HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds

We present an empirical model of thermospheric winds (High‐latitude Thermospheric Wind Model [HL‐TWiM]) that specifies F region high‐latitude horizontal neutral winds as a function of day of year, latitude, longitude, local time, and geomagnetic activity. HL‐TWiM represents the large‐scale neutral w...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Dhadly, Manbharat S., Emmert, John T., Drob, Douglas P., Conde, Mark G., Aruliah, Anasuya, Doornbos, Eelco, Shepherd, Gordon G., Wu, Qian, Makela, Jonathan J., Niciejewski, Rick J., Lee, Changsup, Jee, Geonhwa, Ridley, Aaron J.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2019
Subjects:
Online Access:https://hdl.handle.net/2027.42/153588
https://doi.org/10.1029/2019JA027188
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/153588
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic ionosphere
high‐latitude
neutral dynamics
empirical modeling
thermosphere
data assimilation
Astronomy and Astrophysics
Science
spellingShingle ionosphere
high‐latitude
neutral dynamics
empirical modeling
thermosphere
data assimilation
Astronomy and Astrophysics
Science
Dhadly, Manbharat S.
Emmert, John T.
Drob, Douglas P.
Conde, Mark G.
Aruliah, Anasuya
Doornbos, Eelco
Shepherd, Gordon G.
Wu, Qian
Makela, Jonathan J.
Niciejewski, Rick J.
Lee, Changsup
Jee, Geonhwa
Ridley, Aaron J.
HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds
topic_facet ionosphere
high‐latitude
neutral dynamics
empirical modeling
thermosphere
data assimilation
Astronomy and Astrophysics
Science
description We present an empirical model of thermospheric winds (High‐latitude Thermospheric Wind Model [HL‐TWiM]) that specifies F region high‐latitude horizontal neutral winds as a function of day of year, latitude, longitude, local time, and geomagnetic activity. HL‐TWiM represents the large‐scale neutral wind circulation, in geomagnetic coordinates, for the given input conditions. The model synthesizes the most extensive collection to date of historical high‐latitude wind measurements; it is based on statistical analyses of several decades of F region thermospheric wind measurements from 21 ground‐based stations (Fabry‐Perot Interferometers and Scanning Doppler Imaging Fabry‐Perot Interferometers) located at various northern and southern high latitudes and two space‐based instruments (UARS WINDII and GOCE). The geomagnetic latitude and local time dependences in HL‐TWiM are represented using vector spherical harmonics, day of year and longitude variations are represented using simple harmonic functions, and the geomagnetic activity dependence is represented using quadratic B splines. In this paper, we describe the HL‐TWiM formulation and fitting procedures, and we verify the model against the neutral wind databases used in its formulation. HL‐TWiM provides a necessary benchmark for validating new wind observations and tuning our physical understanding of complex wind behaviors. Results show stronger Universal Time variation in winds at southern than northern high latitudes. Model‐data intra‐annual comparisons in this study show semiannual oscillation‐like behavior of GOCE winds, rarely observed before in wind data.Key PointsWe developed a comprehensive empirical model of high‐latitude F region thermospheric winds (HL‐TWiM)Universal Time variations in high‐latitude winds are stronger in the Southern than Northern HemisphereHL‐TWiM provides a necessary benchmark for validating new high‐latitude wind observations and tuning first principal models Peer Reviewed ...
format Article in Journal/Newspaper
author Dhadly, Manbharat S.
Emmert, John T.
Drob, Douglas P.
Conde, Mark G.
Aruliah, Anasuya
Doornbos, Eelco
Shepherd, Gordon G.
Wu, Qian
Makela, Jonathan J.
Niciejewski, Rick J.
Lee, Changsup
Jee, Geonhwa
Ridley, Aaron J.
author_facet Dhadly, Manbharat S.
Emmert, John T.
Drob, Douglas P.
Conde, Mark G.
Aruliah, Anasuya
Doornbos, Eelco
Shepherd, Gordon G.
Wu, Qian
Makela, Jonathan J.
Niciejewski, Rick J.
Lee, Changsup
Jee, Geonhwa
Ridley, Aaron J.
author_sort Dhadly, Manbharat S.
title HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds
title_short HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds
title_full HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds
title_fullStr HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds
title_full_unstemmed HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds
title_sort hl‐twim empirical model of high‐latitude upper thermospheric winds
publisher Wiley Periodicals, Inc.
publishDate 2019
url https://hdl.handle.net/2027.42/153588
https://doi.org/10.1029/2019JA027188
genre Antarctica Journal
genre_facet Antarctica Journal
op_relation Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Aruliah, Anasuya; Doornbos, Eelco; Shepherd, Gordon G.; Wu, Qian; Makela, Jonathan J.; Niciejewski, Rick J.; Lee, Changsup; Jee, Geonhwa; Ridley, Aaron J. (2019). "HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds." Journal of Geophysical Research: Space Physics 124(12): 10592-10618.
2169-9380
2169-9402
https://hdl.handle.net/2027.42/153588
doi:10.1029/2019JA027188
Journal of Geophysical Research: Space Physics
Richmond, A. D. ( 1995 ). Ionospheric electrodynamics using magnetic apex coordinates. Journal of Geomagnetism and Geoelectricity, 47 ( 2 ), 191 – 212. https://doi.org/10.5636/jgg.47.191
Hernandez, G., McCormac, F. G., & Smith, R. W. ( 1991 ). Austral thermospheric wind circulation and interplanetary magnetic field orientation. Journal of Geophysical Research, 96 ( A4 ), 5777. https://doi.org/10.1029/90JA02458
Hernandez, G., & Roble, R. G. ( 1995 ). Thermospheric nighttime neutral temperature and winds over Fritz Peak Observatory: Observed and calculated solar cycle variation. Journal of Geophysical Research, 100 ( A8 ), 14647. https://doi.org/10.1029/95JA00565
Hernandez, G., & Roble, R. G. ( 2003 ). Simultaneous thermospheric observations during the geomagnetic storm of April 2002 from South Pole and Arrival Heights, Antarctica. Geophysical Research Letters, 30 ( 10 ), 1511. https://doi.org/10.1029/2003GL016878
Killeen, T. L., Hays, P. B., Spencer, N. W., & Wharton, L. E. ( 1982 ). Neutral winds in the polar thermosphere as measured from Dynamics Explorer. Geophysical Research Letters, 9 ( 9 ), 957 – 960. https://doi.org/10.1029/GL009i009p00957
Killeen, T. L., Hays, P. B., Spencer, N. W., & Wharton, L. E. ( 1983 ). Neutral winds in the polar thermosphere as measured from Dynamics Explorer. Advances in Space Research, 2 ( 10 ), 133 – 169. https://doi.org/0273-1177/83/100133-04$03.00/O
Killeen, T. L., Won, Y. I., Niciejewski, R. J., & Burns, A. G. ( 1995 ). Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic field dependencies. Journal of Geophysical Research, 100 ( A11 ), 21327. https://doi.org/10.1029/95JA01208
Lee, C., Jee, G., Wu, Q., Shim, J. S., Murphy, D., Song, I. S., & Kim, Y. H. ( 2017 ). Polar thermospheric winds and temperature observed by Fabry‐Perot interferometer at Jang Bogo Station, Antarctica. Journal of Geophysical Research: Space Physics, 122, 9685 – 9695. https://doi.org/10.1002/2017JA024408
Makela, J. J., Meriwether, J. W., Huang, Y., & Sherwood, P. J. ( 2011 ). Simulation and analysis of a multi‐order imaging Fabry‐Perot interferometer for the study of thermospheric winds and temperatures. Applied Optics, 50 ( 22 ), 4403 – 4416. https://doi.org/10.1364/ao.50.004403
Meriwether, J. W. ( 2006 ). Studies of thermospheric dynamics with a Fabry‐Perot interferometer network: A review. Journal of Atmospheric and Solar‐Terrestrial Physics, 68 ( 13 ), 1576 – 1589. https://doi.org/10.1016/j.jastp.2005.11.014
Meriwether, J. W., Killeen, T. L., McCormac, F. G., Burns, A. G., & Roble, R. G. ( 1988 ). Thermospheric winds in the geomagnetic polar cap for solar minimum conditions. Journal of Geophysical Research, 93 ( A7 ), 7478. https://doi.org/10.1029/JA093iA07p07478
Pallamraju, D. ( 2005 ). First ground‐based measurements of OI 6300 Å daytime aurora over Boston in response to the 30 October 2003 geomagnetic storm. Geophysical Research Letters, 32, L03S10. https://doi.org/10.1029/2004GL021417
Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. ( 2002 ). NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107 ( A12 ), 1468. https://doi.org/10.1029/2002JA009430
Rees, D., & Fuller‐Rowell, T. J. ( 1989 ). The response of the thermosphere and ionosphere to magnetospheric forcing. Philosophical Transactions of the Royal Society A Mathematical Physics Science, 328 ( 18 ), 139 – 171. Retrieved from http://www.jstor.org/stable/38229http://about.jstor.org/terms:04http://about.jstor.org/terms
Rees, D., Fuller‐Rowell, T. J., Gordon, R., Killeen, T. L., Hays, P. B., Wharton, L., & Spencer, W. ( 1983 ). A comparison of wind observations of the upper thermosphere from the Dynamics Explorer satellite with the predictions of a global time‐dependent model. Planetary and Space Science, 31 ( 11 ), 1299 – 1314. https://doi.org/10.1016/0032-0633(83)90067-3
Richmond, A. D., Lathuillere, C., & Vennerstroem, S. ( 2003 ). Winds in the high‐latitude lower thermosphere: Dependence on the interplanetary magnetic field. Journal of Geophysical Research, 108 ( A2 ), 1066. https://doi.org/10.1029/2002JA009493
Roble, R. G., Emery, B. A., Dickinson, R. E., Ridley, E. C., Killeen, T. L., Hays, P. B., & Spencer, N. W. ( 1984 ). Thermospheric circulation, temperature, and compositional structure of the southern hemisphere polar cap during October–November 1981. Journal of Geophysical Research, 89 ( A10 ), 9057. https://doi.org/10.1029/JA089iA10p09057
Ruohoniemi, J. M., & Greenwald, R. A. ( 2005 ). Dependencies of high‐latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. Journal of Geophysical Research, 110, A9. https://doi.org/10.1029/2004JA010815
Shepherd, G., & Shepherd, M. ( 2018 ). High‐latitude observations of a localized wind wall and its coupling to the lower thermosphere. Geophysical Research Letters, 45, 4586 – 4593. https://doi.org/10.1029/2018GL077722
Shepherd, M., Shepherd, G., & Codrescu, M. ( 2019 ). Perturbations of O( 1 D) VER, temperature, winds, atomic oxygen and TEC at high southern latitudes. Journal of Geophysical Research: Space Physics, 124, 4773 – 4795. https://doi.org/10.1029/2019JA026480
Shepherd, G., Thuillier, G., Cho, Y. M., Duboin, M. L., Evans, W. F. J., Gault, W. A., & Ward, W. E. ( 2012 ). The Wind Imaging Interferometer (WINDII) on the upper atmosphere research satellite: A 20 year perspective. Reviews of Geophysics, 50 ( 2 ), 1 – 38. https://doi.org/10.1029/2012RG000390
Sipler, D. P., Hagan, M. E., Zipf, M. E., & Biondi, M. A. ( 1991 ). Combined optical and radar wind measurements in the F region over Millstone Hill. Journal of Geophysical Research, 96 ( A12 ), 21255. https://doi.org/10.1029/91JA02371
Smith, R., & Hernandez, G. ( 1995 ). Vertical winds in the thermosphere within the polar cap. Journal of Atmospheric and Terrestrial Physics, 57 ( 6 ), 611 – 620. https://doi.org/10.1016/0021-9169(94)00101-S
Smith, R. W., Hernandez, G., Price, K., Fraser, G., Clark, K. C., Schulz, W. J., & Clark, M. ( 1994 ). The June 1991 thermospheric storm observed in the southern hemisphere. Journal of Geophysical Research, 99 ( A9 ), 17609. https://doi.org/10.1029/94JA01101
Smith, R. W., Rees, D., & Stewart, R. D. ( 1988 ). Southern hemisphere thermospheric dynamics: A review. Reviews of Geophysics, 26 ( 3 ), 591. https://doi.org/10.1029/RG026i003p00591
Strickland, D. J., Cox, R. J., Meier, R. R., & Drob, D. P. ( 1999 ). Global O/N 2 derived from DE 1 FUV dayglow data: Technique and examples from two storm periods. Journal of Geophysical Research, 104 ( A3 ), 4251. https://doi.org/10.1029/98JA02817
Teanby, N. ( 2006 ). An icosahedron‐based method for even binning of globally distributed remote sensing data. Computers & Geosciences, 32 ( 9 ), 1442 – 1450. https://doi.org/10.1016/J.CAGEO.2006.01.007
Visser, T., Doornbos, E. N., de Visser, C. C., Visser, P. N., & Fritsche, B. ( 2018 ). Torque model verification for the GOCE satellite. Advances in Space Research, 62 ( 5 ), 1114 – 1136. https://doi.org/10.1016/J.ASR.2018.06.025
Visser, T., March, G., Doornbos, E., de Visser, C., & Visser, P. ( 2019 ). Horizontal and vertical thermospheric cross‐wind from GOCE linear and angular accelerations. Advances in Space Research, 63, 3139 – 3153. https://doi.org/10.1016/J.ASR.2019.01.030
Wharton, L. E., Spencer, N. W., & Mayr, H. G. ( 1984 ). The Earth’s thermospheric superrotation from Dynamics Explorer 2. Geophysical Research Letters, 11 ( 5 ), 531 – 533. https://doi.org/10.1029/GL011i005p00531
Wu, Q., Gablehouse, R. D., Solomon, S. C., Killeen, T. L., & She, C. Y. ( 2004 ). A New Fabry‐Perot interferometer for upper atmosphere research. In Proceedings of SPIE ‐ The International Society for Optical Engineering (Vol. 5660, pp. 218 – 227 ). Honolulu, Hawaii. https://doi.org/10.1117/12.573084
Wu, Q., Knipp, D., Liu, J., Wang, W., Häggström, I., Jee, G., & Erickson, P. J. ( 2019 ). What do the new 2018 HIWIND thermospheric wind observations tell us about high‐latitude ion–neutral coupling during daytime? Journal of Geophysical Research: Space Physics, 124, 6173 – 181. https://doi.org/10.1029/2019JA026776
Wu, Q., Knipp, D., Liu, J., Wang, W., Varney, R., Gillies, R., & Kwak, Y. ( 2019 ). HIWIND observation of summer season polar cap thermospheric winds. Journal of Geophysical Research: Space Physics, 126, 1 – 8. https://doi.org/10.1029/2019JA027258
Wu, Q., McEwen, D., Guo, W., Niciejewski, R., Roble, R., & Won, Y. I. ( 2008 ). Long‐term thermospheric neutral wind observations over the northern polar cap. Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 16 ), 2014 – 2030. https://doi.org/10.1016/j.jastp.2008.09.004
Aruliah, A. L., Farmer, A. D., Rees, D., & Brändström, U. ( 1996 ). The seasonal behavior of high‐latitude thermospheric winds and ion velocities observed over one solar cycle. Journal Geophysical Research, 101 ( A7 ), 15,701 – 15,711. https://doi.org/10.1029/96JA00360
Aruliah, A. L., & Griffin, E. ( 2001 ). Evidence of meso‐scale structure in the high‐latitude thermosphere. Annales Geophysicae, 19 ( 1 ), 37 – 46. https://doi.org/10.5194/angeo-19-37-2001
Aruliah, A. L., Griffin, E. M., Aylward, A. D., Ford, E. A. K., Kosch, M. J., Davis, C. J., & Jussila, J. ( 2005 ). First direct evidence of meso‐scale variability on ion‐neutral dynamics using co‐located tristatic FPIs and EISCAT radar in Northern Scandinavia. Annales Geophysicae, 23 ( 1 ), 147 – 162. https://doi.org/10.5194/angeo-23-147-2005
Aruliah, A. L., Griffin, E. M., McWhirter, I., Aylward, A. D., Ford, E. A. K., Charalambous, A., & Howells, V. S. C. ( 2004 ). First tristatic studies of meso‐scale ion‐neutral dynamics and energetics in the high‐latitude upper atmosphere using collocated FPIs and EISCAT radar. Geophysical Research Letters, 31, L03802. https://doi.org/10.1029/2003gl018469
Aruliah, A. L., Rees, D., & Fuller‐Rowell, T. J. ( 1991 ). The combined effect of solar and geomagnetic activity on high latitude thermospheric neutral winds. Part I. Observations. Journal of Atmospheric and Terrestrial Physics, 53 ( 6‐7 ), 467 – 483. https://doi.org/10.1016/0021-9169(91)90075-I
Bekerat, H. A., Schunk, R. W., & Scherliess, L. ( 2003 ). Evaluation of statistical convection patterns for real‐time ionospheric specifications and forecasts. Journal of Geophysical Research, 108 ( A12 ), 1413. https://doi.org/10.1029/2003JA009945
Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., & Walker, A. D. M. ( 2007 ). A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in Geophysics, 28 ( 1 ), 33 – 109. https://doi.org/10.1007/s10712-007-9017-8
Conde, M., & Dyson, P. ( 1995 ). Thermospheric vertical winds above Mawson, Antarctica. Journal of Atmospheric and Terrestrial Physics, 57 ( 6 ), 589 – 596. https://doi.org/10.1016/0021-9169(94)00099-A
Conde, M., & Smith, R. W. ( 1995 ). Mapping thermospheric winds in the auroral zone. Geophysical Research Letters, 22 ( 22 ), 3019 – 3022. https://doi.org/10.1029/95GL02437
Crickmore, R. I. ( 1994 ). Mean thermospheric winds observed from Halley, Antarctica. Annales Geophysicae, 12 ( 10/11 ), 1101 – 1113. https://doi.org/10.1007/s00585-994-1101-5
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2019JA02718810.5636/jgg.47.19110.1016/j.jastp.2005.11.01410.1029/2004GL02141710.1007/s00585-994-1101-510.1007/978-3-642-25129-010.1002/2015JA021047
container_title Journal of Geophysical Research: Space Physics
container_volume 124
container_issue 12
container_start_page 10592
op_container_end_page 10618
_version_ 1774713163342675968
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/153588 2023-08-20T04:02:37+02:00 HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds Dhadly, Manbharat S. Emmert, John T. Drob, Douglas P. Conde, Mark G. Aruliah, Anasuya Doornbos, Eelco Shepherd, Gordon G. Wu, Qian Makela, Jonathan J. Niciejewski, Rick J. Lee, Changsup Jee, Geonhwa Ridley, Aaron J. 2019-12 application/pdf https://hdl.handle.net/2027.42/153588 https://doi.org/10.1029/2019JA027188 unknown Wiley Periodicals, Inc. Springer‐Verlag Berlin Heidelberg Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Aruliah, Anasuya; Doornbos, Eelco; Shepherd, Gordon G.; Wu, Qian; Makela, Jonathan J.; Niciejewski, Rick J.; Lee, Changsup; Jee, Geonhwa; Ridley, Aaron J. (2019). "HL‐TWiM Empirical Model of High‐Latitude Upper Thermospheric Winds." Journal of Geophysical Research: Space Physics 124(12): 10592-10618. 2169-9380 2169-9402 https://hdl.handle.net/2027.42/153588 doi:10.1029/2019JA027188 Journal of Geophysical Research: Space Physics Richmond, A. D. ( 1995 ). Ionospheric electrodynamics using magnetic apex coordinates. Journal of Geomagnetism and Geoelectricity, 47 ( 2 ), 191 – 212. https://doi.org/10.5636/jgg.47.191 Hernandez, G., McCormac, F. G., & Smith, R. W. ( 1991 ). Austral thermospheric wind circulation and interplanetary magnetic field orientation. Journal of Geophysical Research, 96 ( A4 ), 5777. https://doi.org/10.1029/90JA02458 Hernandez, G., & Roble, R. G. ( 1995 ). Thermospheric nighttime neutral temperature and winds over Fritz Peak Observatory: Observed and calculated solar cycle variation. Journal of Geophysical Research, 100 ( A8 ), 14647. https://doi.org/10.1029/95JA00565 Hernandez, G., & Roble, R. G. ( 2003 ). Simultaneous thermospheric observations during the geomagnetic storm of April 2002 from South Pole and Arrival Heights, Antarctica. Geophysical Research Letters, 30 ( 10 ), 1511. https://doi.org/10.1029/2003GL016878 Killeen, T. L., Hays, P. B., Spencer, N. W., & Wharton, L. E. ( 1982 ). Neutral winds in the polar thermosphere as measured from Dynamics Explorer. Geophysical Research Letters, 9 ( 9 ), 957 – 960. https://doi.org/10.1029/GL009i009p00957 Killeen, T. L., Hays, P. B., Spencer, N. W., & Wharton, L. E. ( 1983 ). Neutral winds in the polar thermosphere as measured from Dynamics Explorer. Advances in Space Research, 2 ( 10 ), 133 – 169. https://doi.org/0273-1177/83/100133-04$03.00/O Killeen, T. L., Won, Y. I., Niciejewski, R. J., & Burns, A. G. ( 1995 ). Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic field dependencies. Journal of Geophysical Research, 100 ( A11 ), 21327. https://doi.org/10.1029/95JA01208 Lee, C., Jee, G., Wu, Q., Shim, J. S., Murphy, D., Song, I. S., & Kim, Y. H. ( 2017 ). Polar thermospheric winds and temperature observed by Fabry‐Perot interferometer at Jang Bogo Station, Antarctica. Journal of Geophysical Research: Space Physics, 122, 9685 – 9695. https://doi.org/10.1002/2017JA024408 Makela, J. J., Meriwether, J. W., Huang, Y., & Sherwood, P. J. ( 2011 ). Simulation and analysis of a multi‐order imaging Fabry‐Perot interferometer for the study of thermospheric winds and temperatures. Applied Optics, 50 ( 22 ), 4403 – 4416. https://doi.org/10.1364/ao.50.004403 Meriwether, J. W. ( 2006 ). Studies of thermospheric dynamics with a Fabry‐Perot interferometer network: A review. Journal of Atmospheric and Solar‐Terrestrial Physics, 68 ( 13 ), 1576 – 1589. https://doi.org/10.1016/j.jastp.2005.11.014 Meriwether, J. W., Killeen, T. L., McCormac, F. G., Burns, A. G., & Roble, R. G. ( 1988 ). Thermospheric winds in the geomagnetic polar cap for solar minimum conditions. Journal of Geophysical Research, 93 ( A7 ), 7478. https://doi.org/10.1029/JA093iA07p07478 Pallamraju, D. ( 2005 ). First ground‐based measurements of OI 6300 Å daytime aurora over Boston in response to the 30 October 2003 geomagnetic storm. Geophysical Research Letters, 32, L03S10. https://doi.org/10.1029/2004GL021417 Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. ( 2002 ). NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107 ( A12 ), 1468. https://doi.org/10.1029/2002JA009430 Rees, D., & Fuller‐Rowell, T. J. ( 1989 ). The response of the thermosphere and ionosphere to magnetospheric forcing. Philosophical Transactions of the Royal Society A Mathematical Physics Science, 328 ( 18 ), 139 – 171. Retrieved from http://www.jstor.org/stable/38229http://about.jstor.org/terms:04http://about.jstor.org/terms Rees, D., Fuller‐Rowell, T. J., Gordon, R., Killeen, T. L., Hays, P. B., Wharton, L., & Spencer, W. ( 1983 ). A comparison of wind observations of the upper thermosphere from the Dynamics Explorer satellite with the predictions of a global time‐dependent model. Planetary and Space Science, 31 ( 11 ), 1299 – 1314. https://doi.org/10.1016/0032-0633(83)90067-3 Richmond, A. D., Lathuillere, C., & Vennerstroem, S. ( 2003 ). Winds in the high‐latitude lower thermosphere: Dependence on the interplanetary magnetic field. Journal of Geophysical Research, 108 ( A2 ), 1066. https://doi.org/10.1029/2002JA009493 Roble, R. G., Emery, B. A., Dickinson, R. E., Ridley, E. C., Killeen, T. L., Hays, P. B., & Spencer, N. W. ( 1984 ). Thermospheric circulation, temperature, and compositional structure of the southern hemisphere polar cap during October–November 1981. Journal of Geophysical Research, 89 ( A10 ), 9057. https://doi.org/10.1029/JA089iA10p09057 Ruohoniemi, J. M., & Greenwald, R. A. ( 2005 ). Dependencies of high‐latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. Journal of Geophysical Research, 110, A9. https://doi.org/10.1029/2004JA010815 Shepherd, G., & Shepherd, M. ( 2018 ). High‐latitude observations of a localized wind wall and its coupling to the lower thermosphere. Geophysical Research Letters, 45, 4586 – 4593. https://doi.org/10.1029/2018GL077722 Shepherd, M., Shepherd, G., & Codrescu, M. ( 2019 ). Perturbations of O( 1 D) VER, temperature, winds, atomic oxygen and TEC at high southern latitudes. Journal of Geophysical Research: Space Physics, 124, 4773 – 4795. https://doi.org/10.1029/2019JA026480 Shepherd, G., Thuillier, G., Cho, Y. M., Duboin, M. L., Evans, W. F. J., Gault, W. A., & Ward, W. E. ( 2012 ). The Wind Imaging Interferometer (WINDII) on the upper atmosphere research satellite: A 20 year perspective. Reviews of Geophysics, 50 ( 2 ), 1 – 38. https://doi.org/10.1029/2012RG000390 Sipler, D. P., Hagan, M. E., Zipf, M. E., & Biondi, M. A. ( 1991 ). Combined optical and radar wind measurements in the F region over Millstone Hill. Journal of Geophysical Research, 96 ( A12 ), 21255. https://doi.org/10.1029/91JA02371 Smith, R., & Hernandez, G. ( 1995 ). Vertical winds in the thermosphere within the polar cap. Journal of Atmospheric and Terrestrial Physics, 57 ( 6 ), 611 – 620. https://doi.org/10.1016/0021-9169(94)00101-S Smith, R. W., Hernandez, G., Price, K., Fraser, G., Clark, K. C., Schulz, W. J., & Clark, M. ( 1994 ). The June 1991 thermospheric storm observed in the southern hemisphere. Journal of Geophysical Research, 99 ( A9 ), 17609. https://doi.org/10.1029/94JA01101 Smith, R. W., Rees, D., & Stewart, R. D. ( 1988 ). Southern hemisphere thermospheric dynamics: A review. Reviews of Geophysics, 26 ( 3 ), 591. https://doi.org/10.1029/RG026i003p00591 Strickland, D. J., Cox, R. J., Meier, R. R., & Drob, D. P. ( 1999 ). Global O/N 2 derived from DE 1 FUV dayglow data: Technique and examples from two storm periods. Journal of Geophysical Research, 104 ( A3 ), 4251. https://doi.org/10.1029/98JA02817 Teanby, N. ( 2006 ). An icosahedron‐based method for even binning of globally distributed remote sensing data. Computers & Geosciences, 32 ( 9 ), 1442 – 1450. https://doi.org/10.1016/J.CAGEO.2006.01.007 Visser, T., Doornbos, E. N., de Visser, C. C., Visser, P. N., & Fritsche, B. ( 2018 ). Torque model verification for the GOCE satellite. Advances in Space Research, 62 ( 5 ), 1114 – 1136. https://doi.org/10.1016/J.ASR.2018.06.025 Visser, T., March, G., Doornbos, E., de Visser, C., & Visser, P. ( 2019 ). Horizontal and vertical thermospheric cross‐wind from GOCE linear and angular accelerations. Advances in Space Research, 63, 3139 – 3153. https://doi.org/10.1016/J.ASR.2019.01.030 Wharton, L. E., Spencer, N. W., & Mayr, H. G. ( 1984 ). The Earth’s thermospheric superrotation from Dynamics Explorer 2. Geophysical Research Letters, 11 ( 5 ), 531 – 533. https://doi.org/10.1029/GL011i005p00531 Wu, Q., Gablehouse, R. D., Solomon, S. C., Killeen, T. L., & She, C. Y. ( 2004 ). A New Fabry‐Perot interferometer for upper atmosphere research. In Proceedings of SPIE ‐ The International Society for Optical Engineering (Vol. 5660, pp. 218 – 227 ). Honolulu, Hawaii. https://doi.org/10.1117/12.573084 Wu, Q., Knipp, D., Liu, J., Wang, W., Häggström, I., Jee, G., & Erickson, P. J. ( 2019 ). What do the new 2018 HIWIND thermospheric wind observations tell us about high‐latitude ion–neutral coupling during daytime? Journal of Geophysical Research: Space Physics, 124, 6173 – 181. https://doi.org/10.1029/2019JA026776 Wu, Q., Knipp, D., Liu, J., Wang, W., Varney, R., Gillies, R., & Kwak, Y. ( 2019 ). HIWIND observation of summer season polar cap thermospheric winds. Journal of Geophysical Research: Space Physics, 126, 1 – 8. https://doi.org/10.1029/2019JA027258 Wu, Q., McEwen, D., Guo, W., Niciejewski, R., Roble, R., & Won, Y. I. ( 2008 ). Long‐term thermospheric neutral wind observations over the northern polar cap. Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 16 ), 2014 – 2030. https://doi.org/10.1016/j.jastp.2008.09.004 Aruliah, A. L., Farmer, A. D., Rees, D., & Brändström, U. ( 1996 ). The seasonal behavior of high‐latitude thermospheric winds and ion velocities observed over one solar cycle. Journal Geophysical Research, 101 ( A7 ), 15,701 – 15,711. https://doi.org/10.1029/96JA00360 Aruliah, A. L., & Griffin, E. ( 2001 ). Evidence of meso‐scale structure in the high‐latitude thermosphere. Annales Geophysicae, 19 ( 1 ), 37 – 46. https://doi.org/10.5194/angeo-19-37-2001 Aruliah, A. L., Griffin, E. M., Aylward, A. D., Ford, E. A. K., Kosch, M. J., Davis, C. J., & Jussila, J. ( 2005 ). First direct evidence of meso‐scale variability on ion‐neutral dynamics using co‐located tristatic FPIs and EISCAT radar in Northern Scandinavia. Annales Geophysicae, 23 ( 1 ), 147 – 162. https://doi.org/10.5194/angeo-23-147-2005 Aruliah, A. L., Griffin, E. M., McWhirter, I., Aylward, A. D., Ford, E. A. K., Charalambous, A., & Howells, V. S. C. ( 2004 ). First tristatic studies of meso‐scale ion‐neutral dynamics and energetics in the high‐latitude upper atmosphere using collocated FPIs and EISCAT radar. Geophysical Research Letters, 31, L03802. https://doi.org/10.1029/2003gl018469 Aruliah, A. L., Rees, D., & Fuller‐Rowell, T. J. ( 1991 ). The combined effect of solar and geomagnetic activity on high latitude thermospheric neutral winds. Part I. Observations. Journal of Atmospheric and Terrestrial Physics, 53 ( 6‐7 ), 467 – 483. https://doi.org/10.1016/0021-9169(91)90075-I Bekerat, H. A., Schunk, R. W., & Scherliess, L. ( 2003 ). Evaluation of statistical convection patterns for real‐time ionospheric specifications and forecasts. Journal of Geophysical Research, 108 ( A12 ), 1413. https://doi.org/10.1029/2003JA009945 Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., & Walker, A. D. M. ( 2007 ). A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surveys in Geophysics, 28 ( 1 ), 33 – 109. https://doi.org/10.1007/s10712-007-9017-8 Conde, M., & Dyson, P. ( 1995 ). Thermospheric vertical winds above Mawson, Antarctica. Journal of Atmospheric and Terrestrial Physics, 57 ( 6 ), 589 – 596. https://doi.org/10.1016/0021-9169(94)00099-A Conde, M., & Smith, R. W. ( 1995 ). Mapping thermospheric winds in the auroral zone. Geophysical Research Letters, 22 ( 22 ), 3019 – 3022. https://doi.org/10.1029/95GL02437 Crickmore, R. I. ( 1994 ). Mean thermospheric winds observed from Halley, Antarctica. Annales Geophysicae, 12 ( 10/11 ), 1101 – 1113. https://doi.org/10.1007/s00585-994-1101-5 IndexNoFollow ionosphere high‐latitude neutral dynamics empirical modeling thermosphere data assimilation Astronomy and Astrophysics Science Article 2019 ftumdeepblue https://doi.org/10.1029/2019JA02718810.5636/jgg.47.19110.1016/j.jastp.2005.11.01410.1029/2004GL02141710.1007/s00585-994-1101-510.1007/978-3-642-25129-010.1002/2015JA021047 2023-07-31T20:38:25Z We present an empirical model of thermospheric winds (High‐latitude Thermospheric Wind Model [HL‐TWiM]) that specifies F region high‐latitude horizontal neutral winds as a function of day of year, latitude, longitude, local time, and geomagnetic activity. HL‐TWiM represents the large‐scale neutral wind circulation, in geomagnetic coordinates, for the given input conditions. The model synthesizes the most extensive collection to date of historical high‐latitude wind measurements; it is based on statistical analyses of several decades of F region thermospheric wind measurements from 21 ground‐based stations (Fabry‐Perot Interferometers and Scanning Doppler Imaging Fabry‐Perot Interferometers) located at various northern and southern high latitudes and two space‐based instruments (UARS WINDII and GOCE). The geomagnetic latitude and local time dependences in HL‐TWiM are represented using vector spherical harmonics, day of year and longitude variations are represented using simple harmonic functions, and the geomagnetic activity dependence is represented using quadratic B splines. In this paper, we describe the HL‐TWiM formulation and fitting procedures, and we verify the model against the neutral wind databases used in its formulation. HL‐TWiM provides a necessary benchmark for validating new wind observations and tuning our physical understanding of complex wind behaviors. Results show stronger Universal Time variation in winds at southern than northern high latitudes. Model‐data intra‐annual comparisons in this study show semiannual oscillation‐like behavior of GOCE winds, rarely observed before in wind data.Key PointsWe developed a comprehensive empirical model of high‐latitude F region thermospheric winds (HL‐TWiM)Universal Time variations in high‐latitude winds are stronger in the Southern than Northern HemisphereHL‐TWiM provides a necessary benchmark for validating new high‐latitude wind observations and tuning first principal models Peer Reviewed ... Article in Journal/Newspaper Antarctica Journal University of Michigan: Deep Blue Journal of Geophysical Research: Space Physics 124 12 10592 10618