Local climate determines vulnerability to camouflage mismatch in snowshoe hares

AimPhenological mismatches, when life‐events become mistimed with optimal environmental conditions, have become increasingly common under climate change. Population‐level susceptibility to mismatches depends on how phenology and phenotypic plasticity vary across a species’ distributional range. Here...

Full description

Bibliographic Details
Published in:International Journal of Climatology
Main Authors: Zimova, Marketa, Sirén, Alexej P. K., Nowak, Joshua J., Bryan, Alexander M., Ivan, Jacob S., Morelli, Toni Lyn, Suhrer, Skyler L., Whittington, Jesse, Mills, L. Scott
Format: Article in Journal/Newspaper
Language:unknown
Published: National Snow and Ice Data Center 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/154444
https://doi.org/10.1111/geb.13049
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/154444
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic phenotypic plasticity
adaptation
camouflage mismatch
climate change
latitudinal gradient
phenological mismatch
range edge
snow
snowshoe hares
Ecology and Evolutionary Biology
Geology and Earth Sciences
Science
spellingShingle phenotypic plasticity
adaptation
camouflage mismatch
climate change
latitudinal gradient
phenological mismatch
range edge
snow
snowshoe hares
Ecology and Evolutionary Biology
Geology and Earth Sciences
Science
Zimova, Marketa
Sirén, Alexej P. K.
Nowak, Joshua J.
Bryan, Alexander M.
Ivan, Jacob S.
Morelli, Toni Lyn
Suhrer, Skyler L.
Whittington, Jesse
Mills, L. Scott
Local climate determines vulnerability to camouflage mismatch in snowshoe hares
topic_facet phenotypic plasticity
adaptation
camouflage mismatch
climate change
latitudinal gradient
phenological mismatch
range edge
snow
snowshoe hares
Ecology and Evolutionary Biology
Geology and Earth Sciences
Science
description AimPhenological mismatches, when life‐events become mistimed with optimal environmental conditions, have become increasingly common under climate change. Population‐level susceptibility to mismatches depends on how phenology and phenotypic plasticity vary across a species’ distributional range. Here, we quantify the environmental drivers of colour moult phenology, phenotypic plasticity, and the extent of phenological mismatch in seasonal camouflage to assess vulnerability to mismatch in a common North American mammal.LocationNorth America.Time period2010–2017.Major taxa studiedSnowshoe hare (Lepus americanus).MethodsWe used > 5,500 by‐catch photographs of snowshoe hares from 448 remote camera trap sites at three independent study areas. To quantify moult phenology and phenotypic plasticity, we used multinomial logistic regression models that incorporated geospatial and high‐resolution climate data. We estimated occurrence of camouflage mismatch between hares’ coat colour and the presence and absence of snow over 7 years of monitoring.ResultsSpatial and temporal variation in moult phenology depended on local climate conditions more so than on latitude. First, hares in colder, snowier areas moulted earlier in the fall and later in the spring. Next, hares exhibited phenotypic plasticity in moult phenology in response to annual variation in temperature and snow duration, especially in the spring. Finally, the occurrence of camouflage mismatch varied in space and time; white hares on dark, snowless background occurred primarily during low‐snow years in regions characterized by shallow, short‐lasting snowpack.Main conclusionsLong‐term climate and annual variation in snow and temperature determine coat colour moult phenology in snowshoe hares. In most areas, climate change leads to shorter snow seasons, but the occurrence of camouflage mismatch varies across the species’ range. Our results underscore the population‐specific susceptibility to climate change‐induced stressors and the necessity to understand this ...
format Article in Journal/Newspaper
author Zimova, Marketa
Sirén, Alexej P. K.
Nowak, Joshua J.
Bryan, Alexander M.
Ivan, Jacob S.
Morelli, Toni Lyn
Suhrer, Skyler L.
Whittington, Jesse
Mills, L. Scott
author_facet Zimova, Marketa
Sirén, Alexej P. K.
Nowak, Joshua J.
Bryan, Alexander M.
Ivan, Jacob S.
Morelli, Toni Lyn
Suhrer, Skyler L.
Whittington, Jesse
Mills, L. Scott
author_sort Zimova, Marketa
title Local climate determines vulnerability to camouflage mismatch in snowshoe hares
title_short Local climate determines vulnerability to camouflage mismatch in snowshoe hares
title_full Local climate determines vulnerability to camouflage mismatch in snowshoe hares
title_fullStr Local climate determines vulnerability to camouflage mismatch in snowshoe hares
title_full_unstemmed Local climate determines vulnerability to camouflage mismatch in snowshoe hares
title_sort local climate determines vulnerability to camouflage mismatch in snowshoe hares
publisher National Snow and Ice Data Center
publishDate 2020
url https://hdl.handle.net/2027.42/154444
https://doi.org/10.1111/geb.13049
genre Arctic
genre_facet Arctic
op_relation Zimova, Marketa; Sirén, Alexej P. K.
Nowak, Joshua J.; Bryan, Alexander M.; Ivan, Jacob S.; Morelli, Toni Lyn; Suhrer, Skyler L.; Whittington, Jesse; Mills, L. Scott (2020). "Local climate determines vulnerability to camouflage mismatch in snowshoe hares." Global Ecology and Biogeography (3): 503-515.
1466-822X
1466-8238
https://hdl.handle.net/2027.42/154444
doi:10.1111/geb.13049
Global Ecology and Biogeography
Senner, N. R., Stager, M., & Sandercock, B. K. ( 2017 ). Ecological mismatches are moderated by local conditions for two populations of a long‐distance migratory bird. Oikos, 126, 61 – 72. https://doi.org/10.1111/oik.03325
Livneh, B., Bohn, T. J., Pierce, D. W., Munoz‐Arriola, F., Nijssen, B., Vose, R., … Brekke, L. ( 2015 ). A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Scientific Data, 2, 150042. https://doi.org/10.1038/sdata.2015.42
Lute, A. C., Abatzoglou, J. T., & Hegewisch, K. C. ( 2015 ). Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resources Research, 51, 960 – 972. https://doi.org/10.1002/2014WR016267
Mills, L. S., Bragina, E. V., Kumar, A. V., Zimova, M., Lafferty, D. J. R., Feltner, J., … Fay, K. ( 2018 ). Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science, 359, 1033 – 1036. https://doi.org/10.1126/science.aan8097
Mills, L. S., Griffin, P. C., Hodges, K. E., McKelvey, K., Ruggiero, L., & Ulizio, T. ( 2005 ). Pellet count indices compared to mark‐recapture estimates for evaluating snowshoe hare density. Journal of Wildlife Management, 69, 1053 – 1062. https://doi.org/10.2193/0022-541X(2005)069[1053:PCICTM]2.0.CO;2
Mills, L. S., Zimova, M., Oyler, J., Running, S., Abatzoglou, J. T., & Lukacs, P. M. ( 2013 ). Camouflage mismatch in seasonal coat color due to decreased snow duration. Proceedings of the National Academy of Sciences USA, 110, 7360 – 7365. https://doi.org/10.1073/pnas.1222724110
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., & Engel, R. ( 2018 ). Dramatic declines in snowpack in the western US. Climate and Atmospheric Science, 1, 2. https://doi.org/10.1038/s41612-018-0012-1
Nadeau, C. P., Urban, M. C., & Bridle, J. R. ( 2017 ). Climates past, present, and yet‐to‐come shape climate change vulnerabilities. Trends in Ecology and Evolution, 32, 786 – 800. https://doi.org/10.1016/j.tree.2017.07.012
Nagorsen, D. W. ( 1983 ). Winter pelage colour in snowshoe hares ( Lepus americanus ) from the Pacific Northwest. Canadian Journal of Zoology, 61, 2313 – 2318.
Ning, L., & Bradley, R. S. ( 2015 ). Snow occurrence changes over the central and eastern United States under future warming scenarios. Scientific Reports, 5, 17073. https://doi.org/10.1038/srep17073
Parmesan, C., & Yohe, G. ( 2003 ). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37 – 42. https://doi.org/10.1038/nature01286
Pedersen, S., Odden, M., & Pedersen, H. C. ( 2017 ). Climate change induced molting mismatch? Mountain hare abundance reduced by duration of snow cover and predator abundance. Ecosphere, 8, e01722. https://doi.org/10.1002/ecs2.1722
Phillimore, A. B., Hadfield, J. D., Jones, O. R., & Smithers, R. J. ( 2010 ). Differences in spawning date between populations of common frog reveal local adaptation. Proceedings of the National Academy of Sciences USA, 107, 8292 – 8297.
Pomeroy, J. W., Fang, X., & Rasouli, K. ( 2015 ). Sensitivity of snow processes to warming in the Canadian Rockies. In Proceedings of the 72nd Eastern Snow Conference, 9–11 June 2015, (pp. 22 – 33 ). Sherbrooke, Quebec, Canada.
Post, E., & Forchhammer, M. C. ( 2008 ). Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 2369 – 2375. https://doi.org/10.1098/rstb.2007.2207
R Core Team ( 2016 ). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.
Salomonsen, F. ( 1939 ). Moults and sequence of plumages in the rock ptarmigan (Lagopus mutus (Montin)). Videnskabelige Meddelelser, 103, 1 – 491.
Sheriff, M. J., Kenagy, G. J., Richter, M., Lee, T., Toien, O., Kohl, F., … Barnes, B. M. ( 2011 ). Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proceedings of the Royal Society B: Biological Sciences, 278, 2369 – 2375. https://doi.org/10.1098/rspb.2010.2482
Sirén, A. P. K., & Morelli, T. L. ( 2019 ). Interactive range‐limit theory (iRLT): A theoretical extension for predicting ranges shifts. Journal of Animal Ecology, 1 – 15. https://doi.org/10.1111/1365-2656.13150
Sirén, A. P. K., Somos‐Valenzuela, M., Callahan, C., Kilborn, J. R., Duclos, T., Tragert, C., & Morelli, T. L. ( 2018 ). Looking beyond wildlife: Using remote cameras to evaluate accuracy of gridded snow data. Remote Sensing in Ecology and Conservation, 4, 375 – 386. https://doi.org/10.1002/rse2.85
Su, Y. S., & Yajima, M. ( 2012 ). R2jags: A package for running jags from R. Retrieved from http://CRAN.R-project.org/package=R2jags.
Sultaire, S. M., Pauli, J. N., Martin, K. J., Meyer, M. W., Notaro, M., & Zuckerberg, B. ( 2016 ). Climate change surpasses land‐use change in the contracting range boundary of a winter‐adapted mammal. Proceedings of the Royal Society of London B: Biological Sciences, 283, 20153104.
Thackeray, S. J., Sparks, T. H., Frederiksen, M., Burthe, S., Bacon, P. J., Bell, J. R., … Wanless, S. ( 2010 ). Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology, 16, 3304 – 3313. https://doi.org/10.1111/j.1365-2486.2010.02165.x
Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R., Vose, R. S., & Cook, R. B. ( 2018 ). Daymet: Daily surface weather data on a 1‐km Grid for North America, version 3. ORNL DAAC, Oak Ridge, TN. Retrieved from https://doi.org/10.3334/ORNLDAAC/1328.
Vaughan, D. G., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., & Holland, D. ( 2013 ). Observations: Cryosphere. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press.
Visser, M. E., Caro, S. P., van Oers, K., Schaper, S. V., & Helm, B. ( 2010 ). Phenology, seasonal timing and circannual rhythms: Towards a unified framework. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3113 – 3127.
Visser, M. E., & Gienapp, P. ( 2019 ). Evolutionary and demographic consequences of phenological mismatches. Nature Ecology and Evolution, 3, 879 – 885. https://doi.org/10.1038/s41559-019-0880-8
Watson, A. ( 1963 ). The effect of climate on the colour changes of mountain hares in Scotland. Proceedings of the Zoological Society of London, 141, 823 – 835.
While, G. M., & Uller, T. ( 2014 ). Quo vadis amphibia? Global warming and breeding phenology in frogs, toads and salamanders. Ecography, 37, 921 – 929. https://doi.org/10.1111/ecog.00521
Williams, C. M., Henry, H. A. L., & Sinclair, B. J. ( 2015 ). Cold truths: How winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90, 214 – 235. https://doi.org/10.1111/brv.12105
Wilson, E. C., Shipley, A. A., Zuckerberg, B., Peery, M. Z., & Pauli, J. N. ( 2018 ). An experimental translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares. Conservation Letters, 12, e12614. https://doi.org/10.1111/conl.12614
Zimova, M., Barnard, L., Davis, B. M., Kumar, A. V., Lafferty, D. J. R., & Mills, L. S. In Review. Using remote cameras to measure seasonal molts. Ecosphere.
Zimova, M., Hackländer, K., Good, J. M., Melo‐Ferreira, J., Alves, P. C., & Mills, L. S. ( 2018 ). Function and underlying mechanisms of seasonal colour moulting in mammals and birds: What keeps them changing in a warming world? Biological Reviews, 93, 1478 – 1498. https://doi.org/10.1111/brv.12405
Zimova, M., Mills, L. S., Lukacs, P. M., & Mitchell, M. S. ( 2014 ). Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage. Proceedings of the Royal Society B: Biological Sciences, 281, 20140029. https://doi.org/10.1098/rspb.2014.0029
Zimova, M., Mills, L. S., & Nowak, J. J. ( 2016 ). High fitness costs of climate change‐induced camouflage mismatch. Ecology Letters, 19, 299 – 307. https://doi.org/10.1111/ele.12568
Atmeh, K., Andruszkiewicz, A., & Zub, K. ( 2018 ). Climate change is affecting mortality of weasels due to camouflage mismatch. Scientific Reports, 8, 7648. https://doi.org/10.1038/s41598-018-26057-5
Barrett, A. P. ( 2003 ). National operational hydrologic remote sensing center snow data assimilation system (SNODAS) products at NSIDC. Boulder, CO: National Snow and Ice Data Center.
Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. ( 2006 ). Climate change and population declines in a long‐distance migratory bird. Nature, 441, 81 – 83. https://doi.org/10.1038/nature04539
Bradshaw, W. E., & Holzapfel, C. M. ( 2007 ). Evolution of animal photoperiodism. Annual Review of Ecology Evolution and Systematics, 38, 1 – 25. https://doi.org/10.1146/annurev.ecolsys.37.091305.110115
Cheng, E., Hodges, K. E., Melo‐Ferreira, J., Alves, P. C., & Mills, L. S. ( 2014 ). Conservation implications of the evolutionary history and genetic diversity hotspots of the snowshoe hare. Molecular Ecology, 23, 2929 – 2942. https://doi.org/10.1111/mec.12790
Choi, G., Robinson, D. A., & Kang, S. ( 2010 ). Changing Northern Hemisphere snow seasons. Journal of Climate, 23, 5305 – 5310. https://doi.org/10.1175/2010JCLI3644.1
Chuine, I. ( 2010 ). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3149 – 3160. https://doi.org/10.1098/rstb.2010.0142
Cohen, J. M., Lajeunesse, M. J., & Rohr, J. R. ( 2018 ). A global synthesis of animal phenological responses to climate change. Nature Climate Change, 8, 224 – 228. https://doi.org/10.1038/s41558-018-0067-3
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/geb.1304910.1038/sdata.2015.4210.1126/science.aan809710.1098/rspb.2010.248210.1111/j.1365-2486.2010.02165.x10.1038/ncomms1499610.2307/137404610.1080/11956860.1999.1168255810.1017/S1464793103006250
container_title International Journal of Climatology
container_volume 37
container_issue 1
container_start_page 36
op_container_end_page 45
_version_ 1810294144985202688
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/154444 2024-09-15T17:52:04+00:00 Local climate determines vulnerability to camouflage mismatch in snowshoe hares Zimova, Marketa Sirén, Alexej P. K. Nowak, Joshua J. Bryan, Alexander M. Ivan, Jacob S. Morelli, Toni Lyn Suhrer, Skyler L. Whittington, Jesse Mills, L. Scott 2020-03 application/pdf https://hdl.handle.net/2027.42/154444 https://doi.org/10.1111/geb.13049 unknown National Snow and Ice Data Center Wiley Periodicals, Inc. Zimova, Marketa; Sirén, Alexej P. K. Nowak, Joshua J.; Bryan, Alexander M.; Ivan, Jacob S.; Morelli, Toni Lyn; Suhrer, Skyler L.; Whittington, Jesse; Mills, L. Scott (2020). "Local climate determines vulnerability to camouflage mismatch in snowshoe hares." Global Ecology and Biogeography (3): 503-515. 1466-822X 1466-8238 https://hdl.handle.net/2027.42/154444 doi:10.1111/geb.13049 Global Ecology and Biogeography Senner, N. R., Stager, M., & Sandercock, B. K. ( 2017 ). Ecological mismatches are moderated by local conditions for two populations of a long‐distance migratory bird. Oikos, 126, 61 – 72. https://doi.org/10.1111/oik.03325 Livneh, B., Bohn, T. J., Pierce, D. W., Munoz‐Arriola, F., Nijssen, B., Vose, R., … Brekke, L. ( 2015 ). A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Scientific Data, 2, 150042. https://doi.org/10.1038/sdata.2015.42 Lute, A. C., Abatzoglou, J. T., & Hegewisch, K. C. ( 2015 ). Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resources Research, 51, 960 – 972. https://doi.org/10.1002/2014WR016267 Mills, L. S., Bragina, E. V., Kumar, A. V., Zimova, M., Lafferty, D. J. R., Feltner, J., … Fay, K. ( 2018 ). Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science, 359, 1033 – 1036. https://doi.org/10.1126/science.aan8097 Mills, L. S., Griffin, P. C., Hodges, K. E., McKelvey, K., Ruggiero, L., & Ulizio, T. ( 2005 ). Pellet count indices compared to mark‐recapture estimates for evaluating snowshoe hare density. Journal of Wildlife Management, 69, 1053 – 1062. https://doi.org/10.2193/0022-541X(2005)069[1053:PCICTM]2.0.CO;2 Mills, L. S., Zimova, M., Oyler, J., Running, S., Abatzoglou, J. T., & Lukacs, P. M. ( 2013 ). Camouflage mismatch in seasonal coat color due to decreased snow duration. Proceedings of the National Academy of Sciences USA, 110, 7360 – 7365. https://doi.org/10.1073/pnas.1222724110 Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., & Engel, R. ( 2018 ). Dramatic declines in snowpack in the western US. Climate and Atmospheric Science, 1, 2. https://doi.org/10.1038/s41612-018-0012-1 Nadeau, C. P., Urban, M. C., & Bridle, J. R. ( 2017 ). Climates past, present, and yet‐to‐come shape climate change vulnerabilities. Trends in Ecology and Evolution, 32, 786 – 800. https://doi.org/10.1016/j.tree.2017.07.012 Nagorsen, D. W. ( 1983 ). Winter pelage colour in snowshoe hares ( Lepus americanus ) from the Pacific Northwest. Canadian Journal of Zoology, 61, 2313 – 2318. Ning, L., & Bradley, R. S. ( 2015 ). Snow occurrence changes over the central and eastern United States under future warming scenarios. Scientific Reports, 5, 17073. https://doi.org/10.1038/srep17073 Parmesan, C., & Yohe, G. ( 2003 ). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37 – 42. https://doi.org/10.1038/nature01286 Pedersen, S., Odden, M., & Pedersen, H. C. ( 2017 ). Climate change induced molting mismatch? Mountain hare abundance reduced by duration of snow cover and predator abundance. Ecosphere, 8, e01722. https://doi.org/10.1002/ecs2.1722 Phillimore, A. B., Hadfield, J. D., Jones, O. R., & Smithers, R. J. ( 2010 ). Differences in spawning date between populations of common frog reveal local adaptation. Proceedings of the National Academy of Sciences USA, 107, 8292 – 8297. Pomeroy, J. W., Fang, X., & Rasouli, K. ( 2015 ). Sensitivity of snow processes to warming in the Canadian Rockies. In Proceedings of the 72nd Eastern Snow Conference, 9–11 June 2015, (pp. 22 – 33 ). Sherbrooke, Quebec, Canada. Post, E., & Forchhammer, M. C. ( 2008 ). Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 2369 – 2375. https://doi.org/10.1098/rstb.2007.2207 R Core Team ( 2016 ). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/. Salomonsen, F. ( 1939 ). Moults and sequence of plumages in the rock ptarmigan (Lagopus mutus (Montin)). Videnskabelige Meddelelser, 103, 1 – 491. Sheriff, M. J., Kenagy, G. J., Richter, M., Lee, T., Toien, O., Kohl, F., … Barnes, B. M. ( 2011 ). Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proceedings of the Royal Society B: Biological Sciences, 278, 2369 – 2375. https://doi.org/10.1098/rspb.2010.2482 Sirén, A. P. K., & Morelli, T. L. ( 2019 ). Interactive range‐limit theory (iRLT): A theoretical extension for predicting ranges shifts. Journal of Animal Ecology, 1 – 15. https://doi.org/10.1111/1365-2656.13150 Sirén, A. P. K., Somos‐Valenzuela, M., Callahan, C., Kilborn, J. R., Duclos, T., Tragert, C., & Morelli, T. L. ( 2018 ). Looking beyond wildlife: Using remote cameras to evaluate accuracy of gridded snow data. Remote Sensing in Ecology and Conservation, 4, 375 – 386. https://doi.org/10.1002/rse2.85 Su, Y. S., & Yajima, M. ( 2012 ). R2jags: A package for running jags from R. Retrieved from http://CRAN.R-project.org/package=R2jags. Sultaire, S. M., Pauli, J. N., Martin, K. J., Meyer, M. W., Notaro, M., & Zuckerberg, B. ( 2016 ). Climate change surpasses land‐use change in the contracting range boundary of a winter‐adapted mammal. Proceedings of the Royal Society of London B: Biological Sciences, 283, 20153104. Thackeray, S. J., Sparks, T. H., Frederiksen, M., Burthe, S., Bacon, P. J., Bell, J. R., … Wanless, S. ( 2010 ). Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology, 16, 3304 – 3313. https://doi.org/10.1111/j.1365-2486.2010.02165.x Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R., Vose, R. S., & Cook, R. B. ( 2018 ). Daymet: Daily surface weather data on a 1‐km Grid for North America, version 3. ORNL DAAC, Oak Ridge, TN. Retrieved from https://doi.org/10.3334/ORNLDAAC/1328. Vaughan, D. G., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., & Holland, D. ( 2013 ). Observations: Cryosphere. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press. Visser, M. E., Caro, S. P., van Oers, K., Schaper, S. V., & Helm, B. ( 2010 ). Phenology, seasonal timing and circannual rhythms: Towards a unified framework. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3113 – 3127. Visser, M. E., & Gienapp, P. ( 2019 ). Evolutionary and demographic consequences of phenological mismatches. Nature Ecology and Evolution, 3, 879 – 885. https://doi.org/10.1038/s41559-019-0880-8 Watson, A. ( 1963 ). The effect of climate on the colour changes of mountain hares in Scotland. Proceedings of the Zoological Society of London, 141, 823 – 835. While, G. M., & Uller, T. ( 2014 ). Quo vadis amphibia? Global warming and breeding phenology in frogs, toads and salamanders. Ecography, 37, 921 – 929. https://doi.org/10.1111/ecog.00521 Williams, C. M., Henry, H. A. L., & Sinclair, B. J. ( 2015 ). Cold truths: How winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90, 214 – 235. https://doi.org/10.1111/brv.12105 Wilson, E. C., Shipley, A. A., Zuckerberg, B., Peery, M. Z., & Pauli, J. N. ( 2018 ). An experimental translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares. Conservation Letters, 12, e12614. https://doi.org/10.1111/conl.12614 Zimova, M., Barnard, L., Davis, B. M., Kumar, A. V., Lafferty, D. J. R., & Mills, L. S. In Review. Using remote cameras to measure seasonal molts. Ecosphere. Zimova, M., Hackländer, K., Good, J. M., Melo‐Ferreira, J., Alves, P. C., & Mills, L. S. ( 2018 ). Function and underlying mechanisms of seasonal colour moulting in mammals and birds: What keeps them changing in a warming world? Biological Reviews, 93, 1478 – 1498. https://doi.org/10.1111/brv.12405 Zimova, M., Mills, L. S., Lukacs, P. M., & Mitchell, M. S. ( 2014 ). Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage. Proceedings of the Royal Society B: Biological Sciences, 281, 20140029. https://doi.org/10.1098/rspb.2014.0029 Zimova, M., Mills, L. S., & Nowak, J. J. ( 2016 ). High fitness costs of climate change‐induced camouflage mismatch. Ecology Letters, 19, 299 – 307. https://doi.org/10.1111/ele.12568 Atmeh, K., Andruszkiewicz, A., & Zub, K. ( 2018 ). Climate change is affecting mortality of weasels due to camouflage mismatch. Scientific Reports, 8, 7648. https://doi.org/10.1038/s41598-018-26057-5 Barrett, A. P. ( 2003 ). National operational hydrologic remote sensing center snow data assimilation system (SNODAS) products at NSIDC. Boulder, CO: National Snow and Ice Data Center. Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. ( 2006 ). Climate change and population declines in a long‐distance migratory bird. Nature, 441, 81 – 83. https://doi.org/10.1038/nature04539 Bradshaw, W. E., & Holzapfel, C. M. ( 2007 ). Evolution of animal photoperiodism. Annual Review of Ecology Evolution and Systematics, 38, 1 – 25. https://doi.org/10.1146/annurev.ecolsys.37.091305.110115 Cheng, E., Hodges, K. E., Melo‐Ferreira, J., Alves, P. C., & Mills, L. S. ( 2014 ). Conservation implications of the evolutionary history and genetic diversity hotspots of the snowshoe hare. Molecular Ecology, 23, 2929 – 2942. https://doi.org/10.1111/mec.12790 Choi, G., Robinson, D. A., & Kang, S. ( 2010 ). Changing Northern Hemisphere snow seasons. Journal of Climate, 23, 5305 – 5310. https://doi.org/10.1175/2010JCLI3644.1 Chuine, I. ( 2010 ). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3149 – 3160. https://doi.org/10.1098/rstb.2010.0142 Cohen, J. M., Lajeunesse, M. J., & Rohr, J. R. ( 2018 ). A global synthesis of animal phenological responses to climate change. Nature Climate Change, 8, 224 – 228. https://doi.org/10.1038/s41558-018-0067-3 IndexNoFollow phenotypic plasticity adaptation camouflage mismatch climate change latitudinal gradient phenological mismatch range edge snow snowshoe hares Ecology and Evolutionary Biology Geology and Earth Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1111/geb.1304910.1038/sdata.2015.4210.1126/science.aan809710.1098/rspb.2010.248210.1111/j.1365-2486.2010.02165.x10.1038/ncomms1499610.2307/137404610.1080/11956860.1999.1168255810.1017/S1464793103006250 2024-07-30T04:06:19Z AimPhenological mismatches, when life‐events become mistimed with optimal environmental conditions, have become increasingly common under climate change. Population‐level susceptibility to mismatches depends on how phenology and phenotypic plasticity vary across a species’ distributional range. Here, we quantify the environmental drivers of colour moult phenology, phenotypic plasticity, and the extent of phenological mismatch in seasonal camouflage to assess vulnerability to mismatch in a common North American mammal.LocationNorth America.Time period2010–2017.Major taxa studiedSnowshoe hare (Lepus americanus).MethodsWe used > 5,500 by‐catch photographs of snowshoe hares from 448 remote camera trap sites at three independent study areas. To quantify moult phenology and phenotypic plasticity, we used multinomial logistic regression models that incorporated geospatial and high‐resolution climate data. We estimated occurrence of camouflage mismatch between hares’ coat colour and the presence and absence of snow over 7 years of monitoring.ResultsSpatial and temporal variation in moult phenology depended on local climate conditions more so than on latitude. First, hares in colder, snowier areas moulted earlier in the fall and later in the spring. Next, hares exhibited phenotypic plasticity in moult phenology in response to annual variation in temperature and snow duration, especially in the spring. Finally, the occurrence of camouflage mismatch varied in space and time; white hares on dark, snowless background occurred primarily during low‐snow years in regions characterized by shallow, short‐lasting snowpack.Main conclusionsLong‐term climate and annual variation in snow and temperature determine coat colour moult phenology in snowshoe hares. In most areas, climate change leads to shorter snow seasons, but the occurrence of camouflage mismatch varies across the species’ range. Our results underscore the population‐specific susceptibility to climate change‐induced stressors and the necessity to understand this ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue International Journal of Climatology 37 1 36 45