Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs

Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically induced currents (GICs) have used data from the Northern Hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx| > 900...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Engebretson, Mark J., Kirkevold, Kathryn R., Steinmetz, Erik S., Pilipenko, Viacheslav A., Moldwin, Mark B., McCuen, Brett A., Clauer, C. R., Hartinger, Michael D., Coyle, Shane, Opgenoorth, Hermann, Schillings, Audrey, Willer, Anna N., Edwards, Thom R., Boteler, David H., Gerrard, Andy J., Freeman, Mervyn P., Rose, Michael C.
Format: Article in Journal/Newspaper
Language:unknown
Published: ESA Publications 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/156443
https://doi.org/10.1029/2020JA028128
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/156443
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic magnetic conjugacy
geomagnetically induced currents
magnetic perturbation events
substorms
magnetic storms
omega bands
Astronomy and Astrophysics
Science
spellingShingle magnetic conjugacy
geomagnetically induced currents
magnetic perturbation events
substorms
magnetic storms
omega bands
Astronomy and Astrophysics
Science
Engebretson, Mark J.
Kirkevold, Kathryn R.
Steinmetz, Erik S.
Pilipenko, Viacheslav A.
Moldwin, Mark B.
McCuen, Brett A.
Clauer, C. R.
Hartinger, Michael D.
Coyle, Shane
Opgenoorth, Hermann
Schillings, Audrey
Willer, Anna N.
Edwards, Thom R.
Boteler, David H.
Gerrard, Andy J.
Freeman, Mervyn P.
Rose, Michael C.
Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs
topic_facet magnetic conjugacy
geomagnetically induced currents
magnetic perturbation events
substorms
magnetic storms
omega bands
Astronomy and Astrophysics
Science
description Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically induced currents (GICs) have used data from the Northern Hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx| > 900 nT and |dB/dt| > 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high‐latitude regions (65–80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL‐PIP and BAS LPM. From one to three different isolated MPEs localized in corrected geomagnetic latitude were observed during three premidnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended postmidnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative interplanetary magnetic field Bz that exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductances in conjugate hemispheres clearly favored a current generator model over a voltage generator model for three of the four events; neither model provided a good fit for the premidnight event that occurred near vernal equinox.Key PointsConjugate premidnight MPEs were largest in dBx/dt and were often but not always simultaneous to within 3 min over ~100–700 km in latitudeConjugate postmidnight MPEs were associated with omega bands, often largest in dBy/dt, very localized, and independent in time over ~1.5 hrPerturbation amplitudes and maximum derivatives ...
format Article in Journal/Newspaper
author Engebretson, Mark J.
Kirkevold, Kathryn R.
Steinmetz, Erik S.
Pilipenko, Viacheslav A.
Moldwin, Mark B.
McCuen, Brett A.
Clauer, C. R.
Hartinger, Michael D.
Coyle, Shane
Opgenoorth, Hermann
Schillings, Audrey
Willer, Anna N.
Edwards, Thom R.
Boteler, David H.
Gerrard, Andy J.
Freeman, Mervyn P.
Rose, Michael C.
author_facet Engebretson, Mark J.
Kirkevold, Kathryn R.
Steinmetz, Erik S.
Pilipenko, Viacheslav A.
Moldwin, Mark B.
McCuen, Brett A.
Clauer, C. R.
Hartinger, Michael D.
Coyle, Shane
Opgenoorth, Hermann
Schillings, Audrey
Willer, Anna N.
Edwards, Thom R.
Boteler, David H.
Gerrard, Andy J.
Freeman, Mervyn P.
Rose, Michael C.
author_sort Engebretson, Mark J.
title Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs
title_short Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs
title_full Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs
title_fullStr Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs
title_full_unstemmed Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs
title_sort interhemispheric comparisons of large nighttime magnetic perturbation events relevant to gics
publisher ESA Publications
publishDate 2020
url https://hdl.handle.net/2027.42/156443
https://doi.org/10.1029/2020JA028128
long_lat ENVELOPE(-65.707,-65.707,66.145,66.145)
geographic Arctic
Canada
Greenland
South Pole
Pangnirtung
geographic_facet Arctic
Canada
Greenland
South Pole
Pangnirtung
genre Antarc*
Antarctica
Arctic
Arctic
Greenland
Iqaluit
Polar Science
Polar Science
South pole
South pole
genre_facet Antarc*
Antarctica
Arctic
Arctic
Greenland
Iqaluit
Polar Science
Polar Science
South pole
South pole
op_relation Engebretson, Mark J.; Kirkevold, Kathryn R.; Steinmetz, Erik S.; Pilipenko, Viacheslav A.; Moldwin, Mark B.; McCuen, Brett A.; Clauer, C. R.; Hartinger, Michael D.; Coyle, Shane; Opgenoorth, Hermann; Schillings, Audrey; Willer, Anna N.; Edwards, Thom R.; Boteler, David H.; Gerrard, Andy J.; Freeman, Mervyn P.; Rose, Michael C. (2020). "Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs." Journal of Geophysical Research: Space Physics 125(8): n/a-n/a.
2169-9380
2169-9402
https://hdl.handle.net/2027.42/156443
doi:10.1029/2020JA028128
Journal of Geophysical Research: Space Physics
Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386
Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., Boteler, D. H., Mann, I. R., Hartinger, M. D., Weygand, J. M., Lyons, L. R., Nishimura, Y., Singer, H. J., Ohtani, S., Russell, C. T., Fazakerley, A., & Kistler, L. M. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐instrument observations. Journal of Geophysical Research: Space Physics, 124, 7459 – 7476. https://doi.org/10.1029/2019JA026797
Gabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. ( 2014 ). Statistical characteristics of particle injections throughout the equatorial magnetotail. Journal of Geophysical Research: Space Physics, 119, 2512 – 2535. https://doi.org/10.1002/2013JA019638
Henderson, M. G., Reeves, G. D., & Murphree, J. S. ( 1998 ). Are north‐south aligned auroral structures an ionospheric manifestation of bursty bulk flows? Geophysical Research Letters, 25, 3737 – 3740. https://doi.org/10.1029/98GL02692
Kadokura, A., Yamagishi, H., Sato, N., Nakano, K., & Rose, M. C. ( 2008 ). Unmanned magnetometer network observation in the 44th Japanese Antarctic Research Expedition: Initial results and an event study on auroral substorm evolution. Polar Science, 2, 223 – 235. https://doi.org/10.1016/j.polar.2008.04.002
Kauristie, K., Sergeev, V. A., Kubyshkina, M., Pulkkinen, T. I., Angelopoulos, V., Phan, T., Lin, R. P., & Slavin, J. A. ( 2000 ). Ionospheric current signatures of transient plasma sheet flows. Journal of Geophysical Research, 105, 10,677 – 10,690. https://doi.org/10.1029/1999JA900487
Kim, H., Cai, X., Clauer, C. R., Kunduri, B. S. R., Matzka, J., Stolle, C., & Weimer, D. R. ( 2013 ). Geomagnetic response to solar wind dynamic pressure impulse events at high‐latitude conjugate points. Journal of Geophysical Rearch: Space Physics, 118, 6055 – 6071. https://doi.org/10.1002/jgra.50555
Kozyreva, O. V., Pilipenko, V. A., Belakhovsky, V. B., & Sakharov, Y. A. ( 2018 ). Ground geomagnetic field and GIC response to March 17, 2015 storm. Earth, Planets and Space, 70, 157. https://doi.org/10.1186/s40623-018-0933-2
Lanzerotti, L. J., Wolfe, A., Trivedi, N., Maclennan, C. G., & Medford, L. V. ( 1990 ). Magnetic impulse events at high latitudes: Magnetopause and boundary layer plasma processes. Journal of Geophysical Research, 95, 97 – 107. https://doi.org/10.1029/JA095iA01p00097
Liou, K., Sotirelis, T., & Mitchell, E. J. ( 2018 ). North‐south asymmetry in the geographic location of auroral substorms correlated with ionospheric effects. Scientific Reports, 8, 17230. https://doi.org/10.1038/s41598-018-35091-2
Liu, J., Angelopoulos, V., Zhou, X.‐Z., & Runov, A. ( 2014 ). Magnetic flux transport by dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 119, 909 – 926. https://doi.org/10.1002/2013JA019395
Liu, J., Lyons, L. R., Archer, W. E., Gallardo‐Lacourt, B., Nishimura, Y., Zou, Y., Gabrielse, C., & Weygand, J. M. ( 2018 ). Flow shears at the poleward boundary of omega bands observed during conjunctions of Swarm and THEMIS ASI. Geophysical Research Letters, 45, 1218 – 1227. https://doi.org/10.1002/2017GL076485
Lyons, L. R., Nishimura, Y., Xing, X., Runov, A., Angelopoulos, V., Donovan, E., & Kikuchi, T. ( 2012 ). Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere. Journal of Geophysical Research, 117, A02212. https://doi.org/10.1029/2011JA017265
Lysak, R. L. ( 1990 ). Electrodynamic coupling of the magnetosphere and ionosphere. Space Science Reviews, 52, 33 – 87. https://doi.org/10.1007/BF00704239
Newell, P. T., & Gjerloev, J. W. ( 2011a ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779
Newell, P. T., & Gjerloev, J. W. ( 2011b ). Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. Journal of Geophysical Research, 116, A12232. https://doi.org/10.1029/2011JA016936
Newell, P. T., Liou, K., Zhang, Y., Sotirelis, T., Paxton, L. J., & Mitchell, E. J. ( 2014 ). OVATION Prime‐2013: Extension of auroral precipitation model to higher disturbance levels. Space Weather, 12, 368 – 379. https://doi.org/10.1002/2014SW001056
Newell, P. T., Sotirelis, T., & Wing, S. ( 2009 ). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research, 114, A09207. https://doi.org/10.1029/2009JA014326
Newell, P. T., Sotirelis, T., & Wing, S. ( 2010 ). Seasonal variations in diffuse, monoenergetic, and broadband aurora. Journal of Geophysical Research, 115, A03216. https://doi.org/10.1029/2009JA014805
Ngwira, C. M., & Pulkkinen, A. A. ( 2019 ). An introduction to geomagnetically induced currents (2019). In J. L. Gannon, A. Swidinsky, & Z. Xu (Eds.), Geomagnetically induced currents from the Sun to the power grid, Geophysical Monograph Series, 244 (pp. 3 – 14 ). Washington, D.C.: American Geophysical Union. https://doi.org/10.1002/9781119434412.ch1
Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061
Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local dB / dt variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911
Opgenoorth, H. J., Oksman, J., Kaila, K. U., Nielsen, E., & Baumjohann, W. ( 1983 ). Characteristics of eastward drifting omega bands in the morning sector of the auroral oval. Journal of Geophysical Research, 88, 9171 – 9185. https://doi.org/10.1029/JA088iA11p09171
Palin, L., Jacquey, C., Opgenoorth, H., Connors, M., Sergeev, V., Sauvaud, J.‐A., Nakamura, R., Reeves, G. D., Singer, H. J., Angelopoulos, V., & Turc, L. ( 2015 ). Three‐dimensional current systems and ionospheric effects associated with small dipolarization fronts. Journal of Geophysical Research: Space Physics, 120, 3739 – 3757. https://doi.org/10.1002/2015JA021040
Partamies, N., Weygand, J. M., & Juusola, L. ( 2017 ). Statistical study of auroral omega bands. Annales Geophysicae, 35, 1069 – 1083. https://doi.org/10.5194/angeo-35-1069-2017
Paxton, L. J., Meng, C.‐I., Fountain, G. H., Ogorzalek, B. S., Darlington, E. H., Goldstein, J., & Peacock, K. ( 1993 ). " SSUSI—Horizon‐to‐horizon and limb‐viewing spectrographic imager for remote sensing of environmental parameters ", Proc. SPIE 1764, Ultraviolet Technology IV, 161 (January 22, 1993). https://doi.org/10.1117/12.140846
Pilipenko, V. A., Fedorov, E. N., Hartinger, M. D., & Engebretson, M. J. ( 2019 ). Electromagnetic fields of magnetospheric ULF disturbances in the ionosphere: Current/voltage dichotomy. Journal of Geophysical Research: Space Physics, 124, 109 – 121. https://doi.org/10.1029/2018JA026030
Pulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A., & Ngwira, C. ( 2015 ). Regional‐scale high‐latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth, Planets, and Space, 67, 93. https://doi.org/10.1186/s40623-015-0255-6
Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. ( 1987 ). On calculating ionospheric conductances from the flux and energy of precipitating electrons. Journal of Geophysical Research, 92, 2565 – 2569. https://doi.org/10.1029/JA092iA03p02565
Sato, N., Yukimatu, A. S., Tanaka, Y., & Hori, T. ( 2017 ). Morphologies of omega band auroras. Earth, Planets and Space, 69, 103. https://doi.org/10.1186/s40623-017-0688-1
Sergeev, V. A., Liou, K., Meng, C.‐I., Newell, P. T., Brittnacher, M., Parks, G., & Reeves, G. D. ( 1999 ). Development of auroral streamers in association with localized impulsive injections to the inner magnetotail. Geophysical Research Letters, 26, 417 – 420. https://doi.org/10.1029/1998GL900311
Solovyev, S. I., Baishev, D. G., Barkova, E. S., Engebretson, M. J., Posch, J. L., Hughes, W. J., Yumoto, K., & Pilipenko, V. A. ( 1999 ). Structure of disturbances in the dayside and nightside ionosphere during periods of negative interplanetary magnetic field B z. Journal of Geophysical Research, 104, 28,019 – 28,039. https://doi.org/10.1029/1999JA900286
Sotirelis, T., Korth, H., Hsieh, S.‐Y., Zhang, Y., Morrison, D., & Paxton, L. ( 2013 ). Empirical relationship between electron precipitation and far‐ultraviolet auroral emissions from DMSP observations. Journal of Geophysical Research: Space Physics, 118, 1203 – 1209. https://doi.org/10.1002/jgra.50157
Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538
Viljanen, A., Nevanlinna, H., Pajunpää, K., & Pulkkinen, A. ( 2001 ). Time derivative of the horizontal geomagnetic field as an activity indicator. Annales Geophysicae, 19 ( 9 ), 1107 – 1118. https://doi.org/10.5194/angeo-19-1107-2001
Viljanen, A., & Tanskanen, E. ( 2011 ). Climatology of rapid geomagnetic variations at high latitudes over two solar cycles. Annales Geophysicae, 29, 1783 – 1792. https://doi.org/10.5194/angeo-29-1783-2011
Viljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24, 725 – 733. https://doi.org/10.5194/angeo-24-725-2006
Weygand, J. M., Kivelson, M. G., Frey, H. U., Rodriguez, J. V., Angelopoulos, V., Redmon, R., & Amm, O. ( 2015 ). An interpretation of spacecraft and ground based observations of multiple omega band events. Journal of Atmospheric and Solar‐Terrestrial Physics, 133, 185 – 204. https://doi.org/10.1016/j.jastp.2015.08.014
Zesta, E., Lyons, L., Wang, C.‐P., Donovan, E., Frey, H., & Nagai, T. ( 2006 ). Auroral poleward boundary intensifications (PBIs): Their two‐dimensional structure and associated dynamics in the plasma sheet. Journal of Geophysical Research, 111, A05201. https://doi.org/10.1029/2004JA010640
Zesta, E., Lyons, L., & Donovan, E. ( 2000 ). The auroral signature of earthward flow bursts observed in the magnetotail. Geophysical Research Letters, 27, 3241 – 3244. https://doi.org/10.1029/2000GL000027
Akasofu, S.‐I. ( 1974 ). A study of auroral displays photographed from the DMSP‐2 satellite and from the Alaska meridian chain of stations. Space Science Reviews, 16, 617 – 725. ISSN: 0038‐6308
Akasofu, S.‐I., & Kimball, D. S. ( 1964 ). The dynamics of the aurora, 1, Instabilities of the aurora. Journal of Atmospheric and Terrestrial Physics, 26, 205 – 211. https://doi.org/10.1016/0021-9169(64)90147-3
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Luehr, H., & Paschmann, G. ( 1992 ). Bursty bulk flows in the inner central plasma sheet. Journal of Geophysical Research, 97, 4027 – 4039. https://doi.org/10.1029/91JA02701
Apatenkov, S. V., Pilipenko, V. A., Gordeev, E. I., Viljanen, A., Juusola, L., Belakhovsky, V. B., Sakharov, Y. A., & Selivanov, V. N. ( 2020 ). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47, e2019GL086677. https://doi.org/10.1029/2019GL086677
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2020JA02812810.1007/BF0070423910.1029/97GL00538
container_title Journal of Geophysical Research: Space Physics
container_volume 125
container_issue 8
_version_ 1774712288470630400
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/156443 2023-08-20T04:01:54+02:00 Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs Engebretson, Mark J. Kirkevold, Kathryn R. Steinmetz, Erik S. Pilipenko, Viacheslav A. Moldwin, Mark B. McCuen, Brett A. Clauer, C. R. Hartinger, Michael D. Coyle, Shane Opgenoorth, Hermann Schillings, Audrey Willer, Anna N. Edwards, Thom R. Boteler, David H. Gerrard, Andy J. Freeman, Mervyn P. Rose, Michael C. 2020-08 application/pdf https://hdl.handle.net/2027.42/156443 https://doi.org/10.1029/2020JA028128 unknown ESA Publications Wiley Periodicals, Inc. Engebretson, Mark J.; Kirkevold, Kathryn R.; Steinmetz, Erik S.; Pilipenko, Viacheslav A.; Moldwin, Mark B.; McCuen, Brett A.; Clauer, C. R.; Hartinger, Michael D.; Coyle, Shane; Opgenoorth, Hermann; Schillings, Audrey; Willer, Anna N.; Edwards, Thom R.; Boteler, David H.; Gerrard, Andy J.; Freeman, Mervyn P.; Rose, Michael C. (2020). "Interhemispheric Comparisons of Large Nighttime Magnetic Perturbation Events Relevant to GICs." Journal of Geophysical Research: Space Physics 125(8): n/a-n/a. 2169-9380 2169-9402 https://hdl.handle.net/2027.42/156443 doi:10.1029/2020JA028128 Journal of Geophysical Research: Space Physics Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386 Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., Boteler, D. H., Mann, I. R., Hartinger, M. D., Weygand, J. M., Lyons, L. R., Nishimura, Y., Singer, H. J., Ohtani, S., Russell, C. T., Fazakerley, A., & Kistler, L. M. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐instrument observations. Journal of Geophysical Research: Space Physics, 124, 7459 – 7476. https://doi.org/10.1029/2019JA026797 Gabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. ( 2014 ). Statistical characteristics of particle injections throughout the equatorial magnetotail. Journal of Geophysical Research: Space Physics, 119, 2512 – 2535. https://doi.org/10.1002/2013JA019638 Henderson, M. G., Reeves, G. D., & Murphree, J. S. ( 1998 ). Are north‐south aligned auroral structures an ionospheric manifestation of bursty bulk flows? Geophysical Research Letters, 25, 3737 – 3740. https://doi.org/10.1029/98GL02692 Kadokura, A., Yamagishi, H., Sato, N., Nakano, K., & Rose, M. C. ( 2008 ). Unmanned magnetometer network observation in the 44th Japanese Antarctic Research Expedition: Initial results and an event study on auroral substorm evolution. Polar Science, 2, 223 – 235. https://doi.org/10.1016/j.polar.2008.04.002 Kauristie, K., Sergeev, V. A., Kubyshkina, M., Pulkkinen, T. I., Angelopoulos, V., Phan, T., Lin, R. P., & Slavin, J. A. ( 2000 ). Ionospheric current signatures of transient plasma sheet flows. Journal of Geophysical Research, 105, 10,677 – 10,690. https://doi.org/10.1029/1999JA900487 Kim, H., Cai, X., Clauer, C. R., Kunduri, B. S. R., Matzka, J., Stolle, C., & Weimer, D. R. ( 2013 ). Geomagnetic response to solar wind dynamic pressure impulse events at high‐latitude conjugate points. Journal of Geophysical Rearch: Space Physics, 118, 6055 – 6071. https://doi.org/10.1002/jgra.50555 Kozyreva, O. V., Pilipenko, V. A., Belakhovsky, V. B., & Sakharov, Y. A. ( 2018 ). Ground geomagnetic field and GIC response to March 17, 2015 storm. Earth, Planets and Space, 70, 157. https://doi.org/10.1186/s40623-018-0933-2 Lanzerotti, L. J., Wolfe, A., Trivedi, N., Maclennan, C. G., & Medford, L. V. ( 1990 ). Magnetic impulse events at high latitudes: Magnetopause and boundary layer plasma processes. Journal of Geophysical Research, 95, 97 – 107. https://doi.org/10.1029/JA095iA01p00097 Liou, K., Sotirelis, T., & Mitchell, E. J. ( 2018 ). North‐south asymmetry in the geographic location of auroral substorms correlated with ionospheric effects. Scientific Reports, 8, 17230. https://doi.org/10.1038/s41598-018-35091-2 Liu, J., Angelopoulos, V., Zhou, X.‐Z., & Runov, A. ( 2014 ). Magnetic flux transport by dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 119, 909 – 926. https://doi.org/10.1002/2013JA019395 Liu, J., Lyons, L. R., Archer, W. E., Gallardo‐Lacourt, B., Nishimura, Y., Zou, Y., Gabrielse, C., & Weygand, J. M. ( 2018 ). Flow shears at the poleward boundary of omega bands observed during conjunctions of Swarm and THEMIS ASI. Geophysical Research Letters, 45, 1218 – 1227. https://doi.org/10.1002/2017GL076485 Lyons, L. R., Nishimura, Y., Xing, X., Runov, A., Angelopoulos, V., Donovan, E., & Kikuchi, T. ( 2012 ). Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere. Journal of Geophysical Research, 117, A02212. https://doi.org/10.1029/2011JA017265 Lysak, R. L. ( 1990 ). Electrodynamic coupling of the magnetosphere and ionosphere. Space Science Reviews, 52, 33 – 87. https://doi.org/10.1007/BF00704239 Newell, P. T., & Gjerloev, J. W. ( 2011a ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779 Newell, P. T., & Gjerloev, J. W. ( 2011b ). Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. Journal of Geophysical Research, 116, A12232. https://doi.org/10.1029/2011JA016936 Newell, P. T., Liou, K., Zhang, Y., Sotirelis, T., Paxton, L. J., & Mitchell, E. J. ( 2014 ). OVATION Prime‐2013: Extension of auroral precipitation model to higher disturbance levels. Space Weather, 12, 368 – 379. https://doi.org/10.1002/2014SW001056 Newell, P. T., Sotirelis, T., & Wing, S. ( 2009 ). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research, 114, A09207. https://doi.org/10.1029/2009JA014326 Newell, P. T., Sotirelis, T., & Wing, S. ( 2010 ). Seasonal variations in diffuse, monoenergetic, and broadband aurora. Journal of Geophysical Research, 115, A03216. https://doi.org/10.1029/2009JA014805 Ngwira, C. M., & Pulkkinen, A. A. ( 2019 ). An introduction to geomagnetically induced currents (2019). In J. L. Gannon, A. Swidinsky, & Z. Xu (Eds.), Geomagnetically induced currents from the Sun to the power grid, Geophysical Monograph Series, 244 (pp. 3 – 14 ). Washington, D.C.: American Geophysical Union. https://doi.org/10.1002/9781119434412.ch1 Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061 Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local dB / dt variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911 Opgenoorth, H. J., Oksman, J., Kaila, K. U., Nielsen, E., & Baumjohann, W. ( 1983 ). Characteristics of eastward drifting omega bands in the morning sector of the auroral oval. Journal of Geophysical Research, 88, 9171 – 9185. https://doi.org/10.1029/JA088iA11p09171 Palin, L., Jacquey, C., Opgenoorth, H., Connors, M., Sergeev, V., Sauvaud, J.‐A., Nakamura, R., Reeves, G. D., Singer, H. J., Angelopoulos, V., & Turc, L. ( 2015 ). Three‐dimensional current systems and ionospheric effects associated with small dipolarization fronts. Journal of Geophysical Research: Space Physics, 120, 3739 – 3757. https://doi.org/10.1002/2015JA021040 Partamies, N., Weygand, J. M., & Juusola, L. ( 2017 ). Statistical study of auroral omega bands. Annales Geophysicae, 35, 1069 – 1083. https://doi.org/10.5194/angeo-35-1069-2017 Paxton, L. J., Meng, C.‐I., Fountain, G. H., Ogorzalek, B. S., Darlington, E. H., Goldstein, J., & Peacock, K. ( 1993 ). " SSUSI—Horizon‐to‐horizon and limb‐viewing spectrographic imager for remote sensing of environmental parameters ", Proc. SPIE 1764, Ultraviolet Technology IV, 161 (January 22, 1993). https://doi.org/10.1117/12.140846 Pilipenko, V. A., Fedorov, E. N., Hartinger, M. D., & Engebretson, M. J. ( 2019 ). Electromagnetic fields of magnetospheric ULF disturbances in the ionosphere: Current/voltage dichotomy. Journal of Geophysical Research: Space Physics, 124, 109 – 121. https://doi.org/10.1029/2018JA026030 Pulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A., & Ngwira, C. ( 2015 ). Regional‐scale high‐latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth, Planets, and Space, 67, 93. https://doi.org/10.1186/s40623-015-0255-6 Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. ( 1987 ). On calculating ionospheric conductances from the flux and energy of precipitating electrons. Journal of Geophysical Research, 92, 2565 – 2569. https://doi.org/10.1029/JA092iA03p02565 Sato, N., Yukimatu, A. S., Tanaka, Y., & Hori, T. ( 2017 ). Morphologies of omega band auroras. Earth, Planets and Space, 69, 103. https://doi.org/10.1186/s40623-017-0688-1 Sergeev, V. A., Liou, K., Meng, C.‐I., Newell, P. T., Brittnacher, M., Parks, G., & Reeves, G. D. ( 1999 ). Development of auroral streamers in association with localized impulsive injections to the inner magnetotail. Geophysical Research Letters, 26, 417 – 420. https://doi.org/10.1029/1998GL900311 Solovyev, S. I., Baishev, D. G., Barkova, E. S., Engebretson, M. J., Posch, J. L., Hughes, W. J., Yumoto, K., & Pilipenko, V. A. ( 1999 ). Structure of disturbances in the dayside and nightside ionosphere during periods of negative interplanetary magnetic field B z. Journal of Geophysical Research, 104, 28,019 – 28,039. https://doi.org/10.1029/1999JA900286 Sotirelis, T., Korth, H., Hsieh, S.‐Y., Zhang, Y., Morrison, D., & Paxton, L. ( 2013 ). Empirical relationship between electron precipitation and far‐ultraviolet auroral emissions from DMSP observations. Journal of Geophysical Research: Space Physics, 118, 1203 – 1209. https://doi.org/10.1002/jgra.50157 Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538 Viljanen, A., Nevanlinna, H., Pajunpää, K., & Pulkkinen, A. ( 2001 ). Time derivative of the horizontal geomagnetic field as an activity indicator. Annales Geophysicae, 19 ( 9 ), 1107 – 1118. https://doi.org/10.5194/angeo-19-1107-2001 Viljanen, A., & Tanskanen, E. ( 2011 ). Climatology of rapid geomagnetic variations at high latitudes over two solar cycles. Annales Geophysicae, 29, 1783 – 1792. https://doi.org/10.5194/angeo-29-1783-2011 Viljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24, 725 – 733. https://doi.org/10.5194/angeo-24-725-2006 Weygand, J. M., Kivelson, M. G., Frey, H. U., Rodriguez, J. V., Angelopoulos, V., Redmon, R., & Amm, O. ( 2015 ). An interpretation of spacecraft and ground based observations of multiple omega band events. Journal of Atmospheric and Solar‐Terrestrial Physics, 133, 185 – 204. https://doi.org/10.1016/j.jastp.2015.08.014 Zesta, E., Lyons, L., Wang, C.‐P., Donovan, E., Frey, H., & Nagai, T. ( 2006 ). Auroral poleward boundary intensifications (PBIs): Their two‐dimensional structure and associated dynamics in the plasma sheet. Journal of Geophysical Research, 111, A05201. https://doi.org/10.1029/2004JA010640 Zesta, E., Lyons, L., & Donovan, E. ( 2000 ). The auroral signature of earthward flow bursts observed in the magnetotail. Geophysical Research Letters, 27, 3241 – 3244. https://doi.org/10.1029/2000GL000027 Akasofu, S.‐I. ( 1974 ). A study of auroral displays photographed from the DMSP‐2 satellite and from the Alaska meridian chain of stations. Space Science Reviews, 16, 617 – 725. ISSN: 0038‐6308 Akasofu, S.‐I., & Kimball, D. S. ( 1964 ). The dynamics of the aurora, 1, Instabilities of the aurora. Journal of Atmospheric and Terrestrial Physics, 26, 205 – 211. https://doi.org/10.1016/0021-9169(64)90147-3 Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Luehr, H., & Paschmann, G. ( 1992 ). Bursty bulk flows in the inner central plasma sheet. Journal of Geophysical Research, 97, 4027 – 4039. https://doi.org/10.1029/91JA02701 Apatenkov, S. V., Pilipenko, V. A., Gordeev, E. I., Viljanen, A., Juusola, L., Belakhovsky, V. B., Sakharov, Y. A., & Selivanov, V. N. ( 2020 ). Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophysical Research Letters, 47, e2019GL086677. https://doi.org/10.1029/2019GL086677 IndexNoFollow magnetic conjugacy geomagnetically induced currents magnetic perturbation events substorms magnetic storms omega bands Astronomy and Astrophysics Science Article 2020 ftumdeepblue https://doi.org/10.1029/2020JA02812810.1007/BF0070423910.1029/97GL00538 2023-07-31T21:09:05Z Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically induced currents (GICs) have used data from the Northern Hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx| > 900 nT and |dB/dt| > 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high‐latitude regions (65–80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL‐PIP and BAS LPM. From one to three different isolated MPEs localized in corrected geomagnetic latitude were observed during three premidnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended postmidnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative interplanetary magnetic field Bz that exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductances in conjugate hemispheres clearly favored a current generator model over a voltage generator model for three of the four events; neither model provided a good fit for the premidnight event that occurred near vernal equinox.Key PointsConjugate premidnight MPEs were largest in dBx/dt and were often but not always simultaneous to within 3 min over ~100–700 km in latitudeConjugate postmidnight MPEs were associated with omega bands, often largest in dBy/dt, very localized, and independent in time over ~1.5 hrPerturbation amplitudes and maximum derivatives ... Article in Journal/Newspaper Antarc* Antarctica Arctic Arctic Greenland Iqaluit Polar Science Polar Science South pole South pole University of Michigan: Deep Blue Arctic Canada Greenland South Pole Pangnirtung ENVELOPE(-65.707,-65.707,66.145,66.145) Journal of Geophysical Research: Space Physics 125 8