite behaviour and age significance in poly‐metamorphic high‐grade terrains: A case study from the western Musgrave Block, central Australia11Abbreviations: After Kretz, 1983. Lithos, 88 ( 1‐4 ), 100 – 134. https://doi.org/10.1016/j.lithos.2005.08.007
Kohn, M. J. ( 2017 ). Titanite petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 419 – 441. https://doi.org/10.2138/rmg.2017.83.13
Kohn, M. J., & Kelly, N. M. ( 2017 ). Petrology and geochronology of metamorphic zircon. Microstructural Geochronology: Planetary Records Down to Atom Scale, 35 – 61. https://doi.org/10.1002/9781119227250.ch2
Korhonen, F. J., Brown, M., Clark, C., & Bhattacharya, S. ( 2013 ). Osumilite‐melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P‐T‐t evolution of the eastern ghats province, India. Journal of Metamorphic Geology, 31 ( 8 ), 881 – 907. https://doi.org/10.1111/jmg.12049
Mottram, C. M., Warren, C. J., Regis, D., Roberts, N. M. W., Harris, N. B. W., Argles, T. W., & Parrish, R. R. ( 2014 ). Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth and Planetary Science Letters, 403, 418 – 431. https://doi.org/10.1016/j.epsl.2014.07.006
Pyle, J. M., & Spear, F. S. ( 1999 ). Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions. Geological Materials Research, 1 ( 6 ), 1 – 49.
Pyle, J. M., Spear, F. S., Rudnick, R. L., & McDonough, W. F. ( 2001 ). Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. Journal of Petrology, 42 ( 11 ), 2083 – 2107. https://doi.org/10.1093/petrology/42.11.2083
op_rights IndexNoFollow
publishDate 2020
publisher Mineralogical Society of America
record_format openpolar
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/156481 2025-06-15T14:13:39+00:00 Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar Holder, R. M. Yakymchuk, C. Viete, D. R. 2020-08 application/pdf https://hdl.handle.net/2027.42/156481 https://doi.org/10.1029/2020GC009052 unknown Mineralogical Society of America Wiley Periodicals, Inc. https://hdl.handle.net/2027.42/156481 doi:10.1029/2020GC009052 Geochemistry, Geophysics, Geosystems Sawyer, E. W. ( 1987 ). The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. Journal of Petrology, 28 ( 3 ), 445 – 473. https://doi.org/10.1093/petrology/28.3.445 Rubatto, D. ( 2017 ). Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 261 – 295. https://doi.org/10.2138/rmg.2017.83.10 Rubatto, D., & Hermann, J. ( 2007 ). Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241 ( 1–2 ), 38 – 61. https://doi.org/10.1016/j.chemgeo.2007.01.027 Rubatto, D., Hermann, J., & Buick, I. S. ( 2006 ). Temperature and bulk composition control on the growth of monazite and zircon during low‐pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47 ( 10 ), 1973 – 1996. https://doi.org/10.1093/petrology/egl033 Shannon, R. D. ( 1976 ). Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides. Acta Crystallographica, A32, 751 – 767. Shrestha, S., Larson, K. P., Duesterhoeft, E., Soret, M., & Cottle, J. M. ( 2019 ). Thermodynamic modelling of phosphate minerals and its implications for the development of P‐T‐t histories: A case study in garnet ‐ monazite bearing metapelites. Lithos, 334‐335, 141 – 160. https://doi.org/10.1016/j.lithos.2019.03.021 Spear, F. S. ( 2010 ). Monazite–allanite phase relations in metapelites. Chemical Geology, 279 ( 1–2 ), 55 – 62. https://doi.org/10.1016/j.chemgeo.2010.10.004 Spear, F. S., & Pyle, J. M. ( 2010 ). Theoretical modeling of monazite growth in a low‐Ca metapelite. Chemical Geology, 273 ( 1–2 ), 111 – 119. https://doi.org/10.1016/j.chemgeo.2010.02.016 Spear, F. S. ( 1993 ). Metamorphic phase equilibria and pressure‐temperature‐time paths. Monograph/Mineralogical Society of America. Washington, D.C.: Mineralogical Society of America. Stepanov, A. S., Hermann, J., Rubatto, D., & Rapp, R. P. ( 2012 ). Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300‐301, 200 – 220. https://doi.org/10.1016/j.chemgeo.2012.01.007 Sun, C., Graff, M., & Liang, Y. ( 2017 ). Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochimica et Cosmochimica Acta, 206, 273 – 295. https://doi.org/10.1016/j.gca.2017.03.003 Taylor, R. J. M., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., & Kelly, N. M. ( 2015 ). Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high‐T crustal processes. Journal of Metamorphic Geology, 33 ( 3 ), 231 – 248. https://doi.org/10.1111/jmg.12118 Warren, C. J., Greenwood, L. V., Argles, T. W., Roberts, N. M. W., Parrish, R. R., & Harris, N. B. W. ( 2019 ). Garnet‐monazite rare earth element relationships in sub‐solidus Metapelites: A case study from Bhutan. Geological Society Special Publication, 478 ( 1 ), 145 – 166. https://doi.org/10.1144/SP478.1 Yakymchuk, C. ( 2017 ). Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth. Lithos, 274‐275, 412 – 426. https://doi.org/10.1016/j.lithos.2017.01.009 Yakymchuk, C., Clark, C., & White, R. W. ( 2017 ). Phase relations, reactions sequences and petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 13 – 53. https://doi.org/10.2138/rmg.2017.83.2 Yakymchuk, C., Rehm, A., Liao, Z., & Cottle, J. M. ( 2019 ). Petrochronology of oxidized granulites from southern Peru. Journal of Metamorphic Geology, 37 ( 6 ), 839 – 862. https://doi.org/10.1111/jmg.12501 Zack, T., & Kooijman, E. ( 2017 ). Petrology and geochronology of rutile. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 443 – 467. https://doi.org/10.2138/rmg.2017.83.14 Boger, S. D., White, R. W., & Schulte, B. ( 2012 ). The importance of iron speciation (Fe +2 /Fe +3 ) in determining mineral assemblages: An example from the high‐grade aluminous metapelites of southeastern Madagascar. Journal of Metamorphic Geology, 30 ( 9 ), 997 – 1018. https://doi.org/10.1111/jmg.12001 Brown, C. R., Yakymchuk, C., Brown, M., Fanning, C. M., Korhonen, F. J., Piccoli, P. M., & Siddoway, C. S. ( 2016 ). From source to sink: Petrogenesis of Cretaceous anatectic granites from the Fosdick migmatite‐granite complex, West Antarctica. Journal of Petrology, 57 ( 7 ), 1241 – 1278. https://doi.org/10.1093/petrology/egw039 Buick, I. S., Hermann, J., Williams, I. S., Gibson, R. L., & Rubatto, D. ( 2006 ). A SHRIMP U–Pb and LA‐ICP‐MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the central zone of the Limpopo Belt, South Africa. Lithos, 88 ( 1–4 ), 150 – 172. https://doi.org/10.1016/j.lithos.2005.09.001 Burnham, A. D., Berry, A. J., Halse, H. R., Schofield, P. F., Cibin, G., & Mosselmans, J. F. W. ( 2015 ). The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature. Chemical Geology, 411, 248 – 259. https://doi.org/10.1016/j.chemgeo.2015.07.002 Cioffi, C. R., Campos Neto, M. C., Möller, A., & Rocha, B. C. ( 2019 ). Titanite petrochronology of the southern Brasília Orogen basement: Effects of retrograde net‐transfer reactions on titanite trace element compositions. Lithos, 344‐345, 393 – 408. https://doi.org/10.1016/j.lithos.2019.06.035 Engi, M. ( 2017 ). Petrochronology based on REE‐minerals: Monazite, allanite, xenotime, apatite. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 365 – 418. https://doi.org/10.2138/rmg.2017.83.12 Engi, M., Lanari, P., & Kohn, M. J. ( 2017 ). Significant ages—An introduction to petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 1 – 12. https://doi.org/10.2138/rmg.2017.83.1 Finger, F., & Krenn, E. ( 2007 ). Three metamorphic monazite generations in a high‐pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95 ( 1–2 ), 103 – 115. https://doi.org/10.1016/j.lithos.2006.06.003 Garber, J. M., Hacker, B. R., Kylander‐Clark, A. R. C., Stearns, M. A., & Seward, G. ( 2017 ). Controls on trace element uptake in metamorphic titanite: Implications for petrochronology. Journal of Petrology, 58 ( 6 ), 1031 – 1057. https://doi.org/10.1093/petrology/egx046 Hacker, B., Kylander‐Clark, A., & Holder, R. ( 2019 ). REE partitioning between monazite and garnet: Implications for petrochronology. Journal of Metamorphic Geology, 37 ( 2 ), 227 – 237. https://doi.org/10.1111/jmg.12458 Hokada, T., & Harley, S. L. ( 2004 ). Zircon growth in UHT leucosome: Constraints from zircon‐garnet rare earth elements (REE) relations in Napier complex, East Antarctica. Journal of Mineralogical and Petrological Sciences, 99 ( 4 ), 180 – 190. https://doi.org/10.2465/jmps.99.180 Holder, R., Yakymchuk, C., Viete, D. ( 2020 ). Modeled mineral Eu anomalies in suprasolidus metasediments, version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/111590 Holder, R. M., Hacker, B. R., Horton, F., & Rakotondrazafy, A. F. M. ( 2018 ). Ultrahigh‐temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long‐lived high‐ T orogen. Journal of Metamorphic Geology, 36 ( 7 ), 855 – 880. https://doi.org/10.1111/jmg.12316 Holder, R. M., Hacker, B. R., Kylander‐Clark, A. R. C., & Cottle, J. M. ( 2015 ). Monazite trace‐element and isotopic signatures of (ultra)high‐pressure metamorphism: Examples from the Western Gneiss region, Norway. Chemical Geology, 409, 99 – 111. https://doi.org/10.1016/j.chemgeo.2015.04.021 Kelly, N. M., Clarke, G. L., & Harley, S. L. ( 2006 ). Monazite behaviour and age significance in poly‐metamorphic high‐grade terrains: A case study from the western Musgrave Block, central Australia11Abbreviations: After Kretz, 1983. Lithos, 88 ( 1‐4 ), 100 – 134. https://doi.org/10.1016/j.lithos.2005.08.007 Kohn, M. J. ( 2017 ). Titanite petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 419 – 441. https://doi.org/10.2138/rmg.2017.83.13 Kohn, M. J., & Kelly, N. M. ( 2017 ). Petrology and geochronology of metamorphic zircon. Microstructural Geochronology: Planetary Records Down to Atom Scale, 35 – 61. https://doi.org/10.1002/9781119227250.ch2 Korhonen, F. J., Brown, M., Clark, C., & Bhattacharya, S. ( 2013 ). Osumilite‐melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P‐T‐t evolution of the eastern ghats province, India. Journal of Metamorphic Geology, 31 ( 8 ), 881 – 907. https://doi.org/10.1111/jmg.12049 Mottram, C. M., Warren, C. J., Regis, D., Roberts, N. M. W., Harris, N. B. W., Argles, T. W., & Parrish, R. R. ( 2014 ). Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth and Planetary Science Letters, 403, 418 – 431. https://doi.org/10.1016/j.epsl.2014.07.006 Pyle, J. M., & Spear, F. S. ( 1999 ). Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions. Geological Materials Research, 1 ( 6 ), 1 – 49. Pyle, J. M., Spear, F. S., Rudnick, R. L., & McDonough, W. F. ( 2001 ). Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. Journal of Petrology, 42 ( 11 ), 2083 – 2107. https://doi.org/10.1093/petrology/42.11.2083 IndexNoFollow petrochronology apatite U‐Pb zircon monazite Eu anomaly Geological Sciences Science Article 2020 ftumdeepblue 2025-06-04T05:59:15Z Accessory mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount of feldspar over time, allowing accessory mineral U‐Pb dates to be linked to the progressive crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. However, changes in Eu/Eu* can reflect any process that changes the relative availability of Eu2+ and Eu3+. We constructed partitioning budgets for Sm, Eu2+, Eu3+, and Gd in suprasolidus metasedimentary rocks to investigate processes that can influence accessory mineral Eu anomalies. We modeled three scenarios: (1) closed‐system, equilibrium crystallization; (2) fractionation of Eu by feldspar growth during melt crystallization; and (3) removal of Eu by melt extraction. In the closed‐system equilibrium model, accessory mineral Eu/Eu* changes as a function of fO2 and monazite stability; Eu/Eu* changes up to 0.3 over a pressure‐temperature range of 4–12 kbar and 700–950°C. Fractionation of Eu by feldspar growth is modeled to decrease accessory mineral Eu/Eu* by ~0.05–0.15 per 10 wt% feldspar crystallized. Melt extraction has a smaller effect; removal of 10% melt decreases accessory mineral Eu/Eu* in the residue by ≤0.05. Although these models demonstrate that fractionation of Eu by feldspar growth can be a dominant control on a rocks u budget, they also show that the common interpretation that Eu/Eu* only records feldspar growth and breakdown is an oversimplification that could lead to incorrect interpretation about the duration and rates of tectonic processes. Consideration of other processes that influence Eu anomalies will allow for a broader range of geological processes to be investigated by petrochronology.Plain Language SummaryMetamorphic rocks—rocks in which new minerals grew in response to increase in pressure and temperature related to deep burial or subduction—and igneous rocks—rocks that formed as magmas cool and crystallize—provide a direct record of how Earth’s continents have moved and changed through time. To read this record, ... Article in Journal/Newspaper Antarctica Journal Unknown Geochemistry, Geophysics, Geosystems 21 8
spellingShingle petrochronology
apatite
U‐Pb
zircon
monazite
Eu anomaly
Geological Sciences
Science
Holder, R. M.
Yakymchuk, C.
Viete, D. R.
Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_full Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_fullStr Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_full_unstemmed Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_short Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_sort accessory mineral eu anomalies in suprasolidus rocks: beyond feldspar
topic petrochronology
apatite
U‐Pb
zircon
monazite
Eu anomaly
Geological Sciences
Science
topic_facet petrochronology
apatite
U‐Pb
zircon
monazite
Eu anomaly
Geological Sciences
Science
url https://hdl.handle.net/2027.42/156481
https://doi.org/10.1029/2020GC009052