Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier

The ice sheets of the Amundsen Sea Embayment (ASE) are vulnerable to the marine ice sheet instability (MISI), which could cause irreversible collapse and raise sea levels by over a meter. The uncertain timing and scale of this collapse depend on the complex interaction between ice, ocean, and bedroc...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Kachuck, S. B., Martin, D. F., Bassis, J. N., Price, S. F.
Format: Article in Journal/Newspaper
Language:unknown
Published: Princeton University Press 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/155486
https://doi.org/10.1029/2019GL086446
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/155486
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic mantle rheology
Pine Island Glacier
marine ice sheet instability
West Antarctica
glacial isostatic adjustment
solid Earth feedback
Geological Sciences
Science
spellingShingle mantle rheology
Pine Island Glacier
marine ice sheet instability
West Antarctica
glacial isostatic adjustment
solid Earth feedback
Geological Sciences
Science
Kachuck, S. B.
Martin, D. F.
Bassis, J. N.
Price, S. F.
Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier
topic_facet mantle rheology
Pine Island Glacier
marine ice sheet instability
West Antarctica
glacial isostatic adjustment
solid Earth feedback
Geological Sciences
Science
description The ice sheets of the Amundsen Sea Embayment (ASE) are vulnerable to the marine ice sheet instability (MISI), which could cause irreversible collapse and raise sea levels by over a meter. The uncertain timing and scale of this collapse depend on the complex interaction between ice, ocean, and bedrock dynamics. The mantle beneath the ASE is likely less viscous (∼1018 Pa s) than the Earth’s average mantle (∼1021 Pa s). Here we show that an effective equilibrium between Pine Island Glacier’s retreat and the response of a weak viscoelastic mantle can reduce ice mass lost by almost 30% over 150 years. Other components of solid Earth response—purely elastic deformations and geoid perturbations—provide less stability than the viscoelastic response alone. Uncertainties in mantle rheology, topography, and basal melt affect how much stability we expect, if any. Our study indicates the importance of considering viscoelastic uplift during the rapid retreat associated with MISI.Plain Language SummaryPortions of the West Antarctic Ice Sheet are vulnerable to an instability that could lead to rapid ice sheet collapse, significantly raising sea levels, but the timing and rates of collapse are highly uncertain. In response to such a large‐scale loss of overlying ice, viscoelastically deforming mantle material uplifts the surface, alleviating some drivers of unstable ice sheet retreat. While previous studies have focused on the effects mantle deformation has on continental ice dynamics over centuries to millennia, recent seismic observations suggest that the mantle beneath West Antarctica is hot and weak, potentially affecting local glacial dynamics over timescales as short as decades. To measure the importance of viscoelastic uplift in stabilizing grounding line retreat, we coupled a high‐resolution ice flow model to a viscoelastically deforming mantle. We find that rapid viscoelastic uplift can reduce the total volume of ice lost over 150 years by 30%, or 18 mm of equivalent sea level rise, making it an essential process to ...
format Article in Journal/Newspaper
author Kachuck, S. B.
Martin, D. F.
Bassis, J. N.
Price, S. F.
author_facet Kachuck, S. B.
Martin, D. F.
Bassis, J. N.
Price, S. F.
author_sort Kachuck, S. B.
title Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier
title_short Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier
title_full Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier
title_fullStr Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier
title_full_unstemmed Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier
title_sort rapid viscoelastic deformation slows marine ice sheet instability at pine island glacier
publisher Princeton University Press
publishDate 2020
url https://hdl.handle.net/2027.42/155486
https://doi.org/10.1029/2019GL086446
long_lat ENVELOPE(-101.000,-101.000,-75.000,-75.000)
ENVELOPE(26.683,26.683,66.617,66.617)
geographic Antarctic
West Antarctica
Amundsen Sea
West Antarctic Ice Sheet
Pine Island Glacier
Misi
geographic_facet Antarctic
West Antarctica
Amundsen Sea
West Antarctic Ice Sheet
Pine Island Glacier
Misi
genre Amundsen Sea
Annals of Glaciology
Antarc*
Antarctic
Antarctica
Ice Sheet
Journal of Glaciology
Pine Island
Pine Island Glacier
West Antarctica
genre_facet Amundsen Sea
Annals of Glaciology
Antarc*
Antarctic
Antarctica
Ice Sheet
Journal of Glaciology
Pine Island
Pine Island Glacier
West Antarctica
op_relation Kachuck, S. B.; Martin, D. F.; Bassis, J. N.; Price, S. F. (2020). "Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier." Geophysical Research Letters 47(10): n/a-n/a.
0094-8276
1944-8007
https://hdl.handle.net/2027.42/155486
doi:10.1029/2019GL086446
Geophysical Research Letters
Purcell, A. P. ( 1998 ). The significance of pre‐stress advection and internal buoyancy in the flat‐earth formulation. In Wu, Patrick (Ed.), Dynamics of the ice age earth: a modern perspective. Hetikon: Trans. Tech. Publications, pp. 105 – 122.
Larsen, C. F., Motyka, R. J., Freymueller, J. T., Echelmeyer, K. A., & Ivins, E. R. ( 2005 ). Rapid viscoelastic uplift in southeast Alaska caused by post‐Little Ice Age glacial retreat. Earth and Planetary Science Letters, 237 ( 3‐4 ), 548 – 560. http://www.sciencedirect.com/science/article/pii/S0012821X05004152
Lingle, C. S., & Clark, J. A. ( 1985 ). A numerical model of interactions between a marine ice sheet and the solid earth: Application to a West Antarctic ice stream. Journal of Geophysical Research, 90 ( C1 ), 1100. https://doi.org/10.1029/JC090iC01p01100
Martin, D. F., Cornford, S. L., & Payne, A. J. ( 2019 ). Millennial‐scale vulnerability of the antarctic ice sheet to regional ice shelf collapse. Geophysical Research Letters, 46, 1467 – 1475. https://doi.org/10.1029/2018GL081229
Medley, B., Joughin, I., Smith, B. E., Das, S. B., Steig, E. J., Conway, H., Gogineni, S., Lewis, C., Criscitiello, A. S., McConnell, J. R., Van Den Broeke, M. R., Lenaerts, J. T. M., Bromwich, D. H., Nicolas, J. P., & Leuschen, C. ( 2014 ). Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere, 8 ( 4 ), 1375 – 1392. https://doi.org/10.5194/tc-8-1375-2014
Mitrovica, J. X., & Forte, A. M. ( 1997 ). Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables. Journal of Geophysical Research, 102, 2751 – 2769. http://www.agu.org/pubs/crossref/1997/96JB03175.shtml
Nias, I. J., Cornford, S. L., & Payne, A. J. ( 2016 ). Contrasting the modelled sensitivity of the Amundsen Sea Embayment ice streams. Journal of Glaciology, 62 ( 233 ), 552 – 562. https://doi.org/10.1017/jog.2016.40
Nield, G. A., Barletta, V. R., Bordoni, A., King, M. A., Whitehouse, P. L., Clarke, P. J., Domack, E., Scambos, T. A., & Berthier, E. ( 2014 ). Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth and Planetary Science Letters, 397, 32 – 41. https://doi.org/10.1016/j.epsl.2014.04.019
Pattyn, F. ( 2018 ). The paradigm shift in Antarctic ice sheet modelling. Nature Communications, 9 ( 1 ), 10 – 12. https://doi.org/10.1038/s41467-018-05003-z
Pollard, D., Gomez, N., & Deconto, R. M. ( 2017 ). Variations of the Antarctic Ice Sheet in a coupled ice sheet‐earth‐sea level model: Sensitivity to viscoelastic earth properties. Journal of Geophysical Research: Earth Surface, 122, 2124 – 2138. https://doi.org/10.1002/2017JF004371
Ramirez, C., Nyblade, A., Hansen, S. E., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Huerta, A. D., Shore, P., & Wilson, T. ( 2016 ). Crustal and upper‐mantle structure beneath ice‐covered regions in Antarctica from S‐wave receiver functions and implications for. Geophysical Journal International, 204, 1636 – 1648. https://doi.org/10.1093/gji/ggv542
Rignot, E., Bamber, J. L., van den Broeke, M. R., Davis, C., Li, Y., van de Berg, W. J., & van Meijgaard, E. ( 2008 ). Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1 ( 2 ), 106 – 110. https://doi.org/10.1038/ngeo102
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., & Scheuchl, B. ( 2014 ). Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 41 ( 10 ), 3502 – 3509. https://doi.org/10.1002/2014GL060140
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M. R., van Wessem, M. J., & Morlighem, M. ( 2019 ). Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences, 116, 1 – 9. https://doi.org/10.1073/pnas.1812883116
Schoof, C. ( 2007 ). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research, 112, F03S28. https://doi.org/10.1029/2006JF000664
Schoof, C. ( 2012 ). Marine ice sheet stability. Journal of Fluid Mechanics, 698, 62 – 72. http://www.eos.ubc.ca/cschoof/marinestability.pdf
Simms, A. R., Ivins, E. R., DeWitt, R., Kouremenos, P., & Simkins, L. M. ( 2012 ). Timing of the most recent Neoglacial advance and retreat in the South Shetland Islands, Antarctic Peninsula: Insights from raised beaches and Holocene uplift rates. Quaternary Science Reviews, 47, 41 – 55. https://doi.org/10.1016/j.quascirev.2012.05.013
Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuña, C., Akins, T., Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J., & Zwally, J. ( 2004 ). Accelerated sea‐level rise from west Antarctica. Science, 306 ( 5694 ), 255 – 258. https://doi.org/10.1126/science.1099650
Vermeersen, L. L. A., & Sabadini, R. ( 1997 ). A new class of stratified viscoelastic models by analytical techniques. Geophysical Journal International, 129 ( 3 ), 531 – 570. https://doi.org/10.1111/j.1365-246X.1997.tb04492.x
Waibel, M. S., Hulbe, C. L., Jackson, C. S., & Martin, D. F. ( 2018 ). Rate of mass loss across the instability threshold for Thwaites glacier determines rate of mass loss for entire basin. Geophysical Research Letters, 45 ( 2 ), 809 – 816. https://doi.org/10.1002/2017GL076470
Weertman, J. ( 1974 ). Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology, 13 ( 67 ), 3 – 11. https://www.cambridge.org/core/product/identifier/S0022143000023327/typ%e/journal_article
Whitehouse, P. L., Gomez, N., King, M. A., & Wiens, D. A. ( 2019 ). Solid earth change and the evolution of the Antarctic Ice Sheet. Nature Communications, 10 ( 1 ), 1 – 14. https://doi.org/10.1038/s41467-018-08068-y
Wolf, D. ( 1984 ). The relaxation of spherical and flat Maxwell Earth models and effects due to the presence of the lithosphere. Journal of Geophysics, 56 ( 1 ), 24 – 33.
Wolf, D. ( 1998 ). Load‐induced viscoelastic relaxation: An elementary example. In P. Wu (Ed.), Dynamics of the Ice Age Earth: A modern perspective. Hetikon: Trans. Tech. Publications, pp. 87 – 104.
Zwally, H. J., Giovinetto, M. B., Beckley, M. A., & Saba, J. L. ( 2012 ). Antarctic and Greenland drainage systems, GSFC cryospheric sciences laboratory. Available at icesat4. gsfc. nasa. gov/cryo_data/ant_grn_drainage_systems. php. Accessed March, 1, 2015.
Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., & Nowicki, S. ( 2014 ). Future Antarctic bed topography and its implications for ice sheet dynamics. Solid Earth, 5 ( 1 ), 569 – 584. https://doi.org/10.5194/se-5-569-2014
An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A. A., Kanao, M., Li, Y., Maggi, A., & Lévêque, J.‐J. ( 2015 ). S‐velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. Journal of Geophysical Research: Solid Earth, 120, 359 – 383. https://doi.org/10.1002/2014JB011332
Auriac, A., Spaans, K. H., Sigmundsson, F., Hooper, A., Schmidt, P., & Lund, B. ( 2013 ). Iceland rising: Solid earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling. Journal of Geophysical Research: Solid Earth, 118, 1331 – 1344. https://doi.org/10.1002/jgrb.50082
Bamber, J. L., & Dawson, G. J. ( 2020 ). Complex evolving patterns of mass loss from Antarctica’s largest glacier. Nature Geoscience, 13, 127 – 131. https://doi.org/10.1038/s41561-019-0527-z
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S. A., Navarro, M. R., Dalziel, I., Smalley Jr., R., Kendrick, E., Konfal, S., Caccamise, D. J., Aster, R. C., Nyblade, A., & Wiens, D. A. ( 2018 ). Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice‐sheet stability. Science, 1339, 1335 – 1339. https://doi.org/10.1126/science.aao1447
Bueler, E., Lingle, C. S., & Kallen‐Brown, J. ( 2007 ). Fast computation of a viscoelastic deformable Earth model for ice sheet simulation. Annals of Glaciology, 46, 97 – 105. https://doi.org/10.3189/172756407782871567
Caron, L., Ivins, E. R., Larour, E., Adhikari, S., Nilsson, J., & Blewitt, G. ( 2018 ). GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophysical Research Letters, 45, 1 – 10.
Cathles, L. ( 1975 ). The viscosity of the Earth’s mantle. Princeton, NJ: Princeton University Press.
Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E. G., & Lipscomb, W. H. ( 2013 ). Adaptive mesh, finite volume modeling of marine ice sheets. Journal of Computational Physics, 232 ( 1 ), 529 – 549. https://doi.org/10.1016/j.jcp.2012.08.037
Cornford, S. L., Martin, D. F., Lee, V., Payne, A. J., & Ng, E. G. ( 2016 ). Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics. Annals of Glaciology, 57 ( 73 ), 1 – 9. https://doi.org/10.1017/aog.2016.13
Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M., Gladstone, R. M., Edwards, T. L., Shannon, S. R., Agosta, C., Van Den Broeke, M. R., Hellmer, H. H., Krinner, G., Ligtenberg, S. R. M., Timmermann, R., & Vaughan, D. G. ( 2015 ). Century‐scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. Cryosphere, 9 ( 4 ), 1579 – 1600. https://doi.org/10.5194/tc-9-1579-2015
Dziewonski, A. M., & Anderson, D. L. ( 1981 ). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25 ( 4 ), 297 – 356. http://linkinghub.elsevier.com/retrieve/pii/0031920181900467
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O., Gillet‐Chaulet, F., Zwinger, T., Payne, A. J., & Le Brocq, A. M. ( 2014 ). Retreat of Pine Island Glacier controlled by marine ice‐sheet instability. Nature Climate Change, 4 ( 2 ), 117 – 121. https://doi.org/10.1038/nclimate2094
Fjeldskaar, W. ( 1991 ). Geoidal‐eustatic changes induced by the deglaciation of Fennoscandia. Quaternary International, 9 ( C ), 1 – 6. https://doi.org/10.1016/1040-6182(91)90058-V
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger‐Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., & Zirizzotti, A. ( 2013 ). Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7 ( 1 ), 375 – 393. https://doi.org/10.5194/tc-7-375-2013
Gomez, N., Latychev, K., & Pollard, D. ( 2018 ). A coupled ice sheet‐sea level model incorporating 3D Earth structure: Variations in Antarctica during the last deglacial retreat. Journal of Climate, 31, 4041 – 4054. https://doi.org/10.1175/JCLI-D-17-0352.1
Gomez, N., Mitrovica, J. X., Huybers, P., & Clark, P. U. ( 2010 ). Sea level as a stabilizing factor for marine‐ice‐sheet grounding lines. Nature Geoscience, 3 ( 12 ), 850 – 853. https://doi.org/10.1038/ngeo1012
Gomez, N., Pollard, D., & Holland, D. ( 2015 ). Sea‐level feedback lowers projections of future Antarctic Ice‐Sheet mass loss. Nature Communications, 6, 1 – 8. https://doi.org/10.1038/ncomms9798
Gomez, N., Pollard, D., Mitrovica, J. X., Huybers, P., & Clark, P. U. ( 2012 ). Evolution of a coupled marine ice sheet‐sea level model. Journal of Geophysical Research, 117, F01013. https://doi.org/10.1029/2011JF002128
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2019GL08644610.1038/s41467-018-05003-z10.1029/2006JF00066410.1016/1040-6182(91)90058-V10.5194/tc-7-647-2013
container_title Geophysical Research Letters
container_volume 47
container_issue 10
_version_ 1774713743842738176
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/155486 2023-08-20T03:59:37+02:00 Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier Kachuck, S. B. Martin, D. F. Bassis, J. N. Price, S. F. 2020-05-28 application/pdf https://hdl.handle.net/2027.42/155486 https://doi.org/10.1029/2019GL086446 unknown Princeton University Press Wiley Periodicals, Inc. Kachuck, S. B.; Martin, D. F.; Bassis, J. N.; Price, S. F. (2020). "Rapid Viscoelastic Deformation Slows Marine Ice Sheet Instability at Pine Island Glacier." Geophysical Research Letters 47(10): n/a-n/a. 0094-8276 1944-8007 https://hdl.handle.net/2027.42/155486 doi:10.1029/2019GL086446 Geophysical Research Letters Purcell, A. P. ( 1998 ). The significance of pre‐stress advection and internal buoyancy in the flat‐earth formulation. In Wu, Patrick (Ed.), Dynamics of the ice age earth: a modern perspective. Hetikon: Trans. Tech. Publications, pp. 105 – 122. Larsen, C. F., Motyka, R. J., Freymueller, J. T., Echelmeyer, K. A., & Ivins, E. R. ( 2005 ). Rapid viscoelastic uplift in southeast Alaska caused by post‐Little Ice Age glacial retreat. Earth and Planetary Science Letters, 237 ( 3‐4 ), 548 – 560. http://www.sciencedirect.com/science/article/pii/S0012821X05004152 Lingle, C. S., & Clark, J. A. ( 1985 ). A numerical model of interactions between a marine ice sheet and the solid earth: Application to a West Antarctic ice stream. Journal of Geophysical Research, 90 ( C1 ), 1100. https://doi.org/10.1029/JC090iC01p01100 Martin, D. F., Cornford, S. L., & Payne, A. J. ( 2019 ). Millennial‐scale vulnerability of the antarctic ice sheet to regional ice shelf collapse. Geophysical Research Letters, 46, 1467 – 1475. https://doi.org/10.1029/2018GL081229 Medley, B., Joughin, I., Smith, B. E., Das, S. B., Steig, E. J., Conway, H., Gogineni, S., Lewis, C., Criscitiello, A. S., McConnell, J. R., Van Den Broeke, M. R., Lenaerts, J. T. M., Bromwich, D. H., Nicolas, J. P., & Leuschen, C. ( 2014 ). Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. Cryosphere, 8 ( 4 ), 1375 – 1392. https://doi.org/10.5194/tc-8-1375-2014 Mitrovica, J. X., & Forte, A. M. ( 1997 ). Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables. Journal of Geophysical Research, 102, 2751 – 2769. http://www.agu.org/pubs/crossref/1997/96JB03175.shtml Nias, I. J., Cornford, S. L., & Payne, A. J. ( 2016 ). Contrasting the modelled sensitivity of the Amundsen Sea Embayment ice streams. Journal of Glaciology, 62 ( 233 ), 552 – 562. https://doi.org/10.1017/jog.2016.40 Nield, G. A., Barletta, V. R., Bordoni, A., King, M. A., Whitehouse, P. L., Clarke, P. J., Domack, E., Scambos, T. A., & Berthier, E. ( 2014 ). Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth and Planetary Science Letters, 397, 32 – 41. https://doi.org/10.1016/j.epsl.2014.04.019 Pattyn, F. ( 2018 ). The paradigm shift in Antarctic ice sheet modelling. Nature Communications, 9 ( 1 ), 10 – 12. https://doi.org/10.1038/s41467-018-05003-z Pollard, D., Gomez, N., & Deconto, R. M. ( 2017 ). Variations of the Antarctic Ice Sheet in a coupled ice sheet‐earth‐sea level model: Sensitivity to viscoelastic earth properties. Journal of Geophysical Research: Earth Surface, 122, 2124 – 2138. https://doi.org/10.1002/2017JF004371 Ramirez, C., Nyblade, A., Hansen, S. E., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Huerta, A. D., Shore, P., & Wilson, T. ( 2016 ). Crustal and upper‐mantle structure beneath ice‐covered regions in Antarctica from S‐wave receiver functions and implications for. Geophysical Journal International, 204, 1636 – 1648. https://doi.org/10.1093/gji/ggv542 Rignot, E., Bamber, J. L., van den Broeke, M. R., Davis, C., Li, Y., van de Berg, W. J., & van Meijgaard, E. ( 2008 ). Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1 ( 2 ), 106 – 110. https://doi.org/10.1038/ngeo102 Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., & Scheuchl, B. ( 2014 ). Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 41 ( 10 ), 3502 – 3509. https://doi.org/10.1002/2014GL060140 Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M. R., van Wessem, M. J., & Morlighem, M. ( 2019 ). Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences, 116, 1 – 9. https://doi.org/10.1073/pnas.1812883116 Schoof, C. ( 2007 ). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research, 112, F03S28. https://doi.org/10.1029/2006JF000664 Schoof, C. ( 2012 ). Marine ice sheet stability. Journal of Fluid Mechanics, 698, 62 – 72. http://www.eos.ubc.ca/cschoof/marinestability.pdf Simms, A. R., Ivins, E. R., DeWitt, R., Kouremenos, P., & Simkins, L. M. ( 2012 ). Timing of the most recent Neoglacial advance and retreat in the South Shetland Islands, Antarctic Peninsula: Insights from raised beaches and Holocene uplift rates. Quaternary Science Reviews, 47, 41 – 55. https://doi.org/10.1016/j.quascirev.2012.05.013 Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuña, C., Akins, T., Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J., & Zwally, J. ( 2004 ). Accelerated sea‐level rise from west Antarctica. Science, 306 ( 5694 ), 255 – 258. https://doi.org/10.1126/science.1099650 Vermeersen, L. L. A., & Sabadini, R. ( 1997 ). A new class of stratified viscoelastic models by analytical techniques. Geophysical Journal International, 129 ( 3 ), 531 – 570. https://doi.org/10.1111/j.1365-246X.1997.tb04492.x Waibel, M. S., Hulbe, C. L., Jackson, C. S., & Martin, D. F. ( 2018 ). Rate of mass loss across the instability threshold for Thwaites glacier determines rate of mass loss for entire basin. Geophysical Research Letters, 45 ( 2 ), 809 – 816. https://doi.org/10.1002/2017GL076470 Weertman, J. ( 1974 ). Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology, 13 ( 67 ), 3 – 11. https://www.cambridge.org/core/product/identifier/S0022143000023327/typ%e/journal_article Whitehouse, P. L., Gomez, N., King, M. A., & Wiens, D. A. ( 2019 ). Solid earth change and the evolution of the Antarctic Ice Sheet. Nature Communications, 10 ( 1 ), 1 – 14. https://doi.org/10.1038/s41467-018-08068-y Wolf, D. ( 1984 ). The relaxation of spherical and flat Maxwell Earth models and effects due to the presence of the lithosphere. Journal of Geophysics, 56 ( 1 ), 24 – 33. Wolf, D. ( 1998 ). Load‐induced viscoelastic relaxation: An elementary example. In P. Wu (Ed.), Dynamics of the Ice Age Earth: A modern perspective. Hetikon: Trans. Tech. Publications, pp. 87 – 104. Zwally, H. J., Giovinetto, M. B., Beckley, M. A., & Saba, J. L. ( 2012 ). Antarctic and Greenland drainage systems, GSFC cryospheric sciences laboratory. Available at icesat4. gsfc. nasa. gov/cryo_data/ant_grn_drainage_systems. php. Accessed March, 1, 2015. Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., & Nowicki, S. ( 2014 ). Future Antarctic bed topography and its implications for ice sheet dynamics. Solid Earth, 5 ( 1 ), 569 – 584. https://doi.org/10.5194/se-5-569-2014 An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A. A., Kanao, M., Li, Y., Maggi, A., & Lévêque, J.‐J. ( 2015 ). S‐velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. Journal of Geophysical Research: Solid Earth, 120, 359 – 383. https://doi.org/10.1002/2014JB011332 Auriac, A., Spaans, K. H., Sigmundsson, F., Hooper, A., Schmidt, P., & Lund, B. ( 2013 ). Iceland rising: Solid earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling. Journal of Geophysical Research: Solid Earth, 118, 1331 – 1344. https://doi.org/10.1002/jgrb.50082 Bamber, J. L., & Dawson, G. J. ( 2020 ). Complex evolving patterns of mass loss from Antarctica’s largest glacier. Nature Geoscience, 13, 127 – 131. https://doi.org/10.1038/s41561-019-0527-z Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S. A., Navarro, M. R., Dalziel, I., Smalley Jr., R., Kendrick, E., Konfal, S., Caccamise, D. J., Aster, R. C., Nyblade, A., & Wiens, D. A. ( 2018 ). Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice‐sheet stability. Science, 1339, 1335 – 1339. https://doi.org/10.1126/science.aao1447 Bueler, E., Lingle, C. S., & Kallen‐Brown, J. ( 2007 ). Fast computation of a viscoelastic deformable Earth model for ice sheet simulation. Annals of Glaciology, 46, 97 – 105. https://doi.org/10.3189/172756407782871567 Caron, L., Ivins, E. R., Larour, E., Adhikari, S., Nilsson, J., & Blewitt, G. ( 2018 ). GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophysical Research Letters, 45, 1 – 10. Cathles, L. ( 1975 ). The viscosity of the Earth’s mantle. Princeton, NJ: Princeton University Press. Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E. G., & Lipscomb, W. H. ( 2013 ). Adaptive mesh, finite volume modeling of marine ice sheets. Journal of Computational Physics, 232 ( 1 ), 529 – 549. https://doi.org/10.1016/j.jcp.2012.08.037 Cornford, S. L., Martin, D. F., Lee, V., Payne, A. J., & Ng, E. G. ( 2016 ). Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics. Annals of Glaciology, 57 ( 73 ), 1 – 9. https://doi.org/10.1017/aog.2016.13 Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M., Gladstone, R. M., Edwards, T. L., Shannon, S. R., Agosta, C., Van Den Broeke, M. R., Hellmer, H. H., Krinner, G., Ligtenberg, S. R. M., Timmermann, R., & Vaughan, D. G. ( 2015 ). Century‐scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. Cryosphere, 9 ( 4 ), 1579 – 1600. https://doi.org/10.5194/tc-9-1579-2015 Dziewonski, A. M., & Anderson, D. L. ( 1981 ). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25 ( 4 ), 297 – 356. http://linkinghub.elsevier.com/retrieve/pii/0031920181900467 Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O., Gillet‐Chaulet, F., Zwinger, T., Payne, A. J., & Le Brocq, A. M. ( 2014 ). Retreat of Pine Island Glacier controlled by marine ice‐sheet instability. Nature Climate Change, 4 ( 2 ), 117 – 121. https://doi.org/10.1038/nclimate2094 Fjeldskaar, W. ( 1991 ). Geoidal‐eustatic changes induced by the deglaciation of Fennoscandia. Quaternary International, 9 ( C ), 1 – 6. https://doi.org/10.1016/1040-6182(91)90058-V Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger‐Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., & Zirizzotti, A. ( 2013 ). Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7 ( 1 ), 375 – 393. https://doi.org/10.5194/tc-7-375-2013 Gomez, N., Latychev, K., & Pollard, D. ( 2018 ). A coupled ice sheet‐sea level model incorporating 3D Earth structure: Variations in Antarctica during the last deglacial retreat. Journal of Climate, 31, 4041 – 4054. https://doi.org/10.1175/JCLI-D-17-0352.1 Gomez, N., Mitrovica, J. X., Huybers, P., & Clark, P. U. ( 2010 ). Sea level as a stabilizing factor for marine‐ice‐sheet grounding lines. Nature Geoscience, 3 ( 12 ), 850 – 853. https://doi.org/10.1038/ngeo1012 Gomez, N., Pollard, D., & Holland, D. ( 2015 ). Sea‐level feedback lowers projections of future Antarctic Ice‐Sheet mass loss. Nature Communications, 6, 1 – 8. https://doi.org/10.1038/ncomms9798 Gomez, N., Pollard, D., Mitrovica, J. X., Huybers, P., & Clark, P. U. ( 2012 ). Evolution of a coupled marine ice sheet‐sea level model. Journal of Geophysical Research, 117, F01013. https://doi.org/10.1029/2011JF002128 IndexNoFollow mantle rheology Pine Island Glacier marine ice sheet instability West Antarctica glacial isostatic adjustment solid Earth feedback Geological Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1029/2019GL08644610.1038/s41467-018-05003-z10.1029/2006JF00066410.1016/1040-6182(91)90058-V10.5194/tc-7-647-2013 2023-07-31T20:42:45Z The ice sheets of the Amundsen Sea Embayment (ASE) are vulnerable to the marine ice sheet instability (MISI), which could cause irreversible collapse and raise sea levels by over a meter. The uncertain timing and scale of this collapse depend on the complex interaction between ice, ocean, and bedrock dynamics. The mantle beneath the ASE is likely less viscous (∼1018 Pa s) than the Earth’s average mantle (∼1021 Pa s). Here we show that an effective equilibrium between Pine Island Glacier’s retreat and the response of a weak viscoelastic mantle can reduce ice mass lost by almost 30% over 150 years. Other components of solid Earth response—purely elastic deformations and geoid perturbations—provide less stability than the viscoelastic response alone. Uncertainties in mantle rheology, topography, and basal melt affect how much stability we expect, if any. Our study indicates the importance of considering viscoelastic uplift during the rapid retreat associated with MISI.Plain Language SummaryPortions of the West Antarctic Ice Sheet are vulnerable to an instability that could lead to rapid ice sheet collapse, significantly raising sea levels, but the timing and rates of collapse are highly uncertain. In response to such a large‐scale loss of overlying ice, viscoelastically deforming mantle material uplifts the surface, alleviating some drivers of unstable ice sheet retreat. While previous studies have focused on the effects mantle deformation has on continental ice dynamics over centuries to millennia, recent seismic observations suggest that the mantle beneath West Antarctica is hot and weak, potentially affecting local glacial dynamics over timescales as short as decades. To measure the importance of viscoelastic uplift in stabilizing grounding line retreat, we coupled a high‐resolution ice flow model to a viscoelastically deforming mantle. We find that rapid viscoelastic uplift can reduce the total volume of ice lost over 150 years by 30%, or 18 mm of equivalent sea level rise, making it an essential process to ... Article in Journal/Newspaper Amundsen Sea Annals of Glaciology Antarc* Antarctic Antarctica Ice Sheet Journal of Glaciology Pine Island Pine Island Glacier West Antarctica University of Michigan: Deep Blue Antarctic West Antarctica Amundsen Sea West Antarctic Ice Sheet Pine Island Glacier ENVELOPE(-101.000,-101.000,-75.000,-75.000) Misi ENVELOPE(26.683,26.683,66.617,66.617) Geophysical Research Letters 47 10