Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes

Precipitation impacts on ice cover and water temperature in the Laurentian Great Lakes were examined using state‐of‐the‐art coupled ice‐hydrodynamic models. Numerical experiments were conducted for the recent anomalously cold (2014–2015) and warm (2015–2016) winters that were accompanied by high and...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Fujisaki-Manome, A., Anderson, E. J., Kessler, J. A., Chu, P. Y., Wang, J., Gronewold, A. D.
Format: Article in Journal/Newspaper
Language:unknown
Published: National Academies Press 2020
Subjects:
ice
Online Access:https://hdl.handle.net/2027.42/155461
https://doi.org/10.1029/2019JC015950
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/155461
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic air‐ice‐lake interactions
precipitation
snow
ice
Great Lakes
Geological Sciences
Atmospheric and Oceanic Sciences
Science
spellingShingle air‐ice‐lake interactions
precipitation
snow
ice
Great Lakes
Geological Sciences
Atmospheric and Oceanic Sciences
Science
Fujisaki-Manome, A.
Anderson, E. J.
Kessler, J. A.
Chu, P. Y.
Wang, J.
Gronewold, A. D.
Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes
topic_facet air‐ice‐lake interactions
precipitation
snow
ice
Great Lakes
Geological Sciences
Atmospheric and Oceanic Sciences
Science
description Precipitation impacts on ice cover and water temperature in the Laurentian Great Lakes were examined using state‐of‐the‐art coupled ice‐hydrodynamic models. Numerical experiments were conducted for the recent anomalously cold (2014–2015) and warm (2015–2016) winters that were accompanied by high and low ice coverage over the lakes, respectively. The results of numerical experiments showed that snow cover on the ice, which is the manifestation of winter precipitation, reduced the total ice volume (or mean ice thickness) in all of the Great Lakes, shortened the ice duration, and allowed earlier warming of water surface. The reduced ice volume was due to the thermal insulation of snow cover. The surface albedo was also increased by snow cover, but its impact on the delay the melting of ice was overcome by the thermal insulation effect. During major snowstorms, snowfall over the open lake caused notable cooling of the water surface due to latent heat absorption. Overall, the sensible heat flux from rain in spring and summer was found to have negligible impacts on the water surface temperature. Although uncertainties remain in overlake precipitation estimates and model’s representation of snow on the ice, this study demonstrated that winter precipitation, particularly snowfall on the ice and water surfaces, is an important contributing factor in Great Lakes ice production and thermal conditions from late fall to spring.Plain Language SummarySnow and rain impact on ice cover and water temperature in large lakes were studied using a computational model for an example of the Laurentian Great Lakes. It was found that snow cover increased the reflection of solar radiation but at the same time prevented lake ice from the growing, resulting in less formation of ice and slightly earlier melting. The earlier ice melting also allowed earlier warming of the water surface in spring. Major snowstorms caused slight cooling in the water surface temperature because snowflakes absorbed heat when it touched the water surface to melt. ...
format Article in Journal/Newspaper
author Fujisaki-Manome, A.
Anderson, E. J.
Kessler, J. A.
Chu, P. Y.
Wang, J.
Gronewold, A. D.
author_facet Fujisaki-Manome, A.
Anderson, E. J.
Kessler, J. A.
Chu, P. Y.
Wang, J.
Gronewold, A. D.
author_sort Fujisaki-Manome, A.
title Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes
title_short Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes
title_full Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes
title_fullStr Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes
title_full_unstemmed Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes
title_sort simulating impacts of precipitation on ice cover and surface water temperature across large lakes
publisher National Academies Press
publishDate 2020
url https://hdl.handle.net/2027.42/155461
https://doi.org/10.1029/2019JC015950
genre Arctic
Journal of Glaciology
Polar Research
genre_facet Arctic
Journal of Glaciology
Polar Research
op_relation Fujisaki-Manome, A.; Anderson, E. J.; Kessler, J. A.; Chu, P. Y.; Wang, J.; Gronewold, A. D. (2020). "Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes." Journal of Geophysical Research: Oceans 125(5): n/a-n/a.
2169-9275
2169-9291
https://hdl.handle.net/2027.42/155461
doi:10.1029/2019JC015950
Journal of Geophysical Research: Oceans
Munar, A. M., Cavalcanti, J. R., Bravo, J. M., Fan, F. M., da Motta‐Marques, D., & Fragoso, C. R. ( 2018 ). Coupling large‐scale hydrological and hydrodynamic modeling: Toward a better comprehension of watershed‐shallow lake processes. Journal of Hydrology, 564 ( March ), 424 – 441. https://doi.org/10.1016/j.jhydrol.2018.07.045
Lei, R., Heil, P., Wang, J., Zhang, Z., Li, Q., & Li, N. ( 2016 ). Characterization of sea‐ice kinematic in the Arctic outflow region using buoy data. Polar Research, 1, 1 – 15.
Lei, R., Tian‐kunze, X., Li, B., Heil, P., Wang, J., Zeng, J., & Tian, Z. ( 2017 ). Cold regions science and technology characterization of summer Arctic sea ice morphology in the 135°–175°W sector using multi‐scale methods. Cold Regions Science and Technology, 133, 108 – 120. https://doi.org/10.1016/j.coldregions.2016.10.009
Liu, Z., Zhang, H., & Liang, Q. ( 2019 ). A coupled hydrological and hydrodynamic model for flood simulation. Hydrology Research, 50 ( 2 ), 589 – 606. https:/10.1016/doi.org/10.2166/nh.2018.090
Luo, L., Wang, J., Schwab, D. J., Vanderploeg, H., Leshkevich, G., Bai, X., Hu, H., & Wang, D. ( 2012 ). Simulating the 1998 spring bloom in Lake Michigan using a coupled physical‐biological model. Journal of Geophysical Research, 117. https://doi.org/10.1029/2012JC008216
Mason, L. A., Riseng, C. M., Gronewold, A. D., Rutherford, E. S., Wang, J., Clites, A., Smith, S. D. P., & McIntyre, P. B. ( 2016 ). Fine‐scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes. Climatic Change, 138 ( 1–2 ), 71 – 83. https://doi.org/10.1007/s10584-016-1721-2
Maykut, G. A., & McPhee, M. G. ( 1995 ). Solar heating of the arctic mixed layer. Journal of Geophysical Research, 100 ( C12 ), 24,691 – 24,703.
Mellor, G. L., & Blumberg, A. ( 2004 ). Wave breaking and ocean surface layer thermal response. Journal of Physical Oceanography, 34, 693 – 698. https://doi.org/10.1175/2517.1
Mellor, G. L., & Yamada, T. ( 1982 ). Development of a turbulent closure model for geophysical fluid problems. Reviews of Geophysics, 20 ( 4 ), 851 – 875.
National Research Council ( 2007 ). Water resources and the global hydrologic cycle overview. In Earth science and applications from space: National imperatives for the next decade and beyond, (pp. 1 – 428 ). Washington, DC: National Academies Press. https://doi.org/10.17226/11820
Niu, Q., Xia, M., Rutherford, E. S., Mason, D. M., Anderson, E. J., & Schwab, D. J. ( 2015 ). Investigation of interbasin exchange and interannual variability in Lake Erie using an unstructured‐grid hydrodynamic model. Journal of Geophysical Research: Oceans, 120, 2212 – 2232. https://doi.org/10.1002/2014JC010457.
Notaro, M., Bennington, V., & Lofgren, B. ( 2015 ). Dynamical downscaling‐based projections of great lakes water levels. Journal of Climate, 28 ( 24 ), 9721 – 9745. https://doi.org/10.1175/JCLI-D-14-00847.1
Notaro, M., Bennington, V., & Vavrus, S. ( 2015 ). Dynamically downscaled projections of lake‐effect snow in the Great Lakes basin. Journal of Climate, 28 ( 4 ), 1661 – 1684. https://doi.org/10.1175/JCLI-D-14-00467.1
Ohata, Y., Toyota, T., & Fraser, A. D. ( 2017 ). The role of snow in the thickening processes of lake ice at Lake Abashiri, Hokkaido, Japan. Tellus, Series A: Dynamic Meteorology and Oceanography, 69 ( 1 ), 1 – 19. https://doi.org/10.1080/16000870.2017.1391655
Olsen, A. ( 2003 ). Snow or rain ?—A matter of wet‐bulb temperature. Uppsala University. Retrieved from http://uu.diva-portal.org/smash/record.jsf?dswid=-6226&pid=diva2%3A968860&c=2&searchType=SIMPLE&language=en&query=arvid+olsen&af=%5B%5D&aq=%5B%5B%5D%5D&aq2=%5B%5B%5D%5D&aqe=%5B%5D&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullTex
Quinn, F. H., Assel, R. A., Boyce, D. E., Leshkevich, G. A., Snider, C. R., & Weisnet, D. ( 1978 ). Summary of Great Lakes weather and ice conditions, Winter 1976–77. Ann Arbor: Michigan USA. Retrieved from. https://play.google.com/store/books/details?id=lfsygiofDU8C&rdid=book-lfsygiofDU8C&rdot=1
Shi, L., Ling, F., Foody, G. M., Chen, C., Fang, S., Li, X., Zhang, Y., & Du, Y. ( 2019 ). Permanent disappearance and seasonal fluctuation of urban lake area in Wuhan, China monitored with long time series remotely sensed images from 1987 to 2016. International Journal of Remote Sensing, 40 ( 22 ), 8484 – 8505. https://doi.org/10.1080/01431161.2019.1612119
Smagorinsky, J. ( 1963 ). General circulation experiments with the primitive equations. Monthly Weather Review, 91 ( 3 ), 99 – 164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
Sturm, M., Perovich, D. K., & Holmgren, J. ( 2002 ). Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. Journal of Geophysical Research, 107 ( C10 ), 8043. https://doi.org/10.1029/2000JC000409
Tao, S., Fang, J., Zhao, X., Zhao, S., Shen, H., Hu, H., Tang, Z., Wang, Z., & Guo, Q. ( 2015 ). Rapid loss of lakes on the Mongolian Plateau. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 7 ), 2281 – 2286. https://doi.org/10.1073/pnas.1411748112
Thorndike, A. S., Rothrock, D. A., Maykut, G. A., & Colony, R. ( 1975 ). The thickness distribution of sea ice. Journal of Geophysical Research, 80 ( 33 ), 4501. https://doi.org/10.1029/JC080i033p04501
Wang, J., Bai, X., Hu, H., Clites, A., Colton, M., & Lofgren, B. ( 2012 ). Temporal and spatial variability of Great Lakes ice cover, 1973‐2010. Journal of Climate, 25 ( 4 ), 1318 – 1329. https://doi.org/10.1175/2011JCLI4066.1
Warren, S. G., Rigor, I. G., & Untersteiner, N. ( 1999 ). Snow depth on Arctic sea ice. Journal of Climate, 12, 1814 – 1829. https://doi.org/10.1113/JP275441
Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., Massom, R., Perovich, D., & Sturm, M. ( 2018 ). Snow in the changing sea‐ice systems. Nature Climate Change, 8 ( 11 ), 946 – 953. https://doi.org/10.1038/s41558-018-0286-7
Wiscombe, W. J., & Warren, S. G. ( 1980 ). A model for spectral albedo I: Pure snow. Journal of the Atmospheric Sciences, 37 ( 12 ), 2712 – 2733. https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
Wuebbles, D., Cardinale, B., Cherkauer, K., Davidson‐Arnott, R., Hellmann, J., Infante, D., et al. ( 2019 ). An assessment of the impacts of climate change on the Great Lakes. Chicago: Illinois. Retrieved from. http://elpc.org/wp-content/uploads/2019/03/Great-Lakes-Climate-Change-Report.pdf
Yen, Y.‐C. ( 1981 ). Review of thermal properties of snow, ice and sea ice. New Hampshire, USA. Retrieved from: Hanover. https://usace.contentdm.oclc.org/digital/api/collection/p266001coll1/id/7366/download
Alexander, D., Shulmeister, J., & Davies, T. ( 2011 ). High basal melting rates within high‐precipitation temperate glaciers. Journal of Glaciology, 57 ( 205 ), 789 – 795. https://doi.org/10.3189/002214311798043726
Anderson, B., Mackintosh, A., Stumm, D., George, L., Kerr, T., Winter‐Billington, A., & Fitzsimons, S. ( 2010 ). Climate sensitivity of a high‐precipitation glacier in New Zealand. Journal of Glaciology, 56 ( 195 ), 114 – 128. https://doi.org/10.3189/002214310791190929
Anderson, E., Fujisaki-Manome, A., Kessler, J., Lang, G., Chu, P., Kelley, J., Chen, Y., & Wang, J. ( 2018 ). Ice forecasting in the next‐generation Great Lakes Operational Forecast System (GLOFS). Journal of Marine Science and Engineering, 6 ( 4 ) 17 pages, 123. https://doi.org/10.3390/jmse6040123
Anderson, E. J., Bechle, A. J., Wu, C. H., Schwab, D. J., Mann, G. E., & Lombardy, K. A. ( 2015 ). Reconstruction of a meteotsunami in Lake Erie on 27 May 2012: Roles of atmospheric conditions on hydrodynamic response in enclosed basins. Journal of Geophysical Research, 120, 1 – 16. https://doi.org/10.1002/2014JC010564
Anderson, E. J., & Schwab, D. J. ( 2012 ). Contaminant transport and spill reference tables for the St. Clair River. Marine Technology Society Journal, 46 ( 5 ), 34 – 47. https://doi.org/10.4031/MTSJ.46.5.4
Anderson, E. J., & Schwab, D. J. ( 2013 ). Predicting the oscillating bi‐directional exchange flow in the Straits of Mackinac. Journal of Great Lakes Research, 39 ( 4 ), 663 – 671. https://doi.org/10.1016/j.jglr.2013.09.001
Anderson, E. J., Schwab, D. J., & Lang, G. A. ( 2010 ). Real‐time hydraulic and hydrodynamic model of the St. Clair River, Lake St. Clair, Detroit River System. Journal of Hydraulic Engineering, 136 ( 8 ), 507 – 518. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000203
Ashton, G. D. ( 1989 ). Thin ice growth. Water Resources Research, 25 ( 3 ), 564 – 566. https://doi.org/10.1029/WR025i003p00564
Bai, X., Wang, J., Schwab, D. J., Yang, Y., Luo, L., Leshkevich, G. A., & Liu, S. ( 2013 ). Modeling 1993–2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM. Ocean Modelling, 65, 40 – 63. https://doi.org/10.1016/j.ocemod.2013.02.003
Beletsky, D., Schwab, D. J., Roebber, P. J., McCormick, M. J., Miller, G. S., & Saylor, J. H. ( 2003 ). Modeling wind‐driven circulation during the March 1998 sediment resuspension event in Lake Michigan. Journal of Geophysical Research, 108 ( C2 ), 3038. https://doi.org/10.1029/2001JC001159
Benjamin, S. G., Brown, J. M., & Smirnova, T. G. ( 2016 ). Explicit precipitation‐type diagnosis from a model using a mixed‐phase bulk cloud–precipitation microphysics parameterization. Weather and Forecasting, 31 ( 2 ), 609 – 619. https://doi.org/10.1175/WAF-D-15-0136.1
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., & Manikin, G. S. ( 2016 ). A North American hourly assimilation and model forecast cycle: The rapid refresh. Monthly Weather Review, 144 ( 4 ), 1669 – 1694. https://doi.org/10.1175/MWR-D-15-0242.1
Bilello, M. A. ( 1961 ). Formation, growth, and decay of sea‐ice in the Canadian Arctic Archipelago. Arctic, 14 ( 1 ). https://doi.org/10.14430/arctic3658
Bolsenga, S. J. ( 1969 ). Total albedo of Great Lakes ice. Water Resources Research, 5 ( 5 ), 1132 – 1133. https://doi.org/10.1029/WR005i005p01132
Bolsenga, S. J. ( 1987 ). Note on certain diurnal variations in the albedo of snow and ice. In Seasonal Snowcovers: Physics, Chemistry, Hydrology (p. pp 141‐150). Retrieved from https://link.springer.com/chapter/10.1007%2F978-94-009-3947-9_8
Briegleb, B. P. ( 1992 ). Delta‐Eddington approximation for solar radiation in the NCAR community climate model. Journal of Geophysical Research, 97 ( 92 ), 7603. https://doi.org/10.1029/92JD00291
Chen, C., Beardsley, R., Cowles, G., Qi, J., Lai, Z., Gao, G., et al. ( 2013 ). An unstructured grid, finite‐volume coastal ocean model FVCOM—User manual. Tech. Rep., SMAST/UMASSD‐13‐0701, Sch. for Mar. Sci. and Technol., Univ. of Mass. Dartmouth, New Bedford., 416 pp.
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2019JC01595010.17226/1182010.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;210.1029/WR025i003p0056410.14430/arctic365810.1029/WR005i005p0113210.1029/92JD0029110.5281/zenodo.3516931
container_title Journal of Geophysical Research: Oceans
container_volume 125
container_issue 5
_version_ 1774713581468647424
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/155461 2023-08-20T04:03:10+02:00 Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes Fujisaki-Manome, A. Anderson, E. J. Kessler, J. A. Chu, P. Y. Wang, J. Gronewold, A. D. 2020-05 application/pdf https://hdl.handle.net/2027.42/155461 https://doi.org/10.1029/2019JC015950 unknown National Academies Press Wiley Periodicals, Inc. Fujisaki-Manome, A.; Anderson, E. J.; Kessler, J. A.; Chu, P. Y.; Wang, J.; Gronewold, A. D. (2020). "Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes." Journal of Geophysical Research: Oceans 125(5): n/a-n/a. 2169-9275 2169-9291 https://hdl.handle.net/2027.42/155461 doi:10.1029/2019JC015950 Journal of Geophysical Research: Oceans Munar, A. M., Cavalcanti, J. R., Bravo, J. M., Fan, F. M., da Motta‐Marques, D., & Fragoso, C. R. ( 2018 ). Coupling large‐scale hydrological and hydrodynamic modeling: Toward a better comprehension of watershed‐shallow lake processes. Journal of Hydrology, 564 ( March ), 424 – 441. https://doi.org/10.1016/j.jhydrol.2018.07.045 Lei, R., Heil, P., Wang, J., Zhang, Z., Li, Q., & Li, N. ( 2016 ). Characterization of sea‐ice kinematic in the Arctic outflow region using buoy data. Polar Research, 1, 1 – 15. Lei, R., Tian‐kunze, X., Li, B., Heil, P., Wang, J., Zeng, J., & Tian, Z. ( 2017 ). Cold regions science and technology characterization of summer Arctic sea ice morphology in the 135°–175°W sector using multi‐scale methods. Cold Regions Science and Technology, 133, 108 – 120. https://doi.org/10.1016/j.coldregions.2016.10.009 Liu, Z., Zhang, H., & Liang, Q. ( 2019 ). A coupled hydrological and hydrodynamic model for flood simulation. Hydrology Research, 50 ( 2 ), 589 – 606. https:/10.1016/doi.org/10.2166/nh.2018.090 Luo, L., Wang, J., Schwab, D. J., Vanderploeg, H., Leshkevich, G., Bai, X., Hu, H., & Wang, D. ( 2012 ). Simulating the 1998 spring bloom in Lake Michigan using a coupled physical‐biological model. Journal of Geophysical Research, 117. https://doi.org/10.1029/2012JC008216 Mason, L. A., Riseng, C. M., Gronewold, A. D., Rutherford, E. S., Wang, J., Clites, A., Smith, S. D. P., & McIntyre, P. B. ( 2016 ). Fine‐scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes. Climatic Change, 138 ( 1–2 ), 71 – 83. https://doi.org/10.1007/s10584-016-1721-2 Maykut, G. A., & McPhee, M. G. ( 1995 ). Solar heating of the arctic mixed layer. Journal of Geophysical Research, 100 ( C12 ), 24,691 – 24,703. Mellor, G. L., & Blumberg, A. ( 2004 ). Wave breaking and ocean surface layer thermal response. Journal of Physical Oceanography, 34, 693 – 698. https://doi.org/10.1175/2517.1 Mellor, G. L., & Yamada, T. ( 1982 ). Development of a turbulent closure model for geophysical fluid problems. Reviews of Geophysics, 20 ( 4 ), 851 – 875. National Research Council ( 2007 ). Water resources and the global hydrologic cycle overview. In Earth science and applications from space: National imperatives for the next decade and beyond, (pp. 1 – 428 ). Washington, DC: National Academies Press. https://doi.org/10.17226/11820 Niu, Q., Xia, M., Rutherford, E. S., Mason, D. M., Anderson, E. J., & Schwab, D. J. ( 2015 ). Investigation of interbasin exchange and interannual variability in Lake Erie using an unstructured‐grid hydrodynamic model. Journal of Geophysical Research: Oceans, 120, 2212 – 2232. https://doi.org/10.1002/2014JC010457. Notaro, M., Bennington, V., & Lofgren, B. ( 2015 ). Dynamical downscaling‐based projections of great lakes water levels. Journal of Climate, 28 ( 24 ), 9721 – 9745. https://doi.org/10.1175/JCLI-D-14-00847.1 Notaro, M., Bennington, V., & Vavrus, S. ( 2015 ). Dynamically downscaled projections of lake‐effect snow in the Great Lakes basin. Journal of Climate, 28 ( 4 ), 1661 – 1684. https://doi.org/10.1175/JCLI-D-14-00467.1 Ohata, Y., Toyota, T., & Fraser, A. D. ( 2017 ). The role of snow in the thickening processes of lake ice at Lake Abashiri, Hokkaido, Japan. Tellus, Series A: Dynamic Meteorology and Oceanography, 69 ( 1 ), 1 – 19. https://doi.org/10.1080/16000870.2017.1391655 Olsen, A. ( 2003 ). Snow or rain ?—A matter of wet‐bulb temperature. Uppsala University. Retrieved from http://uu.diva-portal.org/smash/record.jsf?dswid=-6226&pid=diva2%3A968860&c=2&searchType=SIMPLE&language=en&query=arvid+olsen&af=%5B%5D&aq=%5B%5B%5D%5D&aq2=%5B%5B%5D%5D&aqe=%5B%5D&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullTex Quinn, F. H., Assel, R. A., Boyce, D. E., Leshkevich, G. A., Snider, C. R., & Weisnet, D. ( 1978 ). Summary of Great Lakes weather and ice conditions, Winter 1976–77. Ann Arbor: Michigan USA. Retrieved from. https://play.google.com/store/books/details?id=lfsygiofDU8C&rdid=book-lfsygiofDU8C&rdot=1 Shi, L., Ling, F., Foody, G. M., Chen, C., Fang, S., Li, X., Zhang, Y., & Du, Y. ( 2019 ). Permanent disappearance and seasonal fluctuation of urban lake area in Wuhan, China monitored with long time series remotely sensed images from 1987 to 2016. International Journal of Remote Sensing, 40 ( 22 ), 8484 – 8505. https://doi.org/10.1080/01431161.2019.1612119 Smagorinsky, J. ( 1963 ). General circulation experiments with the primitive equations. Monthly Weather Review, 91 ( 3 ), 99 – 164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 Sturm, M., Perovich, D. K., & Holmgren, J. ( 2002 ). Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. Journal of Geophysical Research, 107 ( C10 ), 8043. https://doi.org/10.1029/2000JC000409 Tao, S., Fang, J., Zhao, X., Zhao, S., Shen, H., Hu, H., Tang, Z., Wang, Z., & Guo, Q. ( 2015 ). Rapid loss of lakes on the Mongolian Plateau. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 7 ), 2281 – 2286. https://doi.org/10.1073/pnas.1411748112 Thorndike, A. S., Rothrock, D. A., Maykut, G. A., & Colony, R. ( 1975 ). The thickness distribution of sea ice. Journal of Geophysical Research, 80 ( 33 ), 4501. https://doi.org/10.1029/JC080i033p04501 Wang, J., Bai, X., Hu, H., Clites, A., Colton, M., & Lofgren, B. ( 2012 ). Temporal and spatial variability of Great Lakes ice cover, 1973‐2010. Journal of Climate, 25 ( 4 ), 1318 – 1329. https://doi.org/10.1175/2011JCLI4066.1 Warren, S. G., Rigor, I. G., & Untersteiner, N. ( 1999 ). Snow depth on Arctic sea ice. Journal of Climate, 12, 1814 – 1829. https://doi.org/10.1113/JP275441 Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., Massom, R., Perovich, D., & Sturm, M. ( 2018 ). Snow in the changing sea‐ice systems. Nature Climate Change, 8 ( 11 ), 946 – 953. https://doi.org/10.1038/s41558-018-0286-7 Wiscombe, W. J., & Warren, S. G. ( 1980 ). A model for spectral albedo I: Pure snow. Journal of the Atmospheric Sciences, 37 ( 12 ), 2712 – 2733. https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2 Wuebbles, D., Cardinale, B., Cherkauer, K., Davidson‐Arnott, R., Hellmann, J., Infante, D., et al. ( 2019 ). An assessment of the impacts of climate change on the Great Lakes. Chicago: Illinois. Retrieved from. http://elpc.org/wp-content/uploads/2019/03/Great-Lakes-Climate-Change-Report.pdf Yen, Y.‐C. ( 1981 ). Review of thermal properties of snow, ice and sea ice. New Hampshire, USA. Retrieved from: Hanover. https://usace.contentdm.oclc.org/digital/api/collection/p266001coll1/id/7366/download Alexander, D., Shulmeister, J., & Davies, T. ( 2011 ). High basal melting rates within high‐precipitation temperate glaciers. Journal of Glaciology, 57 ( 205 ), 789 – 795. https://doi.org/10.3189/002214311798043726 Anderson, B., Mackintosh, A., Stumm, D., George, L., Kerr, T., Winter‐Billington, A., & Fitzsimons, S. ( 2010 ). Climate sensitivity of a high‐precipitation glacier in New Zealand. Journal of Glaciology, 56 ( 195 ), 114 – 128. https://doi.org/10.3189/002214310791190929 Anderson, E., Fujisaki-Manome, A., Kessler, J., Lang, G., Chu, P., Kelley, J., Chen, Y., & Wang, J. ( 2018 ). Ice forecasting in the next‐generation Great Lakes Operational Forecast System (GLOFS). Journal of Marine Science and Engineering, 6 ( 4 ) 17 pages, 123. https://doi.org/10.3390/jmse6040123 Anderson, E. J., Bechle, A. J., Wu, C. H., Schwab, D. J., Mann, G. E., & Lombardy, K. A. ( 2015 ). Reconstruction of a meteotsunami in Lake Erie on 27 May 2012: Roles of atmospheric conditions on hydrodynamic response in enclosed basins. Journal of Geophysical Research, 120, 1 – 16. https://doi.org/10.1002/2014JC010564 Anderson, E. J., & Schwab, D. J. ( 2012 ). Contaminant transport and spill reference tables for the St. Clair River. Marine Technology Society Journal, 46 ( 5 ), 34 – 47. https://doi.org/10.4031/MTSJ.46.5.4 Anderson, E. J., & Schwab, D. J. ( 2013 ). Predicting the oscillating bi‐directional exchange flow in the Straits of Mackinac. Journal of Great Lakes Research, 39 ( 4 ), 663 – 671. https://doi.org/10.1016/j.jglr.2013.09.001 Anderson, E. J., Schwab, D. J., & Lang, G. A. ( 2010 ). Real‐time hydraulic and hydrodynamic model of the St. Clair River, Lake St. Clair, Detroit River System. Journal of Hydraulic Engineering, 136 ( 8 ), 507 – 518. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000203 Ashton, G. D. ( 1989 ). Thin ice growth. Water Resources Research, 25 ( 3 ), 564 – 566. https://doi.org/10.1029/WR025i003p00564 Bai, X., Wang, J., Schwab, D. J., Yang, Y., Luo, L., Leshkevich, G. A., & Liu, S. ( 2013 ). Modeling 1993–2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM. Ocean Modelling, 65, 40 – 63. https://doi.org/10.1016/j.ocemod.2013.02.003 Beletsky, D., Schwab, D. J., Roebber, P. J., McCormick, M. J., Miller, G. S., & Saylor, J. H. ( 2003 ). Modeling wind‐driven circulation during the March 1998 sediment resuspension event in Lake Michigan. Journal of Geophysical Research, 108 ( C2 ), 3038. https://doi.org/10.1029/2001JC001159 Benjamin, S. G., Brown, J. M., & Smirnova, T. G. ( 2016 ). Explicit precipitation‐type diagnosis from a model using a mixed‐phase bulk cloud–precipitation microphysics parameterization. Weather and Forecasting, 31 ( 2 ), 609 – 619. https://doi.org/10.1175/WAF-D-15-0136.1 Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., & Manikin, G. S. ( 2016 ). A North American hourly assimilation and model forecast cycle: The rapid refresh. Monthly Weather Review, 144 ( 4 ), 1669 – 1694. https://doi.org/10.1175/MWR-D-15-0242.1 Bilello, M. A. ( 1961 ). Formation, growth, and decay of sea‐ice in the Canadian Arctic Archipelago. Arctic, 14 ( 1 ). https://doi.org/10.14430/arctic3658 Bolsenga, S. J. ( 1969 ). Total albedo of Great Lakes ice. Water Resources Research, 5 ( 5 ), 1132 – 1133. https://doi.org/10.1029/WR005i005p01132 Bolsenga, S. J. ( 1987 ). Note on certain diurnal variations in the albedo of snow and ice. In Seasonal Snowcovers: Physics, Chemistry, Hydrology (p. pp 141‐150). Retrieved from https://link.springer.com/chapter/10.1007%2F978-94-009-3947-9_8 Briegleb, B. P. ( 1992 ). Delta‐Eddington approximation for solar radiation in the NCAR community climate model. Journal of Geophysical Research, 97 ( 92 ), 7603. https://doi.org/10.1029/92JD00291 Chen, C., Beardsley, R., Cowles, G., Qi, J., Lai, Z., Gao, G., et al. ( 2013 ). An unstructured grid, finite‐volume coastal ocean model FVCOM—User manual. Tech. Rep., SMAST/UMASSD‐13‐0701, Sch. for Mar. Sci. and Technol., Univ. of Mass. Dartmouth, New Bedford., 416 pp. IndexNoFollow air‐ice‐lake interactions precipitation snow ice Great Lakes Geological Sciences Atmospheric and Oceanic Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1029/2019JC01595010.17226/1182010.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;210.1029/WR025i003p0056410.14430/arctic365810.1029/WR005i005p0113210.1029/92JD0029110.5281/zenodo.3516931 2023-07-31T21:05:44Z Precipitation impacts on ice cover and water temperature in the Laurentian Great Lakes were examined using state‐of‐the‐art coupled ice‐hydrodynamic models. Numerical experiments were conducted for the recent anomalously cold (2014–2015) and warm (2015–2016) winters that were accompanied by high and low ice coverage over the lakes, respectively. The results of numerical experiments showed that snow cover on the ice, which is the manifestation of winter precipitation, reduced the total ice volume (or mean ice thickness) in all of the Great Lakes, shortened the ice duration, and allowed earlier warming of water surface. The reduced ice volume was due to the thermal insulation of snow cover. The surface albedo was also increased by snow cover, but its impact on the delay the melting of ice was overcome by the thermal insulation effect. During major snowstorms, snowfall over the open lake caused notable cooling of the water surface due to latent heat absorption. Overall, the sensible heat flux from rain in spring and summer was found to have negligible impacts on the water surface temperature. Although uncertainties remain in overlake precipitation estimates and model’s representation of snow on the ice, this study demonstrated that winter precipitation, particularly snowfall on the ice and water surfaces, is an important contributing factor in Great Lakes ice production and thermal conditions from late fall to spring.Plain Language SummarySnow and rain impact on ice cover and water temperature in large lakes were studied using a computational model for an example of the Laurentian Great Lakes. It was found that snow cover increased the reflection of solar radiation but at the same time prevented lake ice from the growing, resulting in less formation of ice and slightly earlier melting. The earlier ice melting also allowed earlier warming of the water surface in spring. Major snowstorms caused slight cooling in the water surface temperature because snowflakes absorbed heat when it touched the water surface to melt. ... Article in Journal/Newspaper Arctic Journal of Glaciology Polar Research University of Michigan: Deep Blue Journal of Geophysical Research: Oceans 125 5