Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams

Exposure of dissolved organic matter (DOM) to sunlight can increase or decrease the fraction that is biodegradable (BDOM), but conceptual models fail to explain this dichotomy. We investigated the effect of sunlight exposure on BDOM, addressing three knowledge gaps: (1) how fractions of DOM overlap...

Full description

Bibliographic Details
Published in:Limnology and Oceanography
Main Authors: Bowen, Jennifer C., Kaplan, Louis A., Cory, Rose M.
Format: Article in Journal/Newspaper
Language:unknown
Published: John Wiley & Sons, Inc. 2020
Subjects:
Online Access:https://hdl.handle.net/2027.42/153758
https://doi.org/10.1002/lno.11244
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/153758
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Atmospheric and Oceanic Sciences
Science
spellingShingle Atmospheric and Oceanic Sciences
Science
Bowen, Jennifer C.
Kaplan, Louis A.
Cory, Rose M.
Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams
topic_facet Atmospheric and Oceanic Sciences
Science
description Exposure of dissolved organic matter (DOM) to sunlight can increase or decrease the fraction that is biodegradable (BDOM), but conceptual models fail to explain this dichotomy. We investigated the effect of sunlight exposure on BDOM, addressing three knowledge gaps: (1) how fractions of DOM overlap in their susceptibility to degradation by sunlight and microbes, (2) how the net effect of sunlight on BDOM changes with photon dose, and (3) how rates of DOM photodegradation and biodegradation compare in a stream. Stream waters were exposed to sunlight, and then fed through bioreactors designed to separate labile and semi‐labile pools within BDOM. The net effects of photodegradation on DOM biodegradability, while generally positive, represented the balance between photochemical production and removal of BDOM that was mediated by photon dose. By using sunlight exposure times representative of sunlight exposures in a headwater stream and bioreactors colonized with natural communities and scaled to whole‐stream dynamics, we were able to relate our laboratory findings to the stream. The impact of sunlight exposure on rates of DOM biodegradation in streams was calculated using rates of light absorption by chromophoric DOM, apparent quantum yields for photomineralization and photochemical alteration of BDOM, and mass transfer coefficients for labile and semi‐labile DOM. Rates of photochemical alteration of labile DOM were an order of magnitude lower than rates of biodegradation of labile DOM, but for semi‐labile DOM, these rates were similar, suggesting that sunlight plays a substantial role in the fate of semi‐labile DOM in streams. Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/153758/1/lno11244.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/153758/2/lno11244_am.pdf
format Article in Journal/Newspaper
author Bowen, Jennifer C.
Kaplan, Louis A.
Cory, Rose M.
author_facet Bowen, Jennifer C.
Kaplan, Louis A.
Cory, Rose M.
author_sort Bowen, Jennifer C.
title Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams
title_short Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams
title_full Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams
title_fullStr Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams
title_full_unstemmed Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams
title_sort photodegradation disproportionately impacts biodegradation of semi‐labile dom in streams
publisher John Wiley & Sons, Inc.
publishDate 2020
url https://hdl.handle.net/2027.42/153758
https://doi.org/10.1002/lno.11244
genre Arctic
genre_facet Arctic
op_relation Bowen, Jennifer C.; Kaplan, Louis A.; Cory, Rose M. (2020). "Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams." Limnology and Oceanography 65(1): 13-26.
0024-3590
1939-5590
https://hdl.handle.net/2027.42/153758
doi:10.1002/lno.11244
Limnology and Oceanography
Reader, H. E., and W. L. Miller. 2014. The efficiency and spectral photon dose dependence of photochemically induced changes to the bioavailability of dissolved organic carbon. Limnol. Oceanogr. 59: 182 – 194. doi:10.4319/lo.2014.59.1.0182
Obernosterer, I., and R. Benner. 2004. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol. Oceanogr. 49: 117 – 124. doi:10.4319/lo.2004.49.1.0117
Oni, S. K., T. Tiwari, J. L. J. Ledesma, A. M. ågren, C. Teutschbein, J. Schelker, H. Laudon, and M. N. Futter. 2015. Local‐ and landscape‐scale impacts of clear‐cuts and climate change on surface water dissolved organic carbon in boreal forests. Eur. J. Vasc. Endovasc. Surg. 120: 2402 – 2426. doi:10.1002/2015JG003190
Pattison, D. I., A. S. Rahmanto, and M. J. Davies. 2012. Photo‐oxidation of proteins. Photochem. Photobiol. Sci. 11: 38 – 53. doi:10.1039/C1PP05164D
Pullin, M. J., S. Bertilsson, J. V. Goldstone, and B. M. Voelker. 2004. Effects of sunlight and hydroxyl radical on dissolved organic matter: Bacterial growth efficiency and production of carboxylic acids and other substrates. Limnol. Oceanogr. 49: 2011 – 2022. doi:10.4319/lo.2004.49.6.2011
Singh, N. K., W. M. Reyes, E. S. Bernhardt, R. Bhattacharya, J. L. Meyer, J. D. Knoepp, and R. E. Emanuel. 2016. Hydro‐climatological influences on long‐term dissolved organic carbon in a mountain stream of the southeastern United States. J. Environ. Qual. 45: 1286 – 1295. doi:10.2134/jeq2015.10.0537
Sleighter, R. L., R. M. Cory, L. A. Kaplan, H. A. N. Abdulla, and P. G. Hatcher. 2014. A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream. Eur. J. Vasc. Endovasc. Surg. 199: 1520 – 1537. doi:10.1002/2013JG002600
Stedmon, C. A., and S. Markager. 2005. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluoresence analysis. Limnol. Oceanogr. 50: 1415 – 1426. doi:10.4319/lo.2005.50.5.1415
Stedmon, C. A., and R. Bro. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr.: Methods 6: 572 – 579. doi:10.4319/lom.2008.6.572
Tranvik, L. J., and S. Bertilsson. 2001. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol. Lett. 4: 458 – 463. doi:10.1046/j.1461-0248.2001.00245.x
Tyndall, J. 1877. On heat as a germicide when discontinuously applied. Proc. R. Soc. Lond. 25: 569 – 570. doi:10.1098/rspl.1876.0090
Vähätalo, A. V., M. Salkinoja‐Salonen, P. Taalas, and K. Salonen. 2000. Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in a humic lake. Limnol. Oceanogr. 45: 664 – 676. doi:10.4319/lo.2000.45.3.0664
Volk, C. J., C. B. Volk, and L. A. Kaplan. 1997. Chemical composition of biodegradable dissolved organic matter in streamwater. Limnol. Oceanogr. 42: 39 – 44. doi:10.4319/lo.1997.42.1.0039
Ward, C. P., and R. M. Cory. 2015. Chemical composition of dissolved organic matter draining permafrost soils. Geochim. Cosmochim. Acta 167: 63 – 79. doi:10.1016/j.gca.2015.07.001
Ward, C. P., and R. M. Cory. 2016. Complete and partial photo‐oxidation of dissolved organic matter draining permafrost soils. Environ. Sci. Technol. 50: 3545 – 3553. doi:10.1021/acs.est.5b05354
Ward, C. P., S. G. Nalven, B. C. Crump, G. W. Kling, and R. M. Cory. 2017. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8: 772. doi:10.1038/s41467-017-00759-2
Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37: 4702 – 4708. doi:10.1021/es030360x
Wetzel, R. G., P. G. Hatcher, and T. S. Bianchi. 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 40: 1369 – 1380. doi:10.4319/lo.1995.40.8.1369
Amado, A. M., J. B. Cotner, A. L. Suhett, F. D. Assis Esteves, R. L. Bozelli, and V. F. Farjalla. 2007. Contrasting interactions mediate dissolved organic matter decomposition in tropical aquatic ecosystems. Aquat. Microb. Ecol. 49: 25 – 34. doi:10.3354/ame01131
Amado, A. M., J. B. Cotner, R. M. Cory, B. L. Edhlund, and K. McNeill. 2015. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: Amino acids play a central role. Microb. Ecol. 69: 554 – 566. doi:10.1007/s00248-014-0512-4
Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater. 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 1: 95 – 100. doi:10.1038/ngeo101
Bertilsson, S., and L. J. Tranvik. 1998. Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol. Oceanogr. 43: 885 – 895. doi:10.4319/lo.1998.43.5.0885
Biddanda, B. A. 2017. Global significance of the changing freshwater carbon cycle. Eos 98: 15 – 17. doi:10.1029/2017EO069751
Biddanda, B. A., and J. B. Cotner. 2003. Enhancement of dissolved organic matter bioavailability by sunlight and its role in the carbon cycle of Lakes Superior and Michigan. J. Great Lakes Res. 29: 228 – 241. doi:10.1016/S0380-1330(03)70429-8
Buffam, I., and K. J. McGlathery. 2003. Effect of ultraviolet light on dissolved nitrogen transformations in coastal lagoon water. Limnol. Oceanogr. 48: 723 – 734. doi:10.4319/lo.2003.48.2.0723
Coble, P. G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar. Chem. 51: 325 – 346. doi:10.1016/0304-4203(95)00062-3
Cory, R. M., and D. M. McKnight. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 39: 8142 – 8149. doi:10.1021/es0506962
Cory, R. M., D. M. McKnight, Y.‐P. Chin, P. Miller, and C. L. Jaros. 2007. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations. J. Geophys. Res. 112: G04S51. doi:10.1029/2006JG000343
Cory, R. M., K. McNeill, J. P. Cotner, A. Amado, J. M. Purcell, and A. G. Marshall. 2010a. Singlet oxygen in the coupled photo‐ and biochemical oxidation of dissolved organic matter. Environ. Sci. Technol. 44: 3683 – 3689. doi:10.1021/es902989y
Cory, R. M., M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller. 2010b. Effect of instrument‐specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr.: Methods 8: 67 – 78. doi:10.4319/lom.2010.8.0067
Cory, R. M., and L. A. Kaplan. 2012. Biological lability of streamwater fluorescent dissolved organic matter. Limnol. Oceanogr. 57: 1347 – 1360. doi:10.4319/lo.2012.57.5.1347
Cory, R. M., B. C. Crump, J. A. Dobkowski, and G. W. Kling. 2013. Surface exposure to sunlight stimulates CO 2 release from permafrost soil carbon in the Arctic. Proc. Natl. Acad. Sci. USA 110: 3429 – 3434. doi:10.1073/pnas.1214104110
Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925 – 928. doi:10.1126/science.1253119
Cory, R. M., K. H. Harrold, B. T. Neilson, and G. W. Kling. 2015. Controls on dissolved organic matter (DOM) degradation in a headwater stream: The influence of photochemical and hydrological conditions in determining light‐limitation or substrate limitation of photo‐degradation. Biogeosciences 12: 6669 – 6685. doi:10.5194/bg-12-6669-2015
Cory, R. M., and G. W. Kling. 2018. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol. Oceanogr.: Lett. 3: 102 – 116. doi:10.1002/lol2.10060
Del Vecchio, R., and N. V. Blough. 2004. On the origin of the optical properties of humic substances. Environ. Sci. Technol. 38: 3885 – 3891. doi:10.1021/es049912h
Fasching, C., and T. J. Battin. 2012. Exposure of dissolved organic matter to UV‐radiation increases bacterial growth efficiency in a clear‐water Alpine stream and its adjacent groundwater. Aquat. Sci. 74: 143 – 153. doi:10.1007/s00027-011-0205-8
Gonsoir, M., B. M. Peake, W. T. Cooper, D. Podgorski, J. D’Andrilli, and W. J. Cooper. 2009. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 43: 698 – 703. doi:10.1021/es8022804
Gonsoir, M., P. Schmitt‐Kopplin, and D. Bastviken. 2013. Depth‐dependent molecular composition and photo‐reactivity of dissolved organic matter in a boreal lake under winter and summer conditions. Biogeosciences 10: 6945 – 6956. doi:10.5194/bg-10-6945-2013
Granéli, W., M. Lindell, and L. Tranvik. 1996. Photo‐oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol. Oceanogr. 41: 698 – 706. doi:10.4319/lo.1996.41.4.0698
Guillemette, F., and P. A. del Giorgio. 2011. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol. Oceanogr. 56: 734 – 748. doi:10.4319/lo.2011.56.2.0734
Hall, R. O., M. A. Baker, E. J. Rosi‐Marshall, J. L. Tank, and J. D. Newbold. 2013. Solute specific scaling of inorganic nitrogen and phosphorus uptake in streams. Biogeosciences 10: 7323 – 7331. doi:10.5194/bg-10-7323-2013
Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53: 955 – 969. doi:10.4319/lo.2008.53.3.0955
Hernes, P. J., B. A. Bergamaschi, R. S. Eckard, and R. G. M. Spencer. 2009. Fluorescence‐based proxies for lignin in freshwater dissolved organic matter. J. Geophys. Res. 114: G00F03. doi:10.1029/2009JG000938
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/lno.1124410.4319/lo.2014.59.1.018210.4319/lo.2004.49.1.011710.1002/2015JG00319010.1039/C1PP05164D10.4319/lo.2004.49.6.201110.2134/jeq2015.10.053710.1002/2013JG00260010.4319/lo.2005.50.5.141510.4319/lom.2008.6.57210.1046/j.1461-0248
container_title Limnology and Oceanography
container_volume 65
container_issue 1
container_start_page 13
op_container_end_page 26
_version_ 1774713587635322880
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/153758 2023-08-20T04:03:11+02:00 Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams Bowen, Jennifer C. Kaplan, Louis A. Cory, Rose M. 2020-01 application/pdf https://hdl.handle.net/2027.42/153758 https://doi.org/10.1002/lno.11244 unknown John Wiley & Sons, Inc. Bowen, Jennifer C.; Kaplan, Louis A.; Cory, Rose M. (2020). "Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams." Limnology and Oceanography 65(1): 13-26. 0024-3590 1939-5590 https://hdl.handle.net/2027.42/153758 doi:10.1002/lno.11244 Limnology and Oceanography Reader, H. E., and W. L. Miller. 2014. The efficiency and spectral photon dose dependence of photochemically induced changes to the bioavailability of dissolved organic carbon. Limnol. Oceanogr. 59: 182 – 194. doi:10.4319/lo.2014.59.1.0182 Obernosterer, I., and R. Benner. 2004. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol. Oceanogr. 49: 117 – 124. doi:10.4319/lo.2004.49.1.0117 Oni, S. K., T. Tiwari, J. L. J. Ledesma, A. M. ågren, C. Teutschbein, J. Schelker, H. Laudon, and M. N. Futter. 2015. Local‐ and landscape‐scale impacts of clear‐cuts and climate change on surface water dissolved organic carbon in boreal forests. Eur. J. Vasc. Endovasc. Surg. 120: 2402 – 2426. doi:10.1002/2015JG003190 Pattison, D. I., A. S. Rahmanto, and M. J. Davies. 2012. Photo‐oxidation of proteins. Photochem. Photobiol. Sci. 11: 38 – 53. doi:10.1039/C1PP05164D Pullin, M. J., S. Bertilsson, J. V. Goldstone, and B. M. Voelker. 2004. Effects of sunlight and hydroxyl radical on dissolved organic matter: Bacterial growth efficiency and production of carboxylic acids and other substrates. Limnol. Oceanogr. 49: 2011 – 2022. doi:10.4319/lo.2004.49.6.2011 Singh, N. K., W. M. Reyes, E. S. Bernhardt, R. Bhattacharya, J. L. Meyer, J. D. Knoepp, and R. E. Emanuel. 2016. Hydro‐climatological influences on long‐term dissolved organic carbon in a mountain stream of the southeastern United States. J. Environ. Qual. 45: 1286 – 1295. doi:10.2134/jeq2015.10.0537 Sleighter, R. L., R. M. Cory, L. A. Kaplan, H. A. N. Abdulla, and P. G. Hatcher. 2014. A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream. Eur. J. Vasc. Endovasc. Surg. 199: 1520 – 1537. doi:10.1002/2013JG002600 Stedmon, C. A., and S. Markager. 2005. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluoresence analysis. Limnol. Oceanogr. 50: 1415 – 1426. doi:10.4319/lo.2005.50.5.1415 Stedmon, C. A., and R. Bro. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr.: Methods 6: 572 – 579. doi:10.4319/lom.2008.6.572 Tranvik, L. J., and S. Bertilsson. 2001. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol. Lett. 4: 458 – 463. doi:10.1046/j.1461-0248.2001.00245.x Tyndall, J. 1877. On heat as a germicide when discontinuously applied. Proc. R. Soc. Lond. 25: 569 – 570. doi:10.1098/rspl.1876.0090 Vähätalo, A. V., M. Salkinoja‐Salonen, P. Taalas, and K. Salonen. 2000. Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in a humic lake. Limnol. Oceanogr. 45: 664 – 676. doi:10.4319/lo.2000.45.3.0664 Volk, C. J., C. B. Volk, and L. A. Kaplan. 1997. Chemical composition of biodegradable dissolved organic matter in streamwater. Limnol. Oceanogr. 42: 39 – 44. doi:10.4319/lo.1997.42.1.0039 Ward, C. P., and R. M. Cory. 2015. Chemical composition of dissolved organic matter draining permafrost soils. Geochim. Cosmochim. Acta 167: 63 – 79. doi:10.1016/j.gca.2015.07.001 Ward, C. P., and R. M. Cory. 2016. Complete and partial photo‐oxidation of dissolved organic matter draining permafrost soils. Environ. Sci. Technol. 50: 3545 – 3553. doi:10.1021/acs.est.5b05354 Ward, C. P., S. G. Nalven, B. C. Crump, G. W. Kling, and R. M. Cory. 2017. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8: 772. doi:10.1038/s41467-017-00759-2 Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37: 4702 – 4708. doi:10.1021/es030360x Wetzel, R. G., P. G. Hatcher, and T. S. Bianchi. 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 40: 1369 – 1380. doi:10.4319/lo.1995.40.8.1369 Amado, A. M., J. B. Cotner, A. L. Suhett, F. D. Assis Esteves, R. L. Bozelli, and V. F. Farjalla. 2007. Contrasting interactions mediate dissolved organic matter decomposition in tropical aquatic ecosystems. Aquat. Microb. Ecol. 49: 25 – 34. doi:10.3354/ame01131 Amado, A. M., J. B. Cotner, R. M. Cory, B. L. Edhlund, and K. McNeill. 2015. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: Amino acids play a central role. Microb. Ecol. 69: 554 – 566. doi:10.1007/s00248-014-0512-4 Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater. 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 1: 95 – 100. doi:10.1038/ngeo101 Bertilsson, S., and L. J. Tranvik. 1998. Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol. Oceanogr. 43: 885 – 895. doi:10.4319/lo.1998.43.5.0885 Biddanda, B. A. 2017. Global significance of the changing freshwater carbon cycle. Eos 98: 15 – 17. doi:10.1029/2017EO069751 Biddanda, B. A., and J. B. Cotner. 2003. Enhancement of dissolved organic matter bioavailability by sunlight and its role in the carbon cycle of Lakes Superior and Michigan. J. Great Lakes Res. 29: 228 – 241. doi:10.1016/S0380-1330(03)70429-8 Buffam, I., and K. J. McGlathery. 2003. Effect of ultraviolet light on dissolved nitrogen transformations in coastal lagoon water. Limnol. Oceanogr. 48: 723 – 734. doi:10.4319/lo.2003.48.2.0723 Coble, P. G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar. Chem. 51: 325 – 346. doi:10.1016/0304-4203(95)00062-3 Cory, R. M., and D. M. McKnight. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 39: 8142 – 8149. doi:10.1021/es0506962 Cory, R. M., D. M. McKnight, Y.‐P. Chin, P. Miller, and C. L. Jaros. 2007. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations. J. Geophys. Res. 112: G04S51. doi:10.1029/2006JG000343 Cory, R. M., K. McNeill, J. P. Cotner, A. Amado, J. M. Purcell, and A. G. Marshall. 2010a. Singlet oxygen in the coupled photo‐ and biochemical oxidation of dissolved organic matter. Environ. Sci. Technol. 44: 3683 – 3689. doi:10.1021/es902989y Cory, R. M., M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller. 2010b. Effect of instrument‐specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr.: Methods 8: 67 – 78. doi:10.4319/lom.2010.8.0067 Cory, R. M., and L. A. Kaplan. 2012. Biological lability of streamwater fluorescent dissolved organic matter. Limnol. Oceanogr. 57: 1347 – 1360. doi:10.4319/lo.2012.57.5.1347 Cory, R. M., B. C. Crump, J. A. Dobkowski, and G. W. Kling. 2013. Surface exposure to sunlight stimulates CO 2 release from permafrost soil carbon in the Arctic. Proc. Natl. Acad. Sci. USA 110: 3429 – 3434. doi:10.1073/pnas.1214104110 Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925 – 928. doi:10.1126/science.1253119 Cory, R. M., K. H. Harrold, B. T. Neilson, and G. W. Kling. 2015. Controls on dissolved organic matter (DOM) degradation in a headwater stream: The influence of photochemical and hydrological conditions in determining light‐limitation or substrate limitation of photo‐degradation. Biogeosciences 12: 6669 – 6685. doi:10.5194/bg-12-6669-2015 Cory, R. M., and G. W. Kling. 2018. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol. Oceanogr.: Lett. 3: 102 – 116. doi:10.1002/lol2.10060 Del Vecchio, R., and N. V. Blough. 2004. On the origin of the optical properties of humic substances. Environ. Sci. Technol. 38: 3885 – 3891. doi:10.1021/es049912h Fasching, C., and T. J. Battin. 2012. Exposure of dissolved organic matter to UV‐radiation increases bacterial growth efficiency in a clear‐water Alpine stream and its adjacent groundwater. Aquat. Sci. 74: 143 – 153. doi:10.1007/s00027-011-0205-8 Gonsoir, M., B. M. Peake, W. T. Cooper, D. Podgorski, J. D’Andrilli, and W. J. Cooper. 2009. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 43: 698 – 703. doi:10.1021/es8022804 Gonsoir, M., P. Schmitt‐Kopplin, and D. Bastviken. 2013. Depth‐dependent molecular composition and photo‐reactivity of dissolved organic matter in a boreal lake under winter and summer conditions. Biogeosciences 10: 6945 – 6956. doi:10.5194/bg-10-6945-2013 Granéli, W., M. Lindell, and L. Tranvik. 1996. Photo‐oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol. Oceanogr. 41: 698 – 706. doi:10.4319/lo.1996.41.4.0698 Guillemette, F., and P. A. del Giorgio. 2011. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol. Oceanogr. 56: 734 – 748. doi:10.4319/lo.2011.56.2.0734 Hall, R. O., M. A. Baker, E. J. Rosi‐Marshall, J. L. Tank, and J. D. Newbold. 2013. Solute specific scaling of inorganic nitrogen and phosphorus uptake in streams. Biogeosciences 10: 7323 – 7331. doi:10.5194/bg-10-7323-2013 Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53: 955 – 969. doi:10.4319/lo.2008.53.3.0955 Hernes, P. J., B. A. Bergamaschi, R. S. Eckard, and R. G. M. Spencer. 2009. Fluorescence‐based proxies for lignin in freshwater dissolved organic matter. J. Geophys. Res. 114: G00F03. doi:10.1029/2009JG000938 IndexNoFollow Atmospheric and Oceanic Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1002/lno.1124410.4319/lo.2014.59.1.018210.4319/lo.2004.49.1.011710.1002/2015JG00319010.1039/C1PP05164D10.4319/lo.2004.49.6.201110.2134/jeq2015.10.053710.1002/2013JG00260010.4319/lo.2005.50.5.141510.4319/lom.2008.6.57210.1046/j.1461-0248 2023-07-31T20:54:36Z Exposure of dissolved organic matter (DOM) to sunlight can increase or decrease the fraction that is biodegradable (BDOM), but conceptual models fail to explain this dichotomy. We investigated the effect of sunlight exposure on BDOM, addressing three knowledge gaps: (1) how fractions of DOM overlap in their susceptibility to degradation by sunlight and microbes, (2) how the net effect of sunlight on BDOM changes with photon dose, and (3) how rates of DOM photodegradation and biodegradation compare in a stream. Stream waters were exposed to sunlight, and then fed through bioreactors designed to separate labile and semi‐labile pools within BDOM. The net effects of photodegradation on DOM biodegradability, while generally positive, represented the balance between photochemical production and removal of BDOM that was mediated by photon dose. By using sunlight exposure times representative of sunlight exposures in a headwater stream and bioreactors colonized with natural communities and scaled to whole‐stream dynamics, we were able to relate our laboratory findings to the stream. The impact of sunlight exposure on rates of DOM biodegradation in streams was calculated using rates of light absorption by chromophoric DOM, apparent quantum yields for photomineralization and photochemical alteration of BDOM, and mass transfer coefficients for labile and semi‐labile DOM. Rates of photochemical alteration of labile DOM were an order of magnitude lower than rates of biodegradation of labile DOM, but for semi‐labile DOM, these rates were similar, suggesting that sunlight plays a substantial role in the fate of semi‐labile DOM in streams. Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/153758/1/lno11244.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/153758/2/lno11244_am.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Limnology and Oceanography 65 1 13 26