Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean

The opening of the Drake Passage (DP) during the Cenozoic is a tectonic event of paramount importance for the development of modern ocean characteristics. Notably, it has been suggested that it exerts a primary role in the onset of the Antarctic Circumpolar Current (ACC) formation, in the cooling of...

Full description

Bibliographic Details
Published in:Paleoceanography and Paleoclimatology
Main Authors: Toumoulin, A., Donnadieu, Y., Ladant, J.‐b., Batenburg, S. J., Poblete, F., Dupont‐nivet, G.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/156423
https://doi.org/10.1029/2020PA003889
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/156423
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Antarctic Circumpolar Current
Southern Ocean
neodymium
climate modeling
gateways
Eocene
Geological Sciences
Science
spellingShingle Antarctic Circumpolar Current
Southern Ocean
neodymium
climate modeling
gateways
Eocene
Geological Sciences
Science
Toumoulin, A.
Donnadieu, Y.
Ladant, J.‐b.
Batenburg, S. J.
Poblete, F.
Dupont‐nivet, G.
Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean
topic_facet Antarctic Circumpolar Current
Southern Ocean
neodymium
climate modeling
gateways
Eocene
Geological Sciences
Science
description The opening of the Drake Passage (DP) during the Cenozoic is a tectonic event of paramount importance for the development of modern ocean characteristics. Notably, it has been suggested that it exerts a primary role in the onset of the Antarctic Circumpolar Current (ACC) formation, in the cooling of high- latitude South Atlantic waters and in the initiation of North Atlantic Deep Water (NADW) formation. Several model studies have aimed to assess the impacts of DP opening on climate, but most of them focused on surface climate, and only few used realistic Eocene boundary conditions. Here, we revisit the impact of the DP opening on ocean circulation with the IPSL- CM5A2 Earth System Model. Using appropriate middle Eocene (40 Ma) boundary conditions, we perform and analyze simulations with different depths of the DP (0, 100, 1,000, and 2,500 m) and compare results to existing geochemical data. Our experiments show that DP opening has a strong effect on Eocene ocean structure and dynamics even for shallow depths. The DP opening notably allows the formation of a proto- ACC and induces deep ocean cooling of 1.5°C to 2.5°C in most of the Southern Hemisphere. There is no NADW formation in our simulations regardless of the depth of the DP, suggesting that the DP on its own is not a primary control of deepwater formation in the North Atlantic. This study elucidates how and to what extent the opening of the DP contributed to the establishment of the modern global thermohaline circulation.Key PointsA shallow opening of the Drake Passage induces strong changes in ocean properties and dynamicsA proto- ACC is able to form during the Eocene under high levels of pCO2, but a strong ACC requires supplementary geographical changesNorth Atlantic Deep Water is probably not able to form before the separation of the Arctic and Atlantic Oceans Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/156423/3/palo20904-sup-0001-2020PA003889-SI.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/156423/2/palo20904.pdf ...
format Article in Journal/Newspaper
author Toumoulin, A.
Donnadieu, Y.
Ladant, J.‐b.
Batenburg, S. J.
Poblete, F.
Dupont‐nivet, G.
author_facet Toumoulin, A.
Donnadieu, Y.
Ladant, J.‐b.
Batenburg, S. J.
Poblete, F.
Dupont‐nivet, G.
author_sort Toumoulin, A.
title Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean
title_short Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean
title_full Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean
title_fullStr Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean
title_full_unstemmed Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean
title_sort quantifying the effect of the drake passage opening on the eocene ocean
publisher Wiley Periodicals, Inc.
publishDate 2020
url https://hdl.handle.net/2027.42/156423
https://doi.org/10.1029/2020PA003889
genre Antarc*
Antarctic
Arctic
Drake Passage
NADW
North Atlantic Deep Water
North Atlantic
Southern Ocean
genre_facet Antarc*
Antarctic
Arctic
Drake Passage
NADW
North Atlantic Deep Water
North Atlantic
Southern Ocean
op_relation Toumoulin, A.; Donnadieu, Y.; Ladant, J.‐b.
Batenburg, S. J.; Poblete, F.; Dupont‐nivet, G. (2020). "Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean." Paleoceanography and Paleoclimatology 35(8): n/a-n/a.
2572-4517
2572-4525
https://hdl.handle.net/2027.42/156423
doi:10.1029/2020PA003889
Paleoceanography and Paleoclimatology
Roberts, C. D., LeGrande, A. N., & Tripati, A. K. ( 2009 ). Climate sensitivity to Arctic seaway restriction during the early Paleogene. Earth and Planetary Science Letters, 286 ( 3- 4 ), 576 - 585. https://doi.org/10.1016/j.epsl.2009.07.026
Scher, H. D., Whittaker, J. M., Williams, S. E., Latimer, J. C., Kordesch, W. E. C., & Delaney, M. L. ( 2015 ). Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian gateway aligned with westerlies. Nature, 523 ( 7562 ), 580 - 583. https://doi.org/10.1038/nature14598
Sepulchre, P., Arsouze, T., Donnadieu, Y., Dutay, J.- C., Jaramillo, C., Le Bras, J., Martin, E., Montes, C., & Waite, A. J. ( 2014 ). Consequences of shoaling of the central American seaway determined from modeling Nd isotopes. Paleoceanography, 29, 176 - 189. https://doi.org/10.1002/2013PA002501
Sepulchre, P., Caubel, A., Ladant, J.- B., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P., Cozic, A., Donnadieu, Y., Estella- Perez, V., Ethé, C., Fluteau, F., Foujols, M.- A., Gastineau, G., Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., et al. ( 2019 ). IPSL- CM5A2. An earth system model designed for multi- millennial climate simulations. Geoscientific Model Development Discussions, 1 - 57. https://doi.org/10.5194/gmd-2019-332
Sijp, W. P., & England, M. H. ( 2004 ). Effect of the Drake Passage throughflow on global climate. Journal of Physical Oceanography, 34 ( 5 ), 1254 - 1266. https://doi.org/10.1175/1520-0485(2004)034%3C1254:EOTDPT%3E2.0.CO;2
Sijp, W. P., & England, M. H. ( 2005 ). Role of the Drake Passage in controlling the stability of the Ocean’s Thermohaline circulation. Journal of Climate, 18 ( 12 ), 1957 - 1966. https://doi.org/10.1175/JCLI3376.1
Sijp, W. P., England, M. H., & Huber, M. ( 2011 ). Effect of the deepening of the Tasman gateway on the global ocean. Paleoceanography, 26, PA4207. https://doi.org/10.1029/2011PA002143
Sijp, W. P., England, M. H., & Toggweiler, J. R. ( 2009 ). Effect of ocean gateway changes under greenhouse warmth. Journal of Climate, 22 ( 24 ), 6639 - 6652. https://doi.org/10.1175/2009JCLI3003.1
Sijp, W. P., von der Heydt, A. S., & Bijl, P. K. ( 2016 ). Model simulations of early westward flow across the Tasman gateway during the early Eocene. Climate of the Past, 12 ( 4 ), 807 - 817. https://doi.org/10.5194/cp-12-807-2016
Sijp, W. P., von der Heydt, A. S., Dijkstra, H. A., Flögel, S., Douglas, P. M. J., & Bijl, P. K. ( 2014 ). The role of ocean gateways on cooling climate on long time scales. Global and Planetary Change, 119, 1 - 22. https://doi.org/10.1016/j.gloplacha.2014.04.004
Stärz, M., Jokat, W., Knorr, G., & Lohmann, G. ( 2017 ). Threshold in North Atlantic- Arctic Ocean circulation controlled by the subsidence of the Greenland- Scotland ridge. Nature Communications, 8 ( 1 ), 15681. https://doi.org/10.1038/ncomms15681
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., & Williams, G. L. ( 2004 ). Timing and nature of the deepening of the Tasmanian gateway. Paleoceanography, 19, PA4027. https://doi.org/10.1029/2004PA001022
Stoker, M., Leslie, A., Smith, K., à lavsdóttir, J., Johnson, H., & Laberg, J. S. ( 2013 ). Onset of North Atlantic deep water production coincident with inception of the Cenozoic global cooling trend: Comment. Geology, 41 ( 9 ), e291. https://doi.org/10.1130/G33670C.1
Tardif, D., Fluteau, F., Donnadieu, Y., Le Hir, G., Ladant, J.- B., Sepulchre, P., Licht, A., Poblete, F., & Dupont- Nivet, G. ( 2020 ). The onset of Asian monsoons: A modelling perspective [preprint]. Climate of the Past Discussion, 16 ( 3 ), 847 - 865. https://doi.org/10.5194/cp-2019-144
Thomas, D. J. ( 2004 ). Evidence for deep- water production in the North Pacific Ocean during the early Cenozoic warm interval. Nature, 430 ( 6995 ), 65 - 68. https://doi.org/10.1038/nature02639
Thomas, D. J., Korty, R., Huber, M., Schubert, J. A., & Haines, B. ( 2014 ). Nd isotopic structure of the Pacific Ocean 70- 30 ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world. Paleoceanography, 29, 454 - 469. https://doi.org/10.1002/2013PA002535
Toggweiler, J. R., & Bjornsson, H. ( 2000 ). Drake Passage and palaeoclimate. Journal of Quaternary Science, 15 ( 4 ), 319 - 328. https://doi.org/10.1002/1099-1417(200005)15:4%3C319::AID-JQS545%3E3.0.CO;2-C
Toggweiler, J. R., & Samuels, B. ( 1995 ). Effect of Drake Passage on the global thermohaline circulation. Deep Sea Research Part I: Oceanographic Research Papers, 42 ( 4 ), 477 - 500. https://doi.org/10.1016/0967-0637(95)00012-U
Tripati, A., Backman, J., Elderfield, H., & Ferretti, P. ( 2005 ). Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436 ( 7049 ), 341 - 346. https://doi.org/10.1038/nature03874
Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert, T., & Pälike, H. ( 2018 ). Ocean and climate response to North Atlantic seaway changes at the onset of long- term Eocene cooling. Earth and Planetary Science Letters, 498, 185 - 195. https://doi.org/10.1016/j.epsl.2018.06.031
Valcke, S. ( 2006 ). OASIS3 user’s guide (prism- 2- 5). (Tech. Rep. TR/CMGC/06/73, PRISM Report No 3). Toulouse, France: CERFACS
Via, R. K., & Thomas, D. J. ( 2006 ). Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep- water production in the North Atlantic. Geology, 34 ( 6 ), 441. https://doi.org/10.1130/G22545.1
Wright, N. M., Scher, H. D., Seton, M., Huck, C. E., & Duggan, B. D. ( 2018 ). No change in Southern Ocean circulation in the Indian Ocean from the Eocene through late Oligocene. Paleoceanography and Paleoclimatology, 33 ( 2 ), 152 - 167. https://doi.org/10.1002/2017PA003238
Yang, S., Galbraith, E., & Palter, J. ( 2014 ). Coupled climate impacts of the Drake Passage and the Panama seaway. Climate Dynamics, 43 ( 1- 2 ), 37 - 52. https://doi.org/10.1007/s00382-013-1809-6
Zachos, J., Pagani, M., Sloan, L. C., Thomas, E., & Billups, K. ( 2001 ). Trends, rhythms, and aberrations in global climate 65 ma to present. Science, 292 ( 5517 ), 686 - 693. https://doi.org/10.1126/science.1059412
Zhang, X., Prange, M., Steph, S., Butzin, M., Krebs, U., Lunt, D. J., Nisancioglu, K. H., Park, W., Schmittner, A., Schneider, B., & Schulz, M. ( 2012 ). Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: Insights from a multi- model study. Earth and Planetary Science Letters, 317- 318, 76 - 84. https://doi.org/10.1016/j.epsl.2011.11.028
Zhang, Z.- S., Yan, Q., & Wang, H. ( 2010 ). Has the Drake Passage played an essential role in the Cenozoic cooling? Atmospheric and Oceanic Science Letters, 3 ( 5 ), 288 - 292. https://doi.org/10.1080/16742834.2010.11446884
Zhu, J., Poulsen, C. J., & Tierney, J. E. ( 2019 ). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Science Advances, 5 ( 9 ), eaax1874. https://doi.org/10.1126/sciadv.aax1874
Abelson, M., Agnon, A., & Almogi- Labin, A. ( 2008 ). Indications for control of the Iceland plume on the Eocene- Oligocene - greenhouse- icehouse- climate transition. Earth and Planetary Science Letters, 265 ( 1- 2 ), 33 - 48. https://doi.org/10.1016/j.epsl.2007.09.021
Abelson, M., & Erez, J. ( 2017 ). The onset of modern- like Atlantic meridional overturning circulation at the Eocene- Oligocene transition: Evidence, causes, and possible implications for global cooling. Geochemistry, Geophysics, Geosystems, 18, 2177 - 2199. https://doi.org/10.1002/2017GC006826
Allison, L. C., Johnson, H. L., Marshall, D. P., & Munday, D. R. ( 2010 ). Where do winds drive the Antarctic Circumpolar Current? Geophysical Research Letters, 37, L12605. https://doi.org/10.1029/2010GL043355
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., & Pearson, P. N. ( 2016 ). Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 533 ( 7603 ), 380 - 384. https://doi.org/10.1038/nature17423
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., & Gehlen, M. ( 2015 ). PISCES- v2: An ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development, 8 ( 8 ), 2465 - 2513. https://doi.org/10.5194/gmd-8-2465-2015
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., & Dijkstra, H. A. ( 2020 ). The middle- to- late Eocene greenhouse climate, modelled using the CESM 1.0.5. Climate of the Past Discussions, 1 - 44. https://doi.org/10.5194/cp-2020-29
Barker, P. F. ( 2001 ). Scotia Sea regional tectonic evolution: Implications for mantle flow and palaeocirculation. Earth- Science Reviews, 55 ( 1- 2 ), 1 - 39. https://doi.org/10.1016/S0012-8252(01)00055-1
Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A., Klein, T., Pérez- Díaz, L., & Frank, M. ( 2018 ). Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth. Nature Communications, 9 ( 1 ), 4954 - 4958. https://doi.org/10.1038/s41467-018-07457-7
Beerling, D. J., & Royer, D. L. ( 2011 ). Convergent cenozoic CO2 history. Nature Geoscience, 4 ( 7 ), 418 - 420. https://doi.org/10.1038/ngeo1186
Eagles, G., & Jokat, W. ( 2014 ). Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics, 611, 28 - 50. https://doi.org/10.1016/j.tecto.2013.11.021
Bice, K. L., Scotese, C. R., Seidov, D., & Barron, E. J. ( 2000 ). Quantifying the role of geographic change in Cenozoic Ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeography, Palaeoclimatology, Palaeoecology, 161 ( 3- 4 ), 295 - 310. https://doi.org/10.1016/S0031-0182(00)00072-9
Bijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H., & Expedition 318 Scientists ( 2013 ). Eocene cooling linked to early flow across the Tasmanian gateway. Proceedings of the National Academy of Sciences, 110 ( 24 ), 9645 - 9650. https://doi.org/10.1073/pnas.1220872110
Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.- J., Zachos, J. C., & Brinkhuis, H. ( 2009 ). Early Palaeogene temperature evolution of the Southwest Pacific Ocean. Nature, 461 ( 7265 ), 776 - 779. https://doi.org/10.1038/nature08399
Borrelli, C., Cramer, B. S., & Katz, M. E. ( 2014 ). Bipolar Atlantic Deepwater circulation in the middle- late Eocene: Effects of Southern Ocean gateway openings. Paleoceanography, 29, 308 - 327. https://doi.org/10.1002/2012PA002444
Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Damsté, J. S. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K., Bujak, J. P., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C., Lotter, A. F., Sangiorgi, F., van Konijnenburg- van Cittert, H., de Leeuw, J. W., Matthiessen, J., Backman, J., Moran, K., & Expedition 302 Scientists. ( 2006 ). Episodic fresh surface waters in the Eocene Arctic Ocean. Nature, 441 ( 7093 ), 606 - 609. https://doi.org/10.1038/nature04692
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2020PA00388910.5194/gmd-2019-33210.1038/nature0263910.1016/S0012-8252(01)00055-110.5194/cp-2020-6810.1029/JC082i027p0384310.5194/cp-2019-149
container_title Paleoceanography and Paleoclimatology
container_volume 35
container_issue 8
_version_ 1810489770658234368
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/156423 2024-09-15T17:42:57+00:00 Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean Toumoulin, A. Donnadieu, Y. Ladant, J.‐b. Batenburg, S. J. Poblete, F. Dupont‐nivet, G. 2020-08 application/pdf https://hdl.handle.net/2027.42/156423 https://doi.org/10.1029/2020PA003889 unknown Wiley Periodicals, Inc. Ocean Drilling Program Toumoulin, A.; Donnadieu, Y.; Ladant, J.‐b. Batenburg, S. J.; Poblete, F.; Dupont‐nivet, G. (2020). "Quantifying the Effect of the Drake Passage Opening on the Eocene Ocean." Paleoceanography and Paleoclimatology 35(8): n/a-n/a. 2572-4517 2572-4525 https://hdl.handle.net/2027.42/156423 doi:10.1029/2020PA003889 Paleoceanography and Paleoclimatology Roberts, C. D., LeGrande, A. N., & Tripati, A. K. ( 2009 ). Climate sensitivity to Arctic seaway restriction during the early Paleogene. Earth and Planetary Science Letters, 286 ( 3- 4 ), 576 - 585. https://doi.org/10.1016/j.epsl.2009.07.026 Scher, H. D., Whittaker, J. M., Williams, S. E., Latimer, J. C., Kordesch, W. E. C., & Delaney, M. L. ( 2015 ). Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian gateway aligned with westerlies. Nature, 523 ( 7562 ), 580 - 583. https://doi.org/10.1038/nature14598 Sepulchre, P., Arsouze, T., Donnadieu, Y., Dutay, J.- C., Jaramillo, C., Le Bras, J., Martin, E., Montes, C., & Waite, A. J. ( 2014 ). Consequences of shoaling of the central American seaway determined from modeling Nd isotopes. Paleoceanography, 29, 176 - 189. https://doi.org/10.1002/2013PA002501 Sepulchre, P., Caubel, A., Ladant, J.- B., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P., Cozic, A., Donnadieu, Y., Estella- Perez, V., Ethé, C., Fluteau, F., Foujols, M.- A., Gastineau, G., Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., et al. ( 2019 ). IPSL- CM5A2. An earth system model designed for multi- millennial climate simulations. Geoscientific Model Development Discussions, 1 - 57. https://doi.org/10.5194/gmd-2019-332 Sijp, W. P., & England, M. H. ( 2004 ). Effect of the Drake Passage throughflow on global climate. Journal of Physical Oceanography, 34 ( 5 ), 1254 - 1266. https://doi.org/10.1175/1520-0485(2004)034%3C1254:EOTDPT%3E2.0.CO;2 Sijp, W. P., & England, M. H. ( 2005 ). Role of the Drake Passage in controlling the stability of the Ocean’s Thermohaline circulation. Journal of Climate, 18 ( 12 ), 1957 - 1966. https://doi.org/10.1175/JCLI3376.1 Sijp, W. P., England, M. H., & Huber, M. ( 2011 ). Effect of the deepening of the Tasman gateway on the global ocean. Paleoceanography, 26, PA4207. https://doi.org/10.1029/2011PA002143 Sijp, W. P., England, M. H., & Toggweiler, J. R. ( 2009 ). Effect of ocean gateway changes under greenhouse warmth. Journal of Climate, 22 ( 24 ), 6639 - 6652. https://doi.org/10.1175/2009JCLI3003.1 Sijp, W. P., von der Heydt, A. S., & Bijl, P. K. ( 2016 ). Model simulations of early westward flow across the Tasman gateway during the early Eocene. Climate of the Past, 12 ( 4 ), 807 - 817. https://doi.org/10.5194/cp-12-807-2016 Sijp, W. P., von der Heydt, A. S., Dijkstra, H. A., Flögel, S., Douglas, P. M. J., & Bijl, P. K. ( 2014 ). The role of ocean gateways on cooling climate on long time scales. Global and Planetary Change, 119, 1 - 22. https://doi.org/10.1016/j.gloplacha.2014.04.004 Stärz, M., Jokat, W., Knorr, G., & Lohmann, G. ( 2017 ). Threshold in North Atlantic- Arctic Ocean circulation controlled by the subsidence of the Greenland- Scotland ridge. Nature Communications, 8 ( 1 ), 15681. https://doi.org/10.1038/ncomms15681 Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., & Williams, G. L. ( 2004 ). Timing and nature of the deepening of the Tasmanian gateway. Paleoceanography, 19, PA4027. https://doi.org/10.1029/2004PA001022 Stoker, M., Leslie, A., Smith, K., à lavsdóttir, J., Johnson, H., & Laberg, J. S. ( 2013 ). Onset of North Atlantic deep water production coincident with inception of the Cenozoic global cooling trend: Comment. Geology, 41 ( 9 ), e291. https://doi.org/10.1130/G33670C.1 Tardif, D., Fluteau, F., Donnadieu, Y., Le Hir, G., Ladant, J.- B., Sepulchre, P., Licht, A., Poblete, F., & Dupont- Nivet, G. ( 2020 ). The onset of Asian monsoons: A modelling perspective [preprint]. Climate of the Past Discussion, 16 ( 3 ), 847 - 865. https://doi.org/10.5194/cp-2019-144 Thomas, D. J. ( 2004 ). Evidence for deep- water production in the North Pacific Ocean during the early Cenozoic warm interval. Nature, 430 ( 6995 ), 65 - 68. https://doi.org/10.1038/nature02639 Thomas, D. J., Korty, R., Huber, M., Schubert, J. A., & Haines, B. ( 2014 ). Nd isotopic structure of the Pacific Ocean 70- 30 ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world. Paleoceanography, 29, 454 - 469. https://doi.org/10.1002/2013PA002535 Toggweiler, J. R., & Bjornsson, H. ( 2000 ). Drake Passage and palaeoclimate. Journal of Quaternary Science, 15 ( 4 ), 319 - 328. https://doi.org/10.1002/1099-1417(200005)15:4%3C319::AID-JQS545%3E3.0.CO;2-C Toggweiler, J. R., & Samuels, B. ( 1995 ). Effect of Drake Passage on the global thermohaline circulation. Deep Sea Research Part I: Oceanographic Research Papers, 42 ( 4 ), 477 - 500. https://doi.org/10.1016/0967-0637(95)00012-U Tripati, A., Backman, J., Elderfield, H., & Ferretti, P. ( 2005 ). Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436 ( 7049 ), 341 - 346. https://doi.org/10.1038/nature03874 Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert, T., & Pälike, H. ( 2018 ). Ocean and climate response to North Atlantic seaway changes at the onset of long- term Eocene cooling. Earth and Planetary Science Letters, 498, 185 - 195. https://doi.org/10.1016/j.epsl.2018.06.031 Valcke, S. ( 2006 ). OASIS3 user’s guide (prism- 2- 5). (Tech. Rep. TR/CMGC/06/73, PRISM Report No 3). Toulouse, France: CERFACS Via, R. K., & Thomas, D. J. ( 2006 ). Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep- water production in the North Atlantic. Geology, 34 ( 6 ), 441. https://doi.org/10.1130/G22545.1 Wright, N. M., Scher, H. D., Seton, M., Huck, C. E., & Duggan, B. D. ( 2018 ). No change in Southern Ocean circulation in the Indian Ocean from the Eocene through late Oligocene. Paleoceanography and Paleoclimatology, 33 ( 2 ), 152 - 167. https://doi.org/10.1002/2017PA003238 Yang, S., Galbraith, E., & Palter, J. ( 2014 ). Coupled climate impacts of the Drake Passage and the Panama seaway. Climate Dynamics, 43 ( 1- 2 ), 37 - 52. https://doi.org/10.1007/s00382-013-1809-6 Zachos, J., Pagani, M., Sloan, L. C., Thomas, E., & Billups, K. ( 2001 ). Trends, rhythms, and aberrations in global climate 65 ma to present. Science, 292 ( 5517 ), 686 - 693. https://doi.org/10.1126/science.1059412 Zhang, X., Prange, M., Steph, S., Butzin, M., Krebs, U., Lunt, D. J., Nisancioglu, K. H., Park, W., Schmittner, A., Schneider, B., & Schulz, M. ( 2012 ). Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: Insights from a multi- model study. Earth and Planetary Science Letters, 317- 318, 76 - 84. https://doi.org/10.1016/j.epsl.2011.11.028 Zhang, Z.- S., Yan, Q., & Wang, H. ( 2010 ). Has the Drake Passage played an essential role in the Cenozoic cooling? Atmospheric and Oceanic Science Letters, 3 ( 5 ), 288 - 292. https://doi.org/10.1080/16742834.2010.11446884 Zhu, J., Poulsen, C. J., & Tierney, J. E. ( 2019 ). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Science Advances, 5 ( 9 ), eaax1874. https://doi.org/10.1126/sciadv.aax1874 Abelson, M., Agnon, A., & Almogi- Labin, A. ( 2008 ). Indications for control of the Iceland plume on the Eocene- Oligocene - greenhouse- icehouse- climate transition. Earth and Planetary Science Letters, 265 ( 1- 2 ), 33 - 48. https://doi.org/10.1016/j.epsl.2007.09.021 Abelson, M., & Erez, J. ( 2017 ). The onset of modern- like Atlantic meridional overturning circulation at the Eocene- Oligocene transition: Evidence, causes, and possible implications for global cooling. Geochemistry, Geophysics, Geosystems, 18, 2177 - 2199. https://doi.org/10.1002/2017GC006826 Allison, L. C., Johnson, H. L., Marshall, D. P., & Munday, D. R. ( 2010 ). Where do winds drive the Antarctic Circumpolar Current? Geophysical Research Letters, 37, L12605. https://doi.org/10.1029/2010GL043355 Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., & Pearson, P. N. ( 2016 ). Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 533 ( 7603 ), 380 - 384. https://doi.org/10.1038/nature17423 Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., & Gehlen, M. ( 2015 ). PISCES- v2: An ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development, 8 ( 8 ), 2465 - 2513. https://doi.org/10.5194/gmd-8-2465-2015 Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., & Dijkstra, H. A. ( 2020 ). The middle- to- late Eocene greenhouse climate, modelled using the CESM 1.0.5. Climate of the Past Discussions, 1 - 44. https://doi.org/10.5194/cp-2020-29 Barker, P. F. ( 2001 ). Scotia Sea regional tectonic evolution: Implications for mantle flow and palaeocirculation. Earth- Science Reviews, 55 ( 1- 2 ), 1 - 39. https://doi.org/10.1016/S0012-8252(01)00055-1 Batenburg, S. J., Voigt, S., Friedrich, O., Osborne, A. H., Bornemann, A., Klein, T., Pérez- Díaz, L., & Frank, M. ( 2018 ). Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth. Nature Communications, 9 ( 1 ), 4954 - 4958. https://doi.org/10.1038/s41467-018-07457-7 Beerling, D. J., & Royer, D. L. ( 2011 ). Convergent cenozoic CO2 history. Nature Geoscience, 4 ( 7 ), 418 - 420. https://doi.org/10.1038/ngeo1186 Eagles, G., & Jokat, W. ( 2014 ). Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics, 611, 28 - 50. https://doi.org/10.1016/j.tecto.2013.11.021 Bice, K. L., Scotese, C. R., Seidov, D., & Barron, E. J. ( 2000 ). Quantifying the role of geographic change in Cenozoic Ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeography, Palaeoclimatology, Palaeoecology, 161 ( 3- 4 ), 295 - 310. https://doi.org/10.1016/S0031-0182(00)00072-9 Bijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H., & Expedition 318 Scientists ( 2013 ). Eocene cooling linked to early flow across the Tasmanian gateway. Proceedings of the National Academy of Sciences, 110 ( 24 ), 9645 - 9650. https://doi.org/10.1073/pnas.1220872110 Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.- J., Zachos, J. C., & Brinkhuis, H. ( 2009 ). Early Palaeogene temperature evolution of the Southwest Pacific Ocean. Nature, 461 ( 7265 ), 776 - 779. https://doi.org/10.1038/nature08399 Borrelli, C., Cramer, B. S., & Katz, M. E. ( 2014 ). Bipolar Atlantic Deepwater circulation in the middle- late Eocene: Effects of Southern Ocean gateway openings. Paleoceanography, 29, 308 - 327. https://doi.org/10.1002/2012PA002444 Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Damsté, J. S. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K., Bujak, J. P., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C., Lotter, A. F., Sangiorgi, F., van Konijnenburg- van Cittert, H., de Leeuw, J. W., Matthiessen, J., Backman, J., Moran, K., & Expedition 302 Scientists. ( 2006 ). Episodic fresh surface waters in the Eocene Arctic Ocean. Nature, 441 ( 7093 ), 606 - 609. https://doi.org/10.1038/nature04692 IndexNoFollow Antarctic Circumpolar Current Southern Ocean neodymium climate modeling gateways Eocene Geological Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1029/2020PA00388910.5194/gmd-2019-33210.1038/nature0263910.1016/S0012-8252(01)00055-110.5194/cp-2020-6810.1029/JC082i027p0384310.5194/cp-2019-149 2024-07-30T04:06:06Z The opening of the Drake Passage (DP) during the Cenozoic is a tectonic event of paramount importance for the development of modern ocean characteristics. Notably, it has been suggested that it exerts a primary role in the onset of the Antarctic Circumpolar Current (ACC) formation, in the cooling of high- latitude South Atlantic waters and in the initiation of North Atlantic Deep Water (NADW) formation. Several model studies have aimed to assess the impacts of DP opening on climate, but most of them focused on surface climate, and only few used realistic Eocene boundary conditions. Here, we revisit the impact of the DP opening on ocean circulation with the IPSL- CM5A2 Earth System Model. Using appropriate middle Eocene (40 Ma) boundary conditions, we perform and analyze simulations with different depths of the DP (0, 100, 1,000, and 2,500 m) and compare results to existing geochemical data. Our experiments show that DP opening has a strong effect on Eocene ocean structure and dynamics even for shallow depths. The DP opening notably allows the formation of a proto- ACC and induces deep ocean cooling of 1.5°C to 2.5°C in most of the Southern Hemisphere. There is no NADW formation in our simulations regardless of the depth of the DP, suggesting that the DP on its own is not a primary control of deepwater formation in the North Atlantic. This study elucidates how and to what extent the opening of the DP contributed to the establishment of the modern global thermohaline circulation.Key PointsA shallow opening of the Drake Passage induces strong changes in ocean properties and dynamicsA proto- ACC is able to form during the Eocene under high levels of pCO2, but a strong ACC requires supplementary geographical changesNorth Atlantic Deep Water is probably not able to form before the separation of the Arctic and Atlantic Oceans Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/156423/3/palo20904-sup-0001-2020PA003889-SI.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/156423/2/palo20904.pdf ... Article in Journal/Newspaper Antarc* Antarctic Arctic Drake Passage NADW North Atlantic Deep Water North Atlantic Southern Ocean University of Michigan: Deep Blue Paleoceanography and Paleoclimatology 35 8