Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar

Accessory mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount of feldspar over time, allowing accessory mineral U‐Pb dates to be linked to the progressive crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. However, changes in Eu/...

Full description

Bibliographic Details
Published in:Geochemistry, Geophysics, Geosystems
Main Authors: Holder, R. M., Yakymchuk, C., Viete, D. R.
Format: Article in Journal/Newspaper
Language:unknown
Published: Mineralogical Society of America 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/156481
https://doi.org/10.1029/2020GC009052
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/156481
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic petrochronology
apatite
U‐Pb
zircon
monazite
Eu anomaly
Geological Sciences
Science
spellingShingle petrochronology
apatite
U‐Pb
zircon
monazite
Eu anomaly
Geological Sciences
Science
Holder, R. M.
Yakymchuk, C.
Viete, D. R.
Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
topic_facet petrochronology
apatite
U‐Pb
zircon
monazite
Eu anomaly
Geological Sciences
Science
description Accessory mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount of feldspar over time, allowing accessory mineral U‐Pb dates to be linked to the progressive crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. However, changes in Eu/Eu* can reflect any process that changes the relative availability of Eu2+ and Eu3+. We constructed partitioning budgets for Sm, Eu2+, Eu3+, and Gd in suprasolidus metasedimentary rocks to investigate processes that can influence accessory mineral Eu anomalies. We modeled three scenarios: (1) closed‐system, equilibrium crystallization; (2) fractionation of Eu by feldspar growth during melt crystallization; and (3) removal of Eu by melt extraction. In the closed‐system equilibrium model, accessory mineral Eu/Eu* changes as a function of fO2 and monazite stability; Eu/Eu* changes up to 0.3 over a pressure‐temperature range of 4–12 kbar and 700–950°C. Fractionation of Eu by feldspar growth is modeled to decrease accessory mineral Eu/Eu* by ~0.05–0.15 per 10 wt% feldspar crystallized. Melt extraction has a smaller effect; removal of 10% melt decreases accessory mineral Eu/Eu* in the residue by ≤0.05. Although these models demonstrate that fractionation of Eu by feldspar growth can be a dominant control on a rocks u budget, they also show that the common interpretation that Eu/Eu* only records feldspar growth and breakdown is an oversimplification that could lead to incorrect interpretation about the duration and rates of tectonic processes. Consideration of other processes that influence Eu anomalies will allow for a broader range of geological processes to be investigated by petrochronology.Plain Language SummaryMetamorphic rocks—rocks in which new minerals grew in response to increase in pressure and temperature related to deep burial or subduction—and igneous rocks—rocks that formed as magmas cool and crystallize—provide a direct record of how Earth’s continents have moved and changed through time. To read this record, ...
format Article in Journal/Newspaper
author Holder, R. M.
Yakymchuk, C.
Viete, D. R.
author_facet Holder, R. M.
Yakymchuk, C.
Viete, D. R.
author_sort Holder, R. M.
title Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_short Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_full Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_fullStr Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_full_unstemmed Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
title_sort accessory mineral eu anomalies in suprasolidus rocks: beyond feldspar
publisher Mineralogical Society of America
publishDate 2020
url https://hdl.handle.net/2027.42/156481
https://doi.org/10.1029/2020GC009052
genre Antarctica Journal
genre_facet Antarctica Journal
op_relation Holder, R. M.; Yakymchuk, C.; Viete, D. R. (2020). "Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar." Geochemistry, Geophysics, Geosystems 21(8): n/a-n/a.
1525-2027
https://hdl.handle.net/2027.42/156481
doi:10.1029/2020GC009052
Geochemistry, Geophysics, Geosystems
Sawyer, E. W. ( 1987 ). The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. Journal of Petrology, 28 ( 3 ), 445 – 473. https://doi.org/10.1093/petrology/28.3.445
Rubatto, D. ( 2017 ). Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 261 – 295. https://doi.org/10.2138/rmg.2017.83.10
Rubatto, D., Chakraborty, S., & Dasgupta, S. ( 2013 ). Timescales of crustal melting in the higher Himalayan crystallines (Sikkim, Eastern Himalaya) inferred from trace element‐constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165 ( 2 ), 349 – 372. https://doi.org/10.1007/s00410-012-0812-y
Rubatto, D., & Hermann, J. ( 2007 ). Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241 ( 1–2 ), 38 – 61. https://doi.org/10.1016/j.chemgeo.2007.01.027
Rubatto, D., Hermann, J., & Buick, I. S. ( 2006 ). Temperature and bulk composition control on the growth of monazite and zircon during low‐pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47 ( 10 ), 1973 – 1996. https://doi.org/10.1093/petrology/egl033
Gratz, R., & Heinrich, W. ( 1997 ). Monazite‐xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO4‐YPO4. American Mineralogist, 82 ( 7–8 ), 772 – 780. https://doi.org/10.2138/am-1997-7-816
Seydoux‐Guillaume, A.‐M., Wirth, R., Heinrich, W., & Montel, J.‐M. ( 2002 ). Experimental determination of thorium partitioning between monazite and xenotime using analytical electron microscopy and X‐ray diffraction Rietveld analysis. European Journal of Mineralogy, 14 ( 5 ), 869 – 878. https://doi.org/10.1127/0935-1221/2002/0014-0869
Shannon, R. D. ( 1976 ). Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides. Acta Crystallographica, A32, 751 – 767.
Shrestha, S., Larson, K. P., Duesterhoeft, E., Soret, M., & Cottle, J. M. ( 2019 ). Thermodynamic modelling of phosphate minerals and its implications for the development of P‐T‐t histories: A case study in garnet ‐ monazite bearing metapelites. Lithos, 334‐335, 141 – 160. https://doi.org/10.1016/j.lithos.2019.03.021
Spear, F. S. ( 2010 ). Monazite–allanite phase relations in metapelites. Chemical Geology, 279 ( 1–2 ), 55 – 62. https://doi.org/10.1016/j.chemgeo.2010.10.004
Spear, F. S., & Pyle, J. M. ( 2010 ). Theoretical modeling of monazite growth in a low‐Ca metapelite. Chemical Geology, 273 ( 1–2 ), 111 – 119. https://doi.org/10.1016/j.chemgeo.2010.02.016
Spear, F. S. ( 1993 ). Metamorphic phase equilibria and pressure‐temperature‐time paths. Monograph/Mineralogical Society of America. Washington, D.C.: Mineralogical Society of America.
Stepanov, A. S., Hermann, J., Rubatto, D., & Rapp, R. P. ( 2012 ). Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300‐301, 200 – 220. https://doi.org/10.1016/j.chemgeo.2012.01.007
Sun, C., Graff, M., & Liang, Y. ( 2017 ). Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochimica et Cosmochimica Acta, 206, 273 – 295. https://doi.org/10.1016/j.gca.2017.03.003
Taylor, R. J. M., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., & Kelly, N. M. ( 2015 ). Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high‐T crustal processes. Journal of Metamorphic Geology, 33 ( 3 ), 231 – 248. https://doi.org/10.1111/jmg.12118
Thomas, J. B., Watson, E. B., Spear, F. S., & Wark, D. A. ( 2015 ). TitaniQ recrystallized: Experimental confirmation of the original Ti‐in‐quartz calibrations. Contributions to Mineralogy and Petrology, 169 ( 3 ), 27. https://doi.org/10.1007/s00410-015-1120-0
Tomkins, H. S., Powell, R., & Ellis, D. J. ( 2007 ). The pressure dependence of the zirconium‐in‐rutile thermometer. Journal of Metamorphic Geology, 25 ( 6 ), 703 – 713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
Wark, D. A., & Watson, E. B. ( 2006 ). TitaniQ: A titanium‐in‐quartz geothermometer. Contributions to Mineralogy and Petrology, 152 ( 6 ), 743 – 754. https://doi.org/10.1007/s00410-006-0132-1
Warren, C. J., Greenwood, L. V., Argles, T. W., Roberts, N. M. W., Parrish, R. R., & Harris, N. B. W. ( 2019 ). Garnet‐monazite rare earth element relationships in sub‐solidus Metapelites: A case study from Bhutan. Geological Society Special Publication, 478 ( 1 ), 145 – 166. https://doi.org/10.1144/SP478.1
Watson, E. B., & Green, T. H. ( 1981 ). Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters, 56 ( C ), 405 – 421. https://doi.org/10.1016/0012-821X(81)90144-8
Yakymchuk, C. ( 2017 ). Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth. Lithos, 274‐275, 412 – 426. https://doi.org/10.1016/j.lithos.2017.01.009
Yakymchuk, C., & Brown, M. ( 2014 ). Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society, 171 ( 4 ), 465 – 479. https://doi.org/10.1144/jgs2013-115
Yakymchuk, C., Clark, C., & White, R. W. ( 2017 ). Phase relations, reactions sequences and petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 13 – 53. https://doi.org/10.2138/rmg.2017.83.2
Yakymchuk, C., Rehm, A., Liao, Z., & Cottle, J. M. ( 2019 ). Petrochronology of oxidized granulites from southern Peru. Journal of Metamorphic Geology, 37 ( 6 ), 839 – 862. https://doi.org/10.1111/jmg.12501
Zack, T., & Kooijman, E. ( 2017 ). Petrology and geochronology of rutile. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 443 – 467. https://doi.org/10.2138/rmg.2017.83.14
Ague, J. J. ( 1991 ). Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology, 19 ( 8 ), 855 – 858. https://doi.org/10.1130/0091-7613(1991)019<0855:EFMMTA>2.3.CO;2
Bea, F., & Montero, P. ( 1999 ). Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite formation of Ivrea‐Verbano, NW Italy. Geochimica et Cosmochimica Acta, 63 ( 7‐8 ), 1133 – 1153. https://doi.org/10.1016/S0016-7037
Bea, F., Pereira, M. D., & Stroh, A. ( 1994 ). Mineral/leucosome trace‐element partitioning in a peraluminous migmatite (a laser ablation‐ICP‐MS study). Chemical Geology, 117 ( 1‐4 ), 291 – 312. https://doi.org/10.1016/0009-2541(94)90133-3
Boger, S. D., White, R. W., & Schulte, B. ( 2012 ). The importance of iron speciation (Fe +2 /Fe +3 ) in determining mineral assemblages: An example from the high‐grade aluminous metapelites of southeastern Madagascar. Journal of Metamorphic Geology, 30 ( 9 ), 997 – 1018. https://doi.org/10.1111/jmg.12001
Brown, C. R., Yakymchuk, C., Brown, M., Fanning, C. M., Korhonen, F. J., Piccoli, P. M., & Siddoway, C. S. ( 2016 ). From source to sink: Petrogenesis of Cretaceous anatectic granites from the Fosdick migmatite‐granite complex, West Antarctica. Journal of Petrology, 57 ( 7 ), 1241 – 1278. https://doi.org/10.1093/petrology/egw039
Bucholz, C. E., & Kelemen, P. B. ( 2019 ). Oxygen fugacity at the base of the Talkeetna arc, Alaska. Contributions to Mineralogy and Petrology, 174 ( 10 ), 1, 79 – 27. https://doi.org/10.1007/s00410-019-1609-z
Buick, I. S., Hermann, J., Williams, I. S., Gibson, R. L., & Rubatto, D. ( 2006 ). A SHRIMP U–Pb and LA‐ICP‐MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the central zone of the Limpopo Belt, South Africa. Lithos, 88 ( 1–4 ), 150 – 172. https://doi.org/10.1016/j.lithos.2005.09.001
Burnham, A. D., Berry, A. J., Halse, H. R., Schofield, P. F., Cibin, G., & Mosselmans, J. F. W. ( 2015 ). The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature. Chemical Geology, 411, 248 – 259. https://doi.org/10.1016/j.chemgeo.2015.07.002
Cherniak, D. J. ( 2003 ). REE diffusion in feldspar. Chemical Geology, 193 ( 1–2 ), 25 – 41. https://doi.org/10.1016/S0009-2541(02)00246-2
Cherniak, D. J., & Watson, E. B. ( 1992 ). A study of strontium diffusion in K‐feldspar, Na‐K feldspar and anorthite using Rutherford backscattering spectroscopy. Earth and Planetary Science Letters, 113 ( 3 ), 411 – 425. https://doi.org/10.1016/0012-821X (92)90142‐I
Cherniak, D. J., & Watson, E. B. ( 1994 ). A study of strontium diffusion in plagioclase using Rutherford backscattering spectroscopy. Geochimica et Cosmochimica Acta, 58 ( 23 ), 5179 – 5190. https://doi.org/10.1016/0016-7037(94)90303-4
Cioffi, C. R., Campos Neto, M. C., Möller, A., & Rocha, B. C. ( 2019 ). Titanite petrochronology of the southern Brasília Orogen basement: Effects of retrograde net‐transfer reactions on titanite trace element compositions. Lithos, 344‐345, 393 – 408. https://doi.org/10.1016/j.lithos.2019.06.035
Condie, K. C. ( 1993 ). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104 ( 1–4 ), 1 – 37. https://doi.org/10.1016/0009-2541(93)90140-E
Connolly, J. A. D., & Cesare, B. ( 1993 ). C‐O‐H‐S fluid composition and oxygen fugacity in graphitic metapelites. Journal of Metamorphic Geology, 11 ( 3 ), 379 – 388. https://doi.org/10.1111/j.1525-1314.1993.tb00155.x
Diener, J. F. A., & Powell, R. ( 2010 ). Influence of ferric iron on the stability of mineral assemblages. Journal of Metamorphic Geology, 28 ( 6 ), 599 – 613. https://doi.org/10.1111/j.1525-1314.2010.00880.x
Engi, M. ( 2017 ). Petrochronology based on REE‐minerals: Monazite, allanite, xenotime, apatite. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 365 – 418. https://doi.org/10.2138/rmg.2017.83.12
Engi, M., Lanari, P., & Kohn, M. J. ( 2017 ). Significant ages—An introduction to petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 1 – 12. https://doi.org/10.2138/rmg.2017.83.1
Ferry, J. M., & Watson, E. B. ( 2007 ). New thermodynamic models and revised calibrations for the Ti‐in‐zircon and Zr‐in‐rutile thermometers. Contributions to Mineralogy and Petrology, 154 ( 4 ), 429 – 437. https://doi.org/10.1007/s00410-007-0201-0
Finger, F., & Krenn, E. ( 2007 ). Three metamorphic monazite generations in a high‐pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95 ( 1–2 ), 103 – 115. https://doi.org/10.1016/j.lithos.2006.06.003
Foster, G., Gibson, H. D., Parrish, R., Horstwood, M., Fraser, J., & Tindle, A. ( 2002 ). Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chemical Geology, 191 (1–3), 1–3 – 207. https://doi.org/10.1016/S0009-2541(02)00156-0, 183
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2020GC00905210.1093/petrology/28.3.44510.2138/rmg.2017.83.1010.1016/j.chemgeo.2010.10.00410.1016/j.lithos.2017.01.00910.1130/0091-7613(1991)019<0855:EFMMTA>2.3.CO;210.1016/S0009-2541(02)00246-210.1016/0009-2541(93)90140-E10.2138/rm
container_title Geochemistry, Geophysics, Geosystems
container_volume 21
container_issue 8
_version_ 1774713164361891840
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/156481 2023-08-20T04:02:37+02:00 Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar Holder, R. M. Yakymchuk, C. Viete, D. R. 2020-08 application/pdf https://hdl.handle.net/2027.42/156481 https://doi.org/10.1029/2020GC009052 unknown Mineralogical Society of America Wiley Periodicals, Inc. Holder, R. M.; Yakymchuk, C.; Viete, D. R. (2020). "Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar." Geochemistry, Geophysics, Geosystems 21(8): n/a-n/a. 1525-2027 https://hdl.handle.net/2027.42/156481 doi:10.1029/2020GC009052 Geochemistry, Geophysics, Geosystems Sawyer, E. W. ( 1987 ). The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. Journal of Petrology, 28 ( 3 ), 445 – 473. https://doi.org/10.1093/petrology/28.3.445 Rubatto, D. ( 2017 ). Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 261 – 295. https://doi.org/10.2138/rmg.2017.83.10 Rubatto, D., Chakraborty, S., & Dasgupta, S. ( 2013 ). Timescales of crustal melting in the higher Himalayan crystallines (Sikkim, Eastern Himalaya) inferred from trace element‐constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165 ( 2 ), 349 – 372. https://doi.org/10.1007/s00410-012-0812-y Rubatto, D., & Hermann, J. ( 2007 ). Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241 ( 1–2 ), 38 – 61. https://doi.org/10.1016/j.chemgeo.2007.01.027 Rubatto, D., Hermann, J., & Buick, I. S. ( 2006 ). Temperature and bulk composition control on the growth of monazite and zircon during low‐pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47 ( 10 ), 1973 – 1996. https://doi.org/10.1093/petrology/egl033 Gratz, R., & Heinrich, W. ( 1997 ). Monazite‐xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO4‐YPO4. American Mineralogist, 82 ( 7–8 ), 772 – 780. https://doi.org/10.2138/am-1997-7-816 Seydoux‐Guillaume, A.‐M., Wirth, R., Heinrich, W., & Montel, J.‐M. ( 2002 ). Experimental determination of thorium partitioning between monazite and xenotime using analytical electron microscopy and X‐ray diffraction Rietveld analysis. European Journal of Mineralogy, 14 ( 5 ), 869 – 878. https://doi.org/10.1127/0935-1221/2002/0014-0869 Shannon, R. D. ( 1976 ). Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides. Acta Crystallographica, A32, 751 – 767. Shrestha, S., Larson, K. P., Duesterhoeft, E., Soret, M., & Cottle, J. M. ( 2019 ). Thermodynamic modelling of phosphate minerals and its implications for the development of P‐T‐t histories: A case study in garnet ‐ monazite bearing metapelites. Lithos, 334‐335, 141 – 160. https://doi.org/10.1016/j.lithos.2019.03.021 Spear, F. S. ( 2010 ). Monazite–allanite phase relations in metapelites. Chemical Geology, 279 ( 1–2 ), 55 – 62. https://doi.org/10.1016/j.chemgeo.2010.10.004 Spear, F. S., & Pyle, J. M. ( 2010 ). Theoretical modeling of monazite growth in a low‐Ca metapelite. Chemical Geology, 273 ( 1–2 ), 111 – 119. https://doi.org/10.1016/j.chemgeo.2010.02.016 Spear, F. S. ( 1993 ). Metamorphic phase equilibria and pressure‐temperature‐time paths. Monograph/Mineralogical Society of America. Washington, D.C.: Mineralogical Society of America. Stepanov, A. S., Hermann, J., Rubatto, D., & Rapp, R. P. ( 2012 ). Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300‐301, 200 – 220. https://doi.org/10.1016/j.chemgeo.2012.01.007 Sun, C., Graff, M., & Liang, Y. ( 2017 ). Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochimica et Cosmochimica Acta, 206, 273 – 295. https://doi.org/10.1016/j.gca.2017.03.003 Taylor, R. J. M., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., & Kelly, N. M. ( 2015 ). Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high‐T crustal processes. Journal of Metamorphic Geology, 33 ( 3 ), 231 – 248. https://doi.org/10.1111/jmg.12118 Thomas, J. B., Watson, E. B., Spear, F. S., & Wark, D. A. ( 2015 ). TitaniQ recrystallized: Experimental confirmation of the original Ti‐in‐quartz calibrations. Contributions to Mineralogy and Petrology, 169 ( 3 ), 27. https://doi.org/10.1007/s00410-015-1120-0 Tomkins, H. S., Powell, R., & Ellis, D. J. ( 2007 ). The pressure dependence of the zirconium‐in‐rutile thermometer. Journal of Metamorphic Geology, 25 ( 6 ), 703 – 713. https://doi.org/10.1111/j.1525-1314.2007.00724.x Wark, D. A., & Watson, E. B. ( 2006 ). TitaniQ: A titanium‐in‐quartz geothermometer. Contributions to Mineralogy and Petrology, 152 ( 6 ), 743 – 754. https://doi.org/10.1007/s00410-006-0132-1 Warren, C. J., Greenwood, L. V., Argles, T. W., Roberts, N. M. W., Parrish, R. R., & Harris, N. B. W. ( 2019 ). Garnet‐monazite rare earth element relationships in sub‐solidus Metapelites: A case study from Bhutan. Geological Society Special Publication, 478 ( 1 ), 145 – 166. https://doi.org/10.1144/SP478.1 Watson, E. B., & Green, T. H. ( 1981 ). Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters, 56 ( C ), 405 – 421. https://doi.org/10.1016/0012-821X(81)90144-8 Yakymchuk, C. ( 2017 ). Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth. Lithos, 274‐275, 412 – 426. https://doi.org/10.1016/j.lithos.2017.01.009 Yakymchuk, C., & Brown, M. ( 2014 ). Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society, 171 ( 4 ), 465 – 479. https://doi.org/10.1144/jgs2013-115 Yakymchuk, C., Clark, C., & White, R. W. ( 2017 ). Phase relations, reactions sequences and petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 13 – 53. https://doi.org/10.2138/rmg.2017.83.2 Yakymchuk, C., Rehm, A., Liao, Z., & Cottle, J. M. ( 2019 ). Petrochronology of oxidized granulites from southern Peru. Journal of Metamorphic Geology, 37 ( 6 ), 839 – 862. https://doi.org/10.1111/jmg.12501 Zack, T., & Kooijman, E. ( 2017 ). Petrology and geochronology of rutile. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 443 – 467. https://doi.org/10.2138/rmg.2017.83.14 Ague, J. J. ( 1991 ). Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology, 19 ( 8 ), 855 – 858. https://doi.org/10.1130/0091-7613(1991)019<0855:EFMMTA>2.3.CO;2 Bea, F., & Montero, P. ( 1999 ). Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite formation of Ivrea‐Verbano, NW Italy. Geochimica et Cosmochimica Acta, 63 ( 7‐8 ), 1133 – 1153. https://doi.org/10.1016/S0016-7037 Bea, F., Pereira, M. D., & Stroh, A. ( 1994 ). Mineral/leucosome trace‐element partitioning in a peraluminous migmatite (a laser ablation‐ICP‐MS study). Chemical Geology, 117 ( 1‐4 ), 291 – 312. https://doi.org/10.1016/0009-2541(94)90133-3 Boger, S. D., White, R. W., & Schulte, B. ( 2012 ). The importance of iron speciation (Fe +2 /Fe +3 ) in determining mineral assemblages: An example from the high‐grade aluminous metapelites of southeastern Madagascar. Journal of Metamorphic Geology, 30 ( 9 ), 997 – 1018. https://doi.org/10.1111/jmg.12001 Brown, C. R., Yakymchuk, C., Brown, M., Fanning, C. M., Korhonen, F. J., Piccoli, P. M., & Siddoway, C. S. ( 2016 ). From source to sink: Petrogenesis of Cretaceous anatectic granites from the Fosdick migmatite‐granite complex, West Antarctica. Journal of Petrology, 57 ( 7 ), 1241 – 1278. https://doi.org/10.1093/petrology/egw039 Bucholz, C. E., & Kelemen, P. B. ( 2019 ). Oxygen fugacity at the base of the Talkeetna arc, Alaska. Contributions to Mineralogy and Petrology, 174 ( 10 ), 1, 79 – 27. https://doi.org/10.1007/s00410-019-1609-z Buick, I. S., Hermann, J., Williams, I. S., Gibson, R. L., & Rubatto, D. ( 2006 ). A SHRIMP U–Pb and LA‐ICP‐MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the central zone of the Limpopo Belt, South Africa. Lithos, 88 ( 1–4 ), 150 – 172. https://doi.org/10.1016/j.lithos.2005.09.001 Burnham, A. D., Berry, A. J., Halse, H. R., Schofield, P. F., Cibin, G., & Mosselmans, J. F. W. ( 2015 ). The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature. Chemical Geology, 411, 248 – 259. https://doi.org/10.1016/j.chemgeo.2015.07.002 Cherniak, D. J. ( 2003 ). REE diffusion in feldspar. Chemical Geology, 193 ( 1–2 ), 25 – 41. https://doi.org/10.1016/S0009-2541(02)00246-2 Cherniak, D. J., & Watson, E. B. ( 1992 ). A study of strontium diffusion in K‐feldspar, Na‐K feldspar and anorthite using Rutherford backscattering spectroscopy. Earth and Planetary Science Letters, 113 ( 3 ), 411 – 425. https://doi.org/10.1016/0012-821X (92)90142‐I Cherniak, D. J., & Watson, E. B. ( 1994 ). A study of strontium diffusion in plagioclase using Rutherford backscattering spectroscopy. Geochimica et Cosmochimica Acta, 58 ( 23 ), 5179 – 5190. https://doi.org/10.1016/0016-7037(94)90303-4 Cioffi, C. R., Campos Neto, M. C., Möller, A., & Rocha, B. C. ( 2019 ). Titanite petrochronology of the southern Brasília Orogen basement: Effects of retrograde net‐transfer reactions on titanite trace element compositions. Lithos, 344‐345, 393 – 408. https://doi.org/10.1016/j.lithos.2019.06.035 Condie, K. C. ( 1993 ). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104 ( 1–4 ), 1 – 37. https://doi.org/10.1016/0009-2541(93)90140-E Connolly, J. A. D., & Cesare, B. ( 1993 ). C‐O‐H‐S fluid composition and oxygen fugacity in graphitic metapelites. Journal of Metamorphic Geology, 11 ( 3 ), 379 – 388. https://doi.org/10.1111/j.1525-1314.1993.tb00155.x Diener, J. F. A., & Powell, R. ( 2010 ). Influence of ferric iron on the stability of mineral assemblages. Journal of Metamorphic Geology, 28 ( 6 ), 599 – 613. https://doi.org/10.1111/j.1525-1314.2010.00880.x Engi, M. ( 2017 ). Petrochronology based on REE‐minerals: Monazite, allanite, xenotime, apatite. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 365 – 418. https://doi.org/10.2138/rmg.2017.83.12 Engi, M., Lanari, P., & Kohn, M. J. ( 2017 ). Significant ages—An introduction to petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 1 – 12. https://doi.org/10.2138/rmg.2017.83.1 Ferry, J. M., & Watson, E. B. ( 2007 ). New thermodynamic models and revised calibrations for the Ti‐in‐zircon and Zr‐in‐rutile thermometers. Contributions to Mineralogy and Petrology, 154 ( 4 ), 429 – 437. https://doi.org/10.1007/s00410-007-0201-0 Finger, F., & Krenn, E. ( 2007 ). Three metamorphic monazite generations in a high‐pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95 ( 1–2 ), 103 – 115. https://doi.org/10.1016/j.lithos.2006.06.003 Foster, G., Gibson, H. D., Parrish, R., Horstwood, M., Fraser, J., & Tindle, A. ( 2002 ). Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chemical Geology, 191 (1–3), 1–3 – 207. https://doi.org/10.1016/S0009-2541(02)00156-0, 183 IndexNoFollow petrochronology apatite U‐Pb zircon monazite Eu anomaly Geological Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1029/2020GC00905210.1093/petrology/28.3.44510.2138/rmg.2017.83.1010.1016/j.chemgeo.2010.10.00410.1016/j.lithos.2017.01.00910.1130/0091-7613(1991)019<0855:EFMMTA>2.3.CO;210.1016/S0009-2541(02)00246-210.1016/0009-2541(93)90140-E10.2138/rm 2023-07-31T20:50:52Z Accessory mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount of feldspar over time, allowing accessory mineral U‐Pb dates to be linked to the progressive crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. However, changes in Eu/Eu* can reflect any process that changes the relative availability of Eu2+ and Eu3+. We constructed partitioning budgets for Sm, Eu2+, Eu3+, and Gd in suprasolidus metasedimentary rocks to investigate processes that can influence accessory mineral Eu anomalies. We modeled three scenarios: (1) closed‐system, equilibrium crystallization; (2) fractionation of Eu by feldspar growth during melt crystallization; and (3) removal of Eu by melt extraction. In the closed‐system equilibrium model, accessory mineral Eu/Eu* changes as a function of fO2 and monazite stability; Eu/Eu* changes up to 0.3 over a pressure‐temperature range of 4–12 kbar and 700–950°C. Fractionation of Eu by feldspar growth is modeled to decrease accessory mineral Eu/Eu* by ~0.05–0.15 per 10 wt% feldspar crystallized. Melt extraction has a smaller effect; removal of 10% melt decreases accessory mineral Eu/Eu* in the residue by ≤0.05. Although these models demonstrate that fractionation of Eu by feldspar growth can be a dominant control on a rocks u budget, they also show that the common interpretation that Eu/Eu* only records feldspar growth and breakdown is an oversimplification that could lead to incorrect interpretation about the duration and rates of tectonic processes. Consideration of other processes that influence Eu anomalies will allow for a broader range of geological processes to be investigated by petrochronology.Plain Language SummaryMetamorphic rocks—rocks in which new minerals grew in response to increase in pressure and temperature related to deep burial or subduction—and igneous rocks—rocks that formed as magmas cool and crystallize—provide a direct record of how Earth’s continents have moved and changed through time. To read this record, ... Article in Journal/Newspaper Antarctica Journal University of Michigan: Deep Blue Geochemistry, Geophysics, Geosystems 21 8