A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations

The climate response to atmospheric aerosols, including their effects on dominant modes of climate variability like El Niñoâ Southern Oscillation (ENSO), remains highly uncertain. This is due to several sources of uncertainty, including aerosol emission, transport, removal, vertical distribution, a...

Full description

Bibliographic Details
Published in:Medical Council
Main Authors: Amiri‐farahani, Anahita, Allen, Robert J., Li, King‐fai, Nabat, Pierre, Westervelt, Daniel M.
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge University Press 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/154503
https://doi.org/10.1029/2019JD031832
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/154503
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic teleconnection
Africa
La Nina
climate model
aerosol
biomass
Atmospheric and Oceanic Sciences
Science
spellingShingle teleconnection
Africa
La Nina
climate model
aerosol
biomass
Atmospheric and Oceanic Sciences
Science
Amiri‐farahani, Anahita
Allen, Robert J.
Li, King‐fai
Nabat, Pierre
Westervelt, Daniel M.
A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations
topic_facet teleconnection
Africa
La Nina
climate model
aerosol
biomass
Atmospheric and Oceanic Sciences
Science
description The climate response to atmospheric aerosols, including their effects on dominant modes of climate variability like El Niñoâ Southern Oscillation (ENSO), remains highly uncertain. This is due to several sources of uncertainty, including aerosol emission, transport, removal, vertical distribution, and radiative properties. Here, we conduct coupled oceanâ atmosphere simulations with two versions of the Community Earth System Model (CESM) driven by semiempirical fineâ mode aerosol direct radiative effects without dust and sea salt. Aerosol atmospheric heating off the west coast of Africaâ most of which is due to biomass burningâ leads to a significant atmospheric dynamical response, including localized ascent and upperâ level divergence. Coupled Model Intercomparison Project version 6 (CMIP6) biomass burning simulations support this response. Moreover, CESM shows that the anomalous aerosol heating in the Atlantic triggers an atmospheric teleconnection to the tropical Pacific, including strengthening of the Walker circulation. The easterly trade winds accelerate, and through coupled oceanâ atmosphere processes and the Bjerknes feedback, a La Niñaâ like response develops. Observations also support a relationship between south African biomass burning emissions and ENSO, with La Niña events preceding strong south African biomass burning in boreal fall. Our simulations suggest a possible twoâ way feedback between ENSO and south African biomass burning, with La Niña promoting more biomass burning emissions, which may then strengthen the developing La Niña.Key PointsSouth African biomass burning aerosol locally warms the atmosphereThis heating drives local ascent and divergence, triggering a teleconnection to the PacificThe Pacific Walker circulation strengthens, and a La Niñaâ like response develops Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/154503/1/jgrd56111_am.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/154503/2/jgrd56111-sup-0001-Figure_SI-S01.pdf ...
format Article in Journal/Newspaper
author Amiri‐farahani, Anahita
Allen, Robert J.
Li, King‐fai
Nabat, Pierre
Westervelt, Daniel M.
author_facet Amiri‐farahani, Anahita
Allen, Robert J.
Li, King‐fai
Nabat, Pierre
Westervelt, Daniel M.
author_sort Amiri‐farahani, Anahita
title A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations
title_short A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations
title_full A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations
title_fullStr A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations
title_full_unstemmed A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations
title_sort la niã±aâ like climate response to south african biomass burning aerosol in cesm simulations
publisher Cambridge University Press
publishDate 2020
url https://hdl.handle.net/2027.42/154503
https://doi.org/10.1029/2019JD031832
geographic Pacific
geographic_facet Pacific
genre Arctic
genre_facet Arctic
op_relation Amiri‐farahani, Anahita
Allen, Robert J.; Li, King‐fai
Nabat, Pierre; Westervelt, Daniel M. (2020). "A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations." Journal of Geophysical Research: Atmospheres 125(6): n/a-n/a.
2169-897X
2169-8996
https://hdl.handle.net/2027.42/154503
doi:10.1029/2019JD031832
Journal of Geophysical Research: Atmospheres
Rotstayn, L. D., & Lohmann, U. ( 2002 ). Tropical rainfall trends and the indirect aerosol effect. Journal Climate, 15, 2103 â 2116.
Stier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O., Chin, M., & Zhou, C. ( 2013 ). Host model uncertainties in aerosol radiative forcing estimates: Results from the AeroCom prescribed intercomparison study. Atmospheric Chemistry and Physics, 13 ( 6 ), 3245 â 3270. https://doi.org/10.5194/acp-13-3245-2013
Stjern, C. W., Lund, M. T., Samset, B. H., Myhre, G., Forster, P. M., Andrews, T., & Voulgarakis, A. ( 2019 ). Arctic amplification response to individual climate drivers. Journal of Geophysical Research: Atmospheres, 124, 6698 â 6717. https://doi.org/10.1029/2018JD029726
Stjern, C. W., Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ã ., Andrews, T., & Voulgarakis, A. ( 2017 ). Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. Journal of Geophysical Research: Atmospheres, 122, 11,462 â 11,481. https://doi.org/10.1002/2017JD027326
Takahashi, C., & Watanabe, M. ( 2016 ). Pacific trade winds accelerated by aerosol forcing over the past two decades. Nature Climate Change, 6, 768EP. https://doi.org/10.1038/nclimate2996
Tang, T., Shindell, D., Samset, B. H., Boucher, O., Forster, P. M., Hodnebrog, Ã ., & Takemura, T. ( 2018 ). Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. Atmospheric Chemistry and Physics, 18 ( 11 ), 8439 â 8452. https://doi.org/10.5194/acp-18-8439-2018
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., & Tie, X. ( 2006 ). Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 6, 1777 â 1813. https://doi.org/10.5194/acp-6-1777-2006
Tosca, M. G., Randerson, J. T., & Zender, C. S. ( 2013 ). Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 13 ( 10 ), 5227 â 5241. https://doi.org/10.5194/acp-13-5227-2013
Trenberth, K. E., & Caron, J. M. ( 2000 ). The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. Journal of Climate, 13 ( 24 ), 4358 â 4365. https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2
Undorf, S., Polson, D., Bollasina, M. A., Ming, Y., Schurer, A., & Hegerl, G. C. ( 2018 ). Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian monsoon precipitation. Journal of Geophysical Research: Atmospheres, 123, 4871 â 4889. https://doi.org/10.1029/2017JD027711
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A. L., Field, R. D., & van der Werf, G. R. ( 2017 ). Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750â 2015). Geoscientific Model Development, 10 ( 9 ), 3329 â 3357. https://doi.org/10.5194/gmd-10-3329-2017
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., & van Leeuwen, T. T. ( 2010 ). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997â 2009). Atmospheric Chemistry and Physics, 10, 11,707 â 11,735. https://doi.org/10.5194/acp-10-11707-2010
van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., & Dolman, A. J. ( 2008 ). Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles, 22, GB3028. https://doi.org/10.1029/2007GB003122
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., & Kasibhatla, P. S. ( 2017 ). Global fire emissions estimates during 1997â 2016. Earth System Science Data, 9 ( 2 ), 697 â 720. https://doi.org/10.5194/essd-9-697-2017
Wang, C., Kucharski, F., Barimalala, R., & Bracco, A. ( 2009 ). Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteorologische Zeitschrift, 18 ( 4 ), 445 â 454. https://doi.org/10.1127/0941-2948/2009/0394
Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Randerson, J. T., & Hess, P. G. ( 2012 ). The changing radiative forcing of fires: Global model estimates for past, present and future. Atmospheric Chemistry and Physics, 12 ( 22 ), 10,857 â 10,886. https://doi.org/10.5194/acp-12-10857-2012
Westervelt, D. M., Conley, A. J., Fiore, A. M., Lamarque, J. F., Shindell, D. T., Previdi, M., & Horowitz, L. W. ( 2018 ). Connecting regional aerosol emissions reductions to local and remote precipitation responses. Atmospheric Chemistry and Physics, 18 ( 16 ), 12,461 â 12,475. https://doi.org/10.5194/acp-18-12461-2018
Westervelt, D. M., Mascioli, N. R., Fiore, A. M., Conley, A. J., Lamarque, J.â F., Shindell, D. T., Faluvegi, G., Previdi, M., Correa, G., & Horowitz, L. W. ( 2019 ). Local and remote mean and extreme temperature response to regional aerosol emissions reductions. Atmospheric Chemistry and Physics Discussions. https://doi.org/10.5194/acp-2019-1096
Wilcox, L. J., Dunstone, N., Lewinschal, A., Bollasina, M., Ekman, A. M. L., & Highwood, E. J. ( 2019 ). Mechanisms for a remote response to Asian anthropogenic aerosol in boreal winter. Atmospheric Chemistry and Physics, 19 ( 14 ), 9081 â 9095. https://doi.org/10.5194/acp-19-9081-2019
Wilcox, L. J., Highwood, E. J., & Dunstone, N. J. ( 2013 ). The influence of anthropogenic aerosol on multiâ decadal variations of historical global climate. Environmental Research Letters, 8, 24033. https://doi.org/10.1088/1748-9326/8/2/024033
Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., & Rogers, R. R. ( 2013 ). The global 3â D distribution of tropospheric aerosols as characterized by CALIOP. Atmospheric Chemistry and Physics, 13 ( 6 ), 3345 â 3361. https://doi.org/10.5194/acp-13-3345-2013
Yang, Y., Russell, L. M., Lou, S., Lamjiri, M. A., Liu, Y., Singh, B., & Ghan, S. J. ( 2016 ). Changes in sea salt emissions enhance ENSO variability. Journal of Climate, 29 ( 23 ), 8575 â 8588. https://doi.org/10.1175/JCLI-D-16-0237.1
Yu, H., Chin, M., Winker, D. M., Omar, A. H., Liu, Z., Kittaka, C., & Diehl, T. ( 2010 ). Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. Journal of Geophysical Research, 115, D00H30. https://doi.org/10.1029/2009JD013364
Zarzycki, C. M., & Bond, T. C. ( 2010 ). How much can the vertical distribution of black carbon affect its global direct radiative forcing? Geophysical Research Letters, 37, L20807. https://doi.org/10.1029/2010GL044555
Zhang, G. J., & McFarlane, N. A. ( 1995 ). Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center generalâ circulation model. Atmosphereâ Ocean, 33, 407 â 446.
Zuidema, P., Redemann, J., Haywood, J., Wood, R., Piketh, S., Hipondoka, M., & Formenti, P. ( 2016 ). Smoke and clouds above the southeast Atlantic: Upcoming field campaigns probe absorbing aerosol’s impact on climate. Bulletin of the American Meteorological Society, 97 ( 7 ), 1131 â 1135. https://doi.org/10.1175/BAMS-D-15-00082.1
Zuidema, P., Sedlacek III, A. J., Flynn, C., Springston, S., Delgadillo, R., Zhang, J., & Muradyan, P. ( 2018 ). The Ascension Island boundary layer in the remote southeast Atlantic is often smoky. Geophysical Research Letters, 45, 4456 â 4465. https://doi.org/10.1002/2017GL076926
Acosta Navarro, J. C., Varma, V., Riipinen, I., Seland, à ., KirkevÃ¥g, A., Struthers, H., & Ekman, A. M. L. ( 2016 ). Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience, 9 ( 4 ), 277 â 281. https://doi.org/10.1038/ngeo2673
Adebiyi, A. A., & Zuidema, P. ( 2016 ). The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quarterly Journal of the Royal Meteorological Society, 142, 1574 â 1589. https://doi.org/10.1002/qj.2765
Adler, R., Huffman, G. J., Chang, A., & Ferraro, R. ( 2003 ). The versionâ 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979â present). Journal of Hydrometeorology, 4 ( 6 ), 1147 â 1167.
Allan, R. J., & Ansell, T. J. ( 2006 ). A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850â 2004. Journal Climate, 19, 5816 â 5842.
Allen, R. J. ( 2015 ). A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol reductions. Journal of Geophysical Research: Atmospheres, 120, 9087 â 9102. https://doi.org/10.1002/2015JD023623
Allen, R. J., & Ajoku, O. ( 2016 ). Future aerosol reduction and widening of the northern tropical belt. Journal of Geophysical Research: Atmospheres, 121, 6765 â 6786. https://doi.org/10.1002/2016JD024803
Allen, R. J., Amiriâ Farahani, A., Lamarque, J. F., Smith, C., Shindell, D., Hassan, T., & Chung, C. E. ( 2019 ). Observationallyâ constrained aerosolâ cloud semiâ direct effects. npj Climate and Atmospheric Science, 2, 16.
Allen, R. J., Evan, A. T., & Booth, B. B. B. ( 2015 ). Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. Journal of Climate, 28 ( 20 ), 8219 â 8246. https://doi.org/10.1175/JCLI-D-15-0148.1
Allen, R. J., & Landuyt, W. ( 2014 ). The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport. Journal of Geophysical Research: Atmospheres, 119, 4808 â 4835. https://doi.org/10.1002/2014JD021595
Allen, R. J., Norris, J. R., & Kovilakam, M. ( 2014 ). Influence of anthropogenic aerosols and the Pacific Decadal Oscillation of tropical belt width. Nature Geoscience, 7, 270 â 274.
Allen, R. J., & Sherwood, S. C. ( 2011 ). The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Climate Dynamite, 36, 1959 â 1978. https://doi.org/10.1007/s00382-010-0898-8
Allen, R. J., Sherwood, S. C., Norris, J. R., & Zender, C. S. ( 2012a ). The equilibrium response to idealized thermal forcings in a comprehensive GCM: Implications for recent tropical expansion. Atmospheric Chemistry and Physics, 12, 4795 â 4816. https://doi.org/10.5194/acp-12-4795-2012
Allen, R. J., Sherwood, S. C., Norris, J. R., & Zender, C. S. ( 2012b ). Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350 â 354. https://doi.org/10.1038/nature11097
Andela, N., & van der Werf, G. R. ( 2014 ). Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 4 ( 9 ), 791 â 795. https://doi.org/10.1038/nclimate2313
Banâ Weiss, G. A., Cao, L., Bala, G., & Caldeira, K. ( 2012 ). Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dynamite, 38, 897 â 911. https://doi.org/10.1007/s00382-011-1052-y
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2019JD03183210.1002/2015JD02362310.1029/92JD00291
container_title Medical Council
container_issue 21
container_start_page 216
op_container_end_page 230
_version_ 1774713592201871360
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/154503 2023-08-20T04:03:11+02:00 A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations Amiri‐farahani, Anahita Allen, Robert J. Li, King‐fai Nabat, Pierre Westervelt, Daniel M. 2020-03-27 application/pdf https://hdl.handle.net/2027.42/154503 https://doi.org/10.1029/2019JD031832 unknown Cambridge University Press Wiley Periodicals, Inc. Amiri‐farahani, Anahita Allen, Robert J.; Li, King‐fai Nabat, Pierre; Westervelt, Daniel M. (2020). "A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations." Journal of Geophysical Research: Atmospheres 125(6): n/a-n/a. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/154503 doi:10.1029/2019JD031832 Journal of Geophysical Research: Atmospheres Rotstayn, L. D., & Lohmann, U. ( 2002 ). Tropical rainfall trends and the indirect aerosol effect. Journal Climate, 15, 2103 â 2116. Stier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O., Chin, M., & Zhou, C. ( 2013 ). Host model uncertainties in aerosol radiative forcing estimates: Results from the AeroCom prescribed intercomparison study. Atmospheric Chemistry and Physics, 13 ( 6 ), 3245 â 3270. https://doi.org/10.5194/acp-13-3245-2013 Stjern, C. W., Lund, M. T., Samset, B. H., Myhre, G., Forster, P. M., Andrews, T., & Voulgarakis, A. ( 2019 ). Arctic amplification response to individual climate drivers. Journal of Geophysical Research: Atmospheres, 124, 6698 â 6717. https://doi.org/10.1029/2018JD029726 Stjern, C. W., Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, à ., Andrews, T., & Voulgarakis, A. ( 2017 ). Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. Journal of Geophysical Research: Atmospheres, 122, 11,462 â 11,481. https://doi.org/10.1002/2017JD027326 Takahashi, C., & Watanabe, M. ( 2016 ). Pacific trade winds accelerated by aerosol forcing over the past two decades. Nature Climate Change, 6, 768EP. https://doi.org/10.1038/nclimate2996 Tang, T., Shindell, D., Samset, B. H., Boucher, O., Forster, P. M., Hodnebrog, à ., & Takemura, T. ( 2018 ). Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. Atmospheric Chemistry and Physics, 18 ( 11 ), 8439 â 8452. https://doi.org/10.5194/acp-18-8439-2018 Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., & Tie, X. ( 2006 ). Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 6, 1777 â 1813. https://doi.org/10.5194/acp-6-1777-2006 Tosca, M. G., Randerson, J. T., & Zender, C. S. ( 2013 ). Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 13 ( 10 ), 5227 â 5241. https://doi.org/10.5194/acp-13-5227-2013 Trenberth, K. E., & Caron, J. M. ( 2000 ). The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. Journal of Climate, 13 ( 24 ), 4358 â 4365. https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2 Undorf, S., Polson, D., Bollasina, M. A., Ming, Y., Schurer, A., & Hegerl, G. C. ( 2018 ). Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian monsoon precipitation. Journal of Geophysical Research: Atmospheres, 123, 4871 â 4889. https://doi.org/10.1029/2017JD027711 van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A. L., Field, R. D., & van der Werf, G. R. ( 2017 ). Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750â 2015). Geoscientific Model Development, 10 ( 9 ), 3329 â 3357. https://doi.org/10.5194/gmd-10-3329-2017 van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., & van Leeuwen, T. T. ( 2010 ). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997â 2009). Atmospheric Chemistry and Physics, 10, 11,707 â 11,735. https://doi.org/10.5194/acp-10-11707-2010 van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., & Dolman, A. J. ( 2008 ). Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles, 22, GB3028. https://doi.org/10.1029/2007GB003122 van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., & Kasibhatla, P. S. ( 2017 ). Global fire emissions estimates during 1997â 2016. Earth System Science Data, 9 ( 2 ), 697 â 720. https://doi.org/10.5194/essd-9-697-2017 Wang, C., Kucharski, F., Barimalala, R., & Bracco, A. ( 2009 ). Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteorologische Zeitschrift, 18 ( 4 ), 445 â 454. https://doi.org/10.1127/0941-2948/2009/0394 Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Randerson, J. T., & Hess, P. G. ( 2012 ). The changing radiative forcing of fires: Global model estimates for past, present and future. Atmospheric Chemistry and Physics, 12 ( 22 ), 10,857 â 10,886. https://doi.org/10.5194/acp-12-10857-2012 Westervelt, D. M., Conley, A. J., Fiore, A. M., Lamarque, J. F., Shindell, D. T., Previdi, M., & Horowitz, L. W. ( 2018 ). Connecting regional aerosol emissions reductions to local and remote precipitation responses. Atmospheric Chemistry and Physics, 18 ( 16 ), 12,461 â 12,475. https://doi.org/10.5194/acp-18-12461-2018 Westervelt, D. M., Mascioli, N. R., Fiore, A. M., Conley, A. J., Lamarque, J.â F., Shindell, D. T., Faluvegi, G., Previdi, M., Correa, G., & Horowitz, L. W. ( 2019 ). Local and remote mean and extreme temperature response to regional aerosol emissions reductions. Atmospheric Chemistry and Physics Discussions. https://doi.org/10.5194/acp-2019-1096 Wilcox, L. J., Dunstone, N., Lewinschal, A., Bollasina, M., Ekman, A. M. L., & Highwood, E. J. ( 2019 ). Mechanisms for a remote response to Asian anthropogenic aerosol in boreal winter. Atmospheric Chemistry and Physics, 19 ( 14 ), 9081 â 9095. https://doi.org/10.5194/acp-19-9081-2019 Wilcox, L. J., Highwood, E. J., & Dunstone, N. J. ( 2013 ). The influence of anthropogenic aerosol on multiâ decadal variations of historical global climate. Environmental Research Letters, 8, 24033. https://doi.org/10.1088/1748-9326/8/2/024033 Winker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., & Rogers, R. R. ( 2013 ). The global 3â D distribution of tropospheric aerosols as characterized by CALIOP. Atmospheric Chemistry and Physics, 13 ( 6 ), 3345 â 3361. https://doi.org/10.5194/acp-13-3345-2013 Yang, Y., Russell, L. M., Lou, S., Lamjiri, M. A., Liu, Y., Singh, B., & Ghan, S. J. ( 2016 ). Changes in sea salt emissions enhance ENSO variability. Journal of Climate, 29 ( 23 ), 8575 â 8588. https://doi.org/10.1175/JCLI-D-16-0237.1 Yu, H., Chin, M., Winker, D. M., Omar, A. H., Liu, Z., Kittaka, C., & Diehl, T. ( 2010 ). Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. Journal of Geophysical Research, 115, D00H30. https://doi.org/10.1029/2009JD013364 Zarzycki, C. M., & Bond, T. C. ( 2010 ). How much can the vertical distribution of black carbon affect its global direct radiative forcing? Geophysical Research Letters, 37, L20807. https://doi.org/10.1029/2010GL044555 Zhang, G. J., & McFarlane, N. A. ( 1995 ). Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center generalâ circulation model. Atmosphereâ Ocean, 33, 407 â 446. Zuidema, P., Redemann, J., Haywood, J., Wood, R., Piketh, S., Hipondoka, M., & Formenti, P. ( 2016 ). Smoke and clouds above the southeast Atlantic: Upcoming field campaigns probe absorbing aerosol’s impact on climate. Bulletin of the American Meteorological Society, 97 ( 7 ), 1131 â 1135. https://doi.org/10.1175/BAMS-D-15-00082.1 Zuidema, P., Sedlacek III, A. J., Flynn, C., Springston, S., Delgadillo, R., Zhang, J., & Muradyan, P. ( 2018 ). The Ascension Island boundary layer in the remote southeast Atlantic is often smoky. Geophysical Research Letters, 45, 4456 â 4465. https://doi.org/10.1002/2017GL076926 Acosta Navarro, J. C., Varma, V., Riipinen, I., Seland, à ., KirkevÃ¥g, A., Struthers, H., & Ekman, A. M. L. ( 2016 ). Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience, 9 ( 4 ), 277 â 281. https://doi.org/10.1038/ngeo2673 Adebiyi, A. A., & Zuidema, P. ( 2016 ). The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quarterly Journal of the Royal Meteorological Society, 142, 1574 â 1589. https://doi.org/10.1002/qj.2765 Adler, R., Huffman, G. J., Chang, A., & Ferraro, R. ( 2003 ). The versionâ 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979â present). Journal of Hydrometeorology, 4 ( 6 ), 1147 â 1167. Allan, R. J., & Ansell, T. J. ( 2006 ). A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850â 2004. Journal Climate, 19, 5816 â 5842. Allen, R. J. ( 2015 ). A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol reductions. Journal of Geophysical Research: Atmospheres, 120, 9087 â 9102. https://doi.org/10.1002/2015JD023623 Allen, R. J., & Ajoku, O. ( 2016 ). Future aerosol reduction and widening of the northern tropical belt. Journal of Geophysical Research: Atmospheres, 121, 6765 â 6786. https://doi.org/10.1002/2016JD024803 Allen, R. J., Amiriâ Farahani, A., Lamarque, J. F., Smith, C., Shindell, D., Hassan, T., & Chung, C. E. ( 2019 ). Observationallyâ constrained aerosolâ cloud semiâ direct effects. npj Climate and Atmospheric Science, 2, 16. Allen, R. J., Evan, A. T., & Booth, B. B. B. ( 2015 ). Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. Journal of Climate, 28 ( 20 ), 8219 â 8246. https://doi.org/10.1175/JCLI-D-15-0148.1 Allen, R. J., & Landuyt, W. ( 2014 ). The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport. Journal of Geophysical Research: Atmospheres, 119, 4808 â 4835. https://doi.org/10.1002/2014JD021595 Allen, R. J., Norris, J. R., & Kovilakam, M. ( 2014 ). Influence of anthropogenic aerosols and the Pacific Decadal Oscillation of tropical belt width. Nature Geoscience, 7, 270 â 274. Allen, R. J., & Sherwood, S. C. ( 2011 ). The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Climate Dynamite, 36, 1959 â 1978. https://doi.org/10.1007/s00382-010-0898-8 Allen, R. J., Sherwood, S. C., Norris, J. R., & Zender, C. S. ( 2012a ). The equilibrium response to idealized thermal forcings in a comprehensive GCM: Implications for recent tropical expansion. Atmospheric Chemistry and Physics, 12, 4795 â 4816. https://doi.org/10.5194/acp-12-4795-2012 Allen, R. J., Sherwood, S. C., Norris, J. R., & Zender, C. S. ( 2012b ). Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350 â 354. https://doi.org/10.1038/nature11097 Andela, N., & van der Werf, G. R. ( 2014 ). Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 4 ( 9 ), 791 â 795. https://doi.org/10.1038/nclimate2313 Banâ Weiss, G. A., Cao, L., Bala, G., & Caldeira, K. ( 2012 ). Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dynamite, 38, 897 â 911. https://doi.org/10.1007/s00382-011-1052-y IndexNoFollow teleconnection Africa La Nina climate model aerosol biomass Atmospheric and Oceanic Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1029/2019JD03183210.1002/2015JD02362310.1029/92JD00291 2023-07-31T21:11:42Z The climate response to atmospheric aerosols, including their effects on dominant modes of climate variability like El Niñoâ Southern Oscillation (ENSO), remains highly uncertain. This is due to several sources of uncertainty, including aerosol emission, transport, removal, vertical distribution, and radiative properties. Here, we conduct coupled oceanâ atmosphere simulations with two versions of the Community Earth System Model (CESM) driven by semiempirical fineâ mode aerosol direct radiative effects without dust and sea salt. Aerosol atmospheric heating off the west coast of Africaâ most of which is due to biomass burningâ leads to a significant atmospheric dynamical response, including localized ascent and upperâ level divergence. Coupled Model Intercomparison Project version 6 (CMIP6) biomass burning simulations support this response. Moreover, CESM shows that the anomalous aerosol heating in the Atlantic triggers an atmospheric teleconnection to the tropical Pacific, including strengthening of the Walker circulation. The easterly trade winds accelerate, and through coupled oceanâ atmosphere processes and the Bjerknes feedback, a La Niñaâ like response develops. Observations also support a relationship between south African biomass burning emissions and ENSO, with La Niña events preceding strong south African biomass burning in boreal fall. Our simulations suggest a possible twoâ way feedback between ENSO and south African biomass burning, with La Niña promoting more biomass burning emissions, which may then strengthen the developing La Niña.Key PointsSouth African biomass burning aerosol locally warms the atmosphereThis heating drives local ascent and divergence, triggering a teleconnection to the PacificThe Pacific Walker circulation strengthens, and a La Niñaâ like response develops Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/154503/1/jgrd56111_am.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/154503/2/jgrd56111-sup-0001-Figure_SI-S01.pdf ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Pacific Medical Council 21 216 230