The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty

The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an en...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Lawrence, David M., Fisher, Rosie A., Koven, Charles D., Oleson, Keith W., Swenson, Sean C., Bonan, Gordon, Collier, Nathan, Ghimire, Bardan, Kampenhout, Leo, Kennedy, Daniel, Kluzek, Erik, Lawrence, Peter J., Li, Fang, Li, Hongyi, Lombardozzi, Danica, Riley, William J., Sacks, William J., Shi, Mingjie, Vertenstein, Mariana, Wieder, William R., Xu, Chonggang, Ali, Ashehad A., Badger, Andrew M., Bisht, Gautam, Broeke, Michiel, Brunke, Michael A., Burns, Sean P., Buzan, Jonathan, Clark, Martyn, Craig, Anthony, Dahlin, Kyla, Drewniak, Beth, Fisher, Joshua B., Flanner, Mark, Fox, Andrew M., Gentine, Pierre, Hoffman, Forrest, Keppel‐aleks, Gretchen, Knox, Ryan, Kumar, Sanjiv, Lenaerts, Jan, Leung, L. Ruby, Lipscomb, William H., Lu, Yaqiong, Pandey, Ashutosh, Pelletier, Jon D., Perket, Justin, Randerson, James T., Ricciuto, Daniel M., Sanderson, Benjamin M., Slater, Andrew, Subin, Zachary M., Tang, Jinyun, Thomas, R. Quinn, Val Martin, Maria, Zeng, Xubin
Format: Article in Journal/Newspaper
Language:unknown
Published: Springer 2019
Subjects:
Online Access:https://hdl.handle.net/2027.42/153578
https://doi.org/10.1029/2018MS001583
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/153578
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic global land model
Earth System Modeling
carbon and nitrogen cycling
hydrology
benchmarking
Geological Sciences
Science
spellingShingle global land model
Earth System Modeling
carbon and nitrogen cycling
hydrology
benchmarking
Geological Sciences
Science
Lawrence, David M.
Fisher, Rosie A.
Koven, Charles D.
Oleson, Keith W.
Swenson, Sean C.
Bonan, Gordon
Collier, Nathan
Ghimire, Bardan
Kampenhout, Leo
Kennedy, Daniel
Kluzek, Erik
Lawrence, Peter J.
Li, Fang
Li, Hongyi
Lombardozzi, Danica
Riley, William J.
Sacks, William J.
Shi, Mingjie
Vertenstein, Mariana
Wieder, William R.
Xu, Chonggang
Ali, Ashehad A.
Badger, Andrew M.
Bisht, Gautam
Broeke, Michiel
Brunke, Michael A.
Burns, Sean P.
Buzan, Jonathan
Clark, Martyn
Craig, Anthony
Dahlin, Kyla
Drewniak, Beth
Fisher, Joshua B.
Flanner, Mark
Fox, Andrew M.
Gentine, Pierre
Hoffman, Forrest
Keppel‐aleks, Gretchen
Knox, Ryan
Kumar, Sanjiv
Lenaerts, Jan
Leung, L. Ruby
Lipscomb, William H.
Lu, Yaqiong
Pandey, Ashutosh
Pelletier, Jon D.
Perket, Justin
Randerson, James T.
Ricciuto, Daniel M.
Sanderson, Benjamin M.
Slater, Andrew
Subin, Zachary M.
Tang, Jinyun
Thomas, R. Quinn
Val Martin, Maria
Zeng, Xubin
The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
topic_facet global land model
Earth System Modeling
carbon and nitrogen cycling
hydrology
benchmarking
Geological Sciences
Science
description The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and timeâ evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5.Plain Language SummaryThe Community Land Model (CLM) is the land component of the widely used Community Earth System Model (CESM). Here, we introduce model developments included in CLM version 5 (CLM5), the default land component for ...
format Article in Journal/Newspaper
author Lawrence, David M.
Fisher, Rosie A.
Koven, Charles D.
Oleson, Keith W.
Swenson, Sean C.
Bonan, Gordon
Collier, Nathan
Ghimire, Bardan
Kampenhout, Leo
Kennedy, Daniel
Kluzek, Erik
Lawrence, Peter J.
Li, Fang
Li, Hongyi
Lombardozzi, Danica
Riley, William J.
Sacks, William J.
Shi, Mingjie
Vertenstein, Mariana
Wieder, William R.
Xu, Chonggang
Ali, Ashehad A.
Badger, Andrew M.
Bisht, Gautam
Broeke, Michiel
Brunke, Michael A.
Burns, Sean P.
Buzan, Jonathan
Clark, Martyn
Craig, Anthony
Dahlin, Kyla
Drewniak, Beth
Fisher, Joshua B.
Flanner, Mark
Fox, Andrew M.
Gentine, Pierre
Hoffman, Forrest
Keppel‐aleks, Gretchen
Knox, Ryan
Kumar, Sanjiv
Lenaerts, Jan
Leung, L. Ruby
Lipscomb, William H.
Lu, Yaqiong
Pandey, Ashutosh
Pelletier, Jon D.
Perket, Justin
Randerson, James T.
Ricciuto, Daniel M.
Sanderson, Benjamin M.
Slater, Andrew
Subin, Zachary M.
Tang, Jinyun
Thomas, R. Quinn
Val Martin, Maria
Zeng, Xubin
author_facet Lawrence, David M.
Fisher, Rosie A.
Koven, Charles D.
Oleson, Keith W.
Swenson, Sean C.
Bonan, Gordon
Collier, Nathan
Ghimire, Bardan
Kampenhout, Leo
Kennedy, Daniel
Kluzek, Erik
Lawrence, Peter J.
Li, Fang
Li, Hongyi
Lombardozzi, Danica
Riley, William J.
Sacks, William J.
Shi, Mingjie
Vertenstein, Mariana
Wieder, William R.
Xu, Chonggang
Ali, Ashehad A.
Badger, Andrew M.
Bisht, Gautam
Broeke, Michiel
Brunke, Michael A.
Burns, Sean P.
Buzan, Jonathan
Clark, Martyn
Craig, Anthony
Dahlin, Kyla
Drewniak, Beth
Fisher, Joshua B.
Flanner, Mark
Fox, Andrew M.
Gentine, Pierre
Hoffman, Forrest
Keppel‐aleks, Gretchen
Knox, Ryan
Kumar, Sanjiv
Lenaerts, Jan
Leung, L. Ruby
Lipscomb, William H.
Lu, Yaqiong
Pandey, Ashutosh
Pelletier, Jon D.
Perket, Justin
Randerson, James T.
Ricciuto, Daniel M.
Sanderson, Benjamin M.
Slater, Andrew
Subin, Zachary M.
Tang, Jinyun
Thomas, R. Quinn
Val Martin, Maria
Zeng, Xubin
author_sort Lawrence, David M.
title The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
title_short The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
title_full The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
title_fullStr The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
title_full_unstemmed The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
title_sort community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty
publisher Springer
publishDate 2019
url https://hdl.handle.net/2027.42/153578
https://doi.org/10.1029/2018MS001583
genre The Cryosphere
genre_facet The Cryosphere
op_relation Lawrence, David M.; Fisher, Rosie A.; Koven, Charles D.; Oleson, Keith W.; Swenson, Sean C.; Bonan, Gordon; Collier, Nathan; Ghimire, Bardan; Kampenhout, Leo; Kennedy, Daniel; Kluzek, Erik; Lawrence, Peter J.; Li, Fang; Li, Hongyi; Lombardozzi, Danica; Riley, William J.; Sacks, William J.; Shi, Mingjie; Vertenstein, Mariana; Wieder, William R.; Xu, Chonggang; Ali, Ashehad A.; Badger, Andrew M.; Bisht, Gautam; Broeke, Michiel; Brunke, Michael A.; Burns, Sean P.; Buzan, Jonathan; Clark, Martyn; Craig, Anthony; Dahlin, Kyla; Drewniak, Beth; Fisher, Joshua B.; Flanner, Mark; Fox, Andrew M.; Gentine, Pierre; Hoffman, Forrest; Keppel‐aleks, Gretchen
Knox, Ryan; Kumar, Sanjiv; Lenaerts, Jan; Leung, L. Ruby; Lipscomb, William H.; Lu, Yaqiong; Pandey, Ashutosh; Pelletier, Jon D.; Perket, Justin; Randerson, James T.; Ricciuto, Daniel M.; Sanderson, Benjamin M.; Slater, Andrew; Subin, Zachary M.; Tang, Jinyun; Thomas, R. Quinn; Val Martin, Maria; Zeng, Xubin (2019). "The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty." Journal of Advances in Modeling Earth Systems 11(12): 4245-4287.
1942-2466
https://hdl.handle.net/2027.42/153578
doi:10.1029/2018MS001583
Journal of Advances in Modeling Earth Systems
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.â F., Mahowald, N., Niu, G.â Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stöckli, R., Wang, A., Yang, Z.â L., Zeng, X., & Zeng, X. ( 2010 ). Technical description of version 4.0 of the Community Land Model (NCAR Tech. Note NCAR/TNâ 478+STR). Retrieved from Boulder, CO: https://doi.org/10.1175/1520â 0442(1998)011<1307:tlscot>2.0.co;2
Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A., Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.â P., Yang, X., Crous, K. Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power, S. A., Tjoelker, M. G., & Ellsworth, D. S. ( 2016 ). Using models to guide field experiments: A priori predictions for the CO 2 response of a nutrientâ and waterâ limited native Eucalypt woodland. Global Change Biology, 22 ( 8 ), 2834 â 2851. https://doi.org/10.1111/gcb.13268
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., de Angelis, P., Freeman, M., & Wingate, L. ( 2011 ). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17 ( 6 ), 2134 â 2144. https://doi.org/10.1111/j.1365â 2486.2010.02375.x
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y.â P., Weng, E., Iversen, C. M., McCarthy, H. R., Warren, J. M., Oren, R., & Norby, R. J. ( 2015 ). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5 ( 6 ), 528 â 534. https://doi.org/10.1038/nclimate2621
Meier, R., Davin, E. L., Lejeune, Q., Hauser, M., Li, Y., Martens, B., Schultz, N. M., Sterling, S., & Thiery, W. ( 2018 ). Evaluating and improving the Community Land Model’s sensitivity to land cover. Biogeosciences, 15 ( 15 ), 4731 â 4757. https://doi.org/10.5194/bgâ 15â 4731â 2018
Mitchell, T. D., & Jones, P. D. ( 2005 ). An improved method of constructing a database of monthly climate observations and associated highâ resolution grids. International Journal of Climatology, 25 ( 6 ), 693 â 712. https://doi.org/10.1002/joc.1181
Mueller, N. D., Rhines, A., Butler, E. E., Ray, D. K., Siebert, S., Holbrook, N. M., & Huybers, P. ( 2017 ). Global relationships between cropland intensification and summer temperature extremes over the last 50 years. Journal of Climate, 30 ( 18 ), 7505 â 7528. https://doi.org/10.1175/Jcliâ Dâ 17â 0096.1
Negrónâ Juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G., & Chambers, J. Q. ( 2015 ). Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environmental Research Letters, 10 ( 6 ), 064017. https://doi.org/10.1088/1748â 9326/10/6/064017
Niinemets, U., & Keenan, T. ( 2014 ). Photosynthetic responses to stress in Mediterranean evergreens: Mechanisms and models. Environmental and Experimental Botany, 103, 24 â 41. https://doi.org/10.1016/j.envexpbot.2013.11.008
Niu, G. Y., & Yang, Z. L. ( 2007 ). An observationâ based formulation of snow cover fraction and its evaluation over large North American river basins. Journal of Geophysical Research, 112 ( D21 ). https://doi.org/10.1029/2007JD008674
Niu, G. Y., Yang, Z. L., Dickinson, R. E., Gulden, L. E., & Su, H. ( 2007 ). Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. Journal of Geophysical Research, 112 ( D7 ). https://doi.org/10.1029/2006jd007522
Oleson, K., & Feddema, J. ( 2019 ). Parameterization and surface data improvements and new capabilities for the Community Land Model Urban (CLMU). Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2018MS001586
Oleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M., & Grimmond, C. S. B. ( 2008 ). An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. Journal of Applied Meteorology and Climatology, 47 ( 4 ), 1038 â 1060. https://doi.org/10.1175/2007JAMC1597.1
Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J.â F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., & Yang, Z.â L. ( 2013 ). Technical description of version 4.5 of the Community Land Model (CLM) (NCAR Tech. Note NCAR/TNâ 503 + STR). Retrieved from Boulder, CO: https://doi.org/10.5065/D6RR1W7M
Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., & Qian, T. ( 2008 ). Improvements to the Community Land Model and their impact on the hydrological cycle. Journal of Geophysical Research, 113 ( G1 ). https://doi.org/doi:10.1029/2007JG000563
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X. B., Troch, P. A., Niu, G. Y., Williams, Z., Brunke, M. A., & Gochis, D. ( 2016 ). A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. Journal of Advances in Modeling Earth Systems, 8 ( 1 ), 41 â 65. https://doi.org/10.1002/2015ms000526
Peng, B., Guan, K. Y., Chen, M., Lawrence, D. M., Pokhrel, Y., Suyker, A., Arkebauer, T., & Lu, Y. ( 2018 ). Improving maize growth processes in the community land model: Implementation and evaluation. Agricultural and Forest Meteorology, 250â 251, 64 â 89. https://doi.org/10.1016/j.agrformet.2017.11.012
Portmann, F. T., Siebert, S., & Döll, P. ( 2010 ). MIRCA2000â Global monthly irrigated and rainfed crop areas around the year 2000: A new highâ resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24 ( 1 ). https://doi.org/10.1029/2008GB003435
Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, H. M., Rowland, L., Almeida, S., Brando, P. M., da Costa, A. C. L., Costa, M. H., Levine, N. M., Malhi, Y., Saleska, S. R., Sotta, E., Williams, M., Meir, P., & Moorcroft, P. R. ( 2013 ). Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. The New Phytologist, 200 ( 2 ), 350 â 365. https://doi.org/10.1111/nph.12390
Quiring, S. M., Ford, T. W., Wang, J. K., Khong, A., Harris, E., Lindgren, T., Goldberg, D. W., & Li, Z. ( 2016 ). The North American Soil Moisture Database: Development and applications. Bulletin of the American Meteorological Society, 97 ( 8 ), 1441 â 1459. https://doi.org/10.1175/Bamsâ Dâ 13â 00263.1
Reich, P. B., Hungate, B. A., & Luo, Y. Q. ( 2006 ). Carbonâ nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 37 ( 1 ), 611 â 636. https://doi.org/10.1146/annurev.ecolsys.37.091305.110039
Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., & Hess, P. ( 2011 ). Barriers to predicting global terrestrial methane fluxes: Analyses using a methane biogeochemistry model integrated in CESM. Biogeosciences, 8 ( 7 ), 1925 â 1953. https://doi.org/10.5194/bgâ 8â 1925â 2011
Roesch, A., Wild, M., Gilgen, H., & Ohmura, A. ( 2001 ). A new snow cover fraction parametrization for the ECHAM4 GCM. Climate Dynamics, 17 ( 12 ), 933 â 946. https://doi.org/10.1007/s003820100153
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S., Dietze, M. C., Kattge, J., Leakey, A. D. B., Mercado, L. M., Niinemets, Ã ., Prentice, I. C., Serbin, S. P., Sitch, S., Way, D. A., & Zaehle, S. ( 2017 ). A roadmap for improving the representation of photosynthesis in Earth system models. The New Phytologist, 213 ( 1 ), 22 â 42. https://doi.org/10.1111/nph.14283
Sacks, W. J., Cook, B. I., Buenning, N., Levis, S., & Helkowski, J. H. ( 2009 ). Effects of global irrigation on the nearâ surface climate. Climate Dynamics, 33 ( 2â 3 ), 159 â 175. https://doi.org/DOI, https://doi.org/10.1007/s00382â 008â 0445â z
Sakaguchi, K., & Zeng, X. ( 2009 ). Effects of soil wetness, plant litter, and underâ canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3. 5). Journal of Geophysical Research. Atmospheres, 114 ( D1 ). https://doi.org/10.1029/2008jd010834
Santoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J. B. S., Hall, R. J., Pathe, C., Schmullius, C., Schepaschenko, D., Shvidenko, A., Thurner, M., & Wegmüller, U. ( 2015 ). Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sensing of Environment, 168, 316 â 334. https://doi.org/10.1016/j.rse.2015.07.005
Schlesinger, W. H., & Jasechko, S. ( 2014 ). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189â 190, 115 â 117. https://doi.org/10.1016/j.agrformet.2014.01.011
Schneider, U., Becker, A., Finger, P., Meyerâ Christoffer, A., Ziese, M., & Rudolf, B. ( 2014 ). GPCC’s new land surface precipitation climatology based on qualityâ controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115 ( 1â 2 ), 15 â 40. https://doi.org/10.1007/s00704â 013â 0860â x
Schultz, N. M., Lee, X., Lawrence, P. J., Lawrence, D. M., & Zhao, L. ( 2016 ). Assessing the use of subgrid land model output to study impacts of land cover change. Journal of Geophysical Research: Atmospheres, 121, 6133 â 6147. https://doi.org/10.1002/2016jd025094
Schuur, E. A., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. ( 2015 ). Climate change and the permafrost carbon feedback. Nature, 520 ( 7546 ), 171 â 179. https://doi.org/10.1038/nature14338
Shi, M., Fisher, J. B., Brzostek, E. R., & Phillips, R. P. ( 2016 ). Carbon cost of plant nitrogen acquisition: Global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Global Change Biology, 22 ( 3 ), 1299 â 1314. https://doi.org/10.1111/gcb.13131
Simard, M., Pinto, N., Fisher, J. B., & Baccini, A. ( 2011 ). Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 116 ( G4 ). https://doi.org/10.1029/2011jg001708
Slater, A. G., Lawrence, D. M., & Koven, C. D. ( 2017 ). Processâ level model evaluation: A snow and heat transfer metric. The Cryosphere, 11 ( 2 ), 989 â 996. https://doi.org/10.5194/tcâ 11â 989â 2017
Storck, P., Lettenmaier, D. P., & Bolton, S. M. ( 2002 ). Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States: FOREST CANOPY EFFECTS ON GROUND SNOW PACK DYNAMICS. Water Resources Research, 38 ( 11 ), 5â 1 â 5â 16. https://doi.org/10.1029/2002wr001281
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., & Lea, J. ( 2010 ). Estimating snow water equivalent using snow depth data and climate classes. Journal of Hydrometeorology, 11 ( 6 ), 1380 â 1394. https://doi.org/10.1175/2010jhm1202.1
Subin, Z. M., Riley, W. J., & Mironov, D. ( 2012 ). An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems, 4 ( 1 ). https://doi.org/10.1029/2011ms000072
Swenson, S., & Lawrence, D. ( 2014 ). Assessing a dry surface layerâ based soil resistance parameterization for the Community Land Model using GRACE and FLUXNETâ MTE data. Journal of Geophysical Research. Atmospheres, 119 ( 17 ), 10,299 â 10,312. https://doi.org/10.1002/2014JD022314
Swenson, S., & Lawrence, D. ( 2015 ). A GRACEâ based assessment of interannual groundwater dynamics in the Community Land Model. Water Resources Research, 51 ( 11 ), 8817 â 8833. https://doi.org/10.1002/2015WR017582
Swenson, S. C., Burns, S. P., & Lawrence, D. M. ( 2019 ). The impact of biomass heat storage on the canopy energy balance and atmospheric stability in the Community Land Model. Journal of Advances in Modeling Earth Systems, 11 ( 1 ), 83 â 98. https://doi.org/10.1029/2018ms001476
Swenson, S. C., & Lawrence, D. ( 2012 ). A new fractional snowâ covered area parameterization for the Community Land Model and its effect on the surface energy balance. Journal of Geophysical Research, 117 ( D21 ). https://doi.org/10.1029/2012JD018178
Swenson, S. C., Lawrence, D. M., & Lee, H. ( 2012 ). Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. Journal of Advances in Modeling Earth Systems, 4 ( 3 ). https://doi.org/10.1029/2012ms000165
Terrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P., Reich, P. B., Finzi, A. C., & Prentice, I. C. ( 2018 ). Ecosystem responses to elevated CO 2 governed by plantâ soil interactions and the cost of nitrogen acquisition. New Phytologist, 217 ( 2 ), 507 â 522. https://doi.org/10.1111/nph.14872
Teuling, A. J., Seneviratne, S. I., Williams, C., & Troch, P. A. ( 2006 ). Observed timescales of evapotranspiration response to soil moisture. Geophysical Research Letters, 33 ( 23 ). https://doi.org/10.1029/2006gl028178
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2018MS00158310.1175/1525â10.1175/2010JHM1189.110.1007/s10546â10.1016/b978â
container_title Journal of Advances in Modeling Earth Systems
container_volume 11
container_issue 12
container_start_page 4245
op_container_end_page 4287
_version_ 1774724111274082304
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/153578 2023-08-20T04:10:08+02:00 The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty Lawrence, David M. Fisher, Rosie A. Koven, Charles D. Oleson, Keith W. Swenson, Sean C. Bonan, Gordon Collier, Nathan Ghimire, Bardan Kampenhout, Leo Kennedy, Daniel Kluzek, Erik Lawrence, Peter J. Li, Fang Li, Hongyi Lombardozzi, Danica Riley, William J. Sacks, William J. Shi, Mingjie Vertenstein, Mariana Wieder, William R. Xu, Chonggang Ali, Ashehad A. Badger, Andrew M. Bisht, Gautam Broeke, Michiel Brunke, Michael A. Burns, Sean P. Buzan, Jonathan Clark, Martyn Craig, Anthony Dahlin, Kyla Drewniak, Beth Fisher, Joshua B. Flanner, Mark Fox, Andrew M. Gentine, Pierre Hoffman, Forrest Keppel‐aleks, Gretchen Knox, Ryan Kumar, Sanjiv Lenaerts, Jan Leung, L. Ruby Lipscomb, William H. Lu, Yaqiong Pandey, Ashutosh Pelletier, Jon D. Perket, Justin Randerson, James T. Ricciuto, Daniel M. Sanderson, Benjamin M. Slater, Andrew Subin, Zachary M. Tang, Jinyun Thomas, R. Quinn Val Martin, Maria Zeng, Xubin 2019-12 application/pdf https://hdl.handle.net/2027.42/153578 https://doi.org/10.1029/2018MS001583 unknown Springer Wiley Periodicals, Inc. Lawrence, David M.; Fisher, Rosie A.; Koven, Charles D.; Oleson, Keith W.; Swenson, Sean C.; Bonan, Gordon; Collier, Nathan; Ghimire, Bardan; Kampenhout, Leo; Kennedy, Daniel; Kluzek, Erik; Lawrence, Peter J.; Li, Fang; Li, Hongyi; Lombardozzi, Danica; Riley, William J.; Sacks, William J.; Shi, Mingjie; Vertenstein, Mariana; Wieder, William R.; Xu, Chonggang; Ali, Ashehad A.; Badger, Andrew M.; Bisht, Gautam; Broeke, Michiel; Brunke, Michael A.; Burns, Sean P.; Buzan, Jonathan; Clark, Martyn; Craig, Anthony; Dahlin, Kyla; Drewniak, Beth; Fisher, Joshua B.; Flanner, Mark; Fox, Andrew M.; Gentine, Pierre; Hoffman, Forrest; Keppel‐aleks, Gretchen Knox, Ryan; Kumar, Sanjiv; Lenaerts, Jan; Leung, L. Ruby; Lipscomb, William H.; Lu, Yaqiong; Pandey, Ashutosh; Pelletier, Jon D.; Perket, Justin; Randerson, James T.; Ricciuto, Daniel M.; Sanderson, Benjamin M.; Slater, Andrew; Subin, Zachary M.; Tang, Jinyun; Thomas, R. Quinn; Val Martin, Maria; Zeng, Xubin (2019). "The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty." Journal of Advances in Modeling Earth Systems 11(12): 4245-4287. 1942-2466 https://hdl.handle.net/2027.42/153578 doi:10.1029/2018MS001583 Journal of Advances in Modeling Earth Systems Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.â F., Mahowald, N., Niu, G.â Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stöckli, R., Wang, A., Yang, Z.â L., Zeng, X., & Zeng, X. ( 2010 ). Technical description of version 4.0 of the Community Land Model (NCAR Tech. Note NCAR/TNâ 478+STR). Retrieved from Boulder, CO: https://doi.org/10.1175/1520â 0442(1998)011<1307:tlscot>2.0.co;2 Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A., Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.â P., Yang, X., Crous, K. Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power, S. A., Tjoelker, M. G., & Ellsworth, D. S. ( 2016 ). Using models to guide field experiments: A priori predictions for the CO 2 response of a nutrientâ and waterâ limited native Eucalypt woodland. Global Change Biology, 22 ( 8 ), 2834 â 2851. https://doi.org/10.1111/gcb.13268 Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., de Angelis, P., Freeman, M., & Wingate, L. ( 2011 ). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17 ( 6 ), 2134 â 2144. https://doi.org/10.1111/j.1365â 2486.2010.02375.x Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y.â P., Weng, E., Iversen, C. M., McCarthy, H. R., Warren, J. M., Oren, R., & Norby, R. J. ( 2015 ). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5 ( 6 ), 528 â 534. https://doi.org/10.1038/nclimate2621 Meier, R., Davin, E. L., Lejeune, Q., Hauser, M., Li, Y., Martens, B., Schultz, N. M., Sterling, S., & Thiery, W. ( 2018 ). Evaluating and improving the Community Land Model’s sensitivity to land cover. Biogeosciences, 15 ( 15 ), 4731 â 4757. https://doi.org/10.5194/bgâ 15â 4731â 2018 Mitchell, T. D., & Jones, P. D. ( 2005 ). An improved method of constructing a database of monthly climate observations and associated highâ resolution grids. International Journal of Climatology, 25 ( 6 ), 693 â 712. https://doi.org/10.1002/joc.1181 Mueller, N. D., Rhines, A., Butler, E. E., Ray, D. K., Siebert, S., Holbrook, N. M., & Huybers, P. ( 2017 ). Global relationships between cropland intensification and summer temperature extremes over the last 50 years. Journal of Climate, 30 ( 18 ), 7505 â 7528. https://doi.org/10.1175/Jcliâ Dâ 17â 0096.1 Negrónâ Juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G., & Chambers, J. Q. ( 2015 ). Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environmental Research Letters, 10 ( 6 ), 064017. https://doi.org/10.1088/1748â 9326/10/6/064017 Niinemets, U., & Keenan, T. ( 2014 ). Photosynthetic responses to stress in Mediterranean evergreens: Mechanisms and models. Environmental and Experimental Botany, 103, 24 â 41. https://doi.org/10.1016/j.envexpbot.2013.11.008 Niu, G. Y., & Yang, Z. L. ( 2007 ). An observationâ based formulation of snow cover fraction and its evaluation over large North American river basins. Journal of Geophysical Research, 112 ( D21 ). https://doi.org/10.1029/2007JD008674 Niu, G. Y., Yang, Z. L., Dickinson, R. E., Gulden, L. E., & Su, H. ( 2007 ). Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. Journal of Geophysical Research, 112 ( D7 ). https://doi.org/10.1029/2006jd007522 Oleson, K., & Feddema, J. ( 2019 ). Parameterization and surface data improvements and new capabilities for the Community Land Model Urban (CLMU). Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2018MS001586 Oleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M., & Grimmond, C. S. B. ( 2008 ). An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. Journal of Applied Meteorology and Climatology, 47 ( 4 ), 1038 â 1060. https://doi.org/10.1175/2007JAMC1597.1 Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J.â F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., & Yang, Z.â L. ( 2013 ). Technical description of version 4.5 of the Community Land Model (CLM) (NCAR Tech. Note NCAR/TNâ 503 + STR). Retrieved from Boulder, CO: https://doi.org/10.5065/D6RR1W7M Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., & Qian, T. ( 2008 ). Improvements to the Community Land Model and their impact on the hydrological cycle. Journal of Geophysical Research, 113 ( G1 ). https://doi.org/doi:10.1029/2007JG000563 Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X. B., Troch, P. A., Niu, G. Y., Williams, Z., Brunke, M. A., & Gochis, D. ( 2016 ). A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. Journal of Advances in Modeling Earth Systems, 8 ( 1 ), 41 â 65. https://doi.org/10.1002/2015ms000526 Peng, B., Guan, K. Y., Chen, M., Lawrence, D. M., Pokhrel, Y., Suyker, A., Arkebauer, T., & Lu, Y. ( 2018 ). Improving maize growth processes in the community land model: Implementation and evaluation. Agricultural and Forest Meteorology, 250â 251, 64 â 89. https://doi.org/10.1016/j.agrformet.2017.11.012 Portmann, F. T., Siebert, S., & Döll, P. ( 2010 ). MIRCA2000â Global monthly irrigated and rainfed crop areas around the year 2000: A new highâ resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24 ( 1 ). https://doi.org/10.1029/2008GB003435 Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, H. M., Rowland, L., Almeida, S., Brando, P. M., da Costa, A. C. L., Costa, M. H., Levine, N. M., Malhi, Y., Saleska, S. R., Sotta, E., Williams, M., Meir, P., & Moorcroft, P. R. ( 2013 ). Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. The New Phytologist, 200 ( 2 ), 350 â 365. https://doi.org/10.1111/nph.12390 Quiring, S. M., Ford, T. W., Wang, J. K., Khong, A., Harris, E., Lindgren, T., Goldberg, D. W., & Li, Z. ( 2016 ). The North American Soil Moisture Database: Development and applications. Bulletin of the American Meteorological Society, 97 ( 8 ), 1441 â 1459. https://doi.org/10.1175/Bamsâ Dâ 13â 00263.1 Reich, P. B., Hungate, B. A., & Luo, Y. Q. ( 2006 ). Carbonâ nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 37 ( 1 ), 611 â 636. https://doi.org/10.1146/annurev.ecolsys.37.091305.110039 Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., & Hess, P. ( 2011 ). Barriers to predicting global terrestrial methane fluxes: Analyses using a methane biogeochemistry model integrated in CESM. Biogeosciences, 8 ( 7 ), 1925 â 1953. https://doi.org/10.5194/bgâ 8â 1925â 2011 Roesch, A., Wild, M., Gilgen, H., & Ohmura, A. ( 2001 ). A new snow cover fraction parametrization for the ECHAM4 GCM. Climate Dynamics, 17 ( 12 ), 933 â 946. https://doi.org/10.1007/s003820100153 Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S., Dietze, M. C., Kattge, J., Leakey, A. D. B., Mercado, L. M., Niinemets, à ., Prentice, I. C., Serbin, S. P., Sitch, S., Way, D. A., & Zaehle, S. ( 2017 ). A roadmap for improving the representation of photosynthesis in Earth system models. The New Phytologist, 213 ( 1 ), 22 â 42. https://doi.org/10.1111/nph.14283 Sacks, W. J., Cook, B. I., Buenning, N., Levis, S., & Helkowski, J. H. ( 2009 ). Effects of global irrigation on the nearâ surface climate. Climate Dynamics, 33 ( 2â 3 ), 159 â 175. https://doi.org/DOI, https://doi.org/10.1007/s00382â 008â 0445â z Sakaguchi, K., & Zeng, X. ( 2009 ). Effects of soil wetness, plant litter, and underâ canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3. 5). Journal of Geophysical Research. Atmospheres, 114 ( D1 ). https://doi.org/10.1029/2008jd010834 Santoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J. B. S., Hall, R. J., Pathe, C., Schmullius, C., Schepaschenko, D., Shvidenko, A., Thurner, M., & Wegmüller, U. ( 2015 ). Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sensing of Environment, 168, 316 â 334. https://doi.org/10.1016/j.rse.2015.07.005 Schlesinger, W. H., & Jasechko, S. ( 2014 ). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189â 190, 115 â 117. https://doi.org/10.1016/j.agrformet.2014.01.011 Schneider, U., Becker, A., Finger, P., Meyerâ Christoffer, A., Ziese, M., & Rudolf, B. ( 2014 ). GPCC’s new land surface precipitation climatology based on qualityâ controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115 ( 1â 2 ), 15 â 40. https://doi.org/10.1007/s00704â 013â 0860â x Schultz, N. M., Lee, X., Lawrence, P. J., Lawrence, D. M., & Zhao, L. ( 2016 ). Assessing the use of subgrid land model output to study impacts of land cover change. Journal of Geophysical Research: Atmospheres, 121, 6133 â 6147. https://doi.org/10.1002/2016jd025094 Schuur, E. A., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. ( 2015 ). Climate change and the permafrost carbon feedback. Nature, 520 ( 7546 ), 171 â 179. https://doi.org/10.1038/nature14338 Shi, M., Fisher, J. B., Brzostek, E. R., & Phillips, R. P. ( 2016 ). Carbon cost of plant nitrogen acquisition: Global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Global Change Biology, 22 ( 3 ), 1299 â 1314. https://doi.org/10.1111/gcb.13131 Simard, M., Pinto, N., Fisher, J. B., & Baccini, A. ( 2011 ). Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 116 ( G4 ). https://doi.org/10.1029/2011jg001708 Slater, A. G., Lawrence, D. M., & Koven, C. D. ( 2017 ). Processâ level model evaluation: A snow and heat transfer metric. The Cryosphere, 11 ( 2 ), 989 â 996. https://doi.org/10.5194/tcâ 11â 989â 2017 Storck, P., Lettenmaier, D. P., & Bolton, S. M. ( 2002 ). Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States: FOREST CANOPY EFFECTS ON GROUND SNOW PACK DYNAMICS. Water Resources Research, 38 ( 11 ), 5â 1 â 5â 16. https://doi.org/10.1029/2002wr001281 Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., & Lea, J. ( 2010 ). Estimating snow water equivalent using snow depth data and climate classes. Journal of Hydrometeorology, 11 ( 6 ), 1380 â 1394. https://doi.org/10.1175/2010jhm1202.1 Subin, Z. M., Riley, W. J., & Mironov, D. ( 2012 ). An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems, 4 ( 1 ). https://doi.org/10.1029/2011ms000072 Swenson, S., & Lawrence, D. ( 2014 ). Assessing a dry surface layerâ based soil resistance parameterization for the Community Land Model using GRACE and FLUXNETâ MTE data. Journal of Geophysical Research. Atmospheres, 119 ( 17 ), 10,299 â 10,312. https://doi.org/10.1002/2014JD022314 Swenson, S., & Lawrence, D. ( 2015 ). A GRACEâ based assessment of interannual groundwater dynamics in the Community Land Model. Water Resources Research, 51 ( 11 ), 8817 â 8833. https://doi.org/10.1002/2015WR017582 Swenson, S. C., Burns, S. P., & Lawrence, D. M. ( 2019 ). The impact of biomass heat storage on the canopy energy balance and atmospheric stability in the Community Land Model. Journal of Advances in Modeling Earth Systems, 11 ( 1 ), 83 â 98. https://doi.org/10.1029/2018ms001476 Swenson, S. C., & Lawrence, D. ( 2012 ). A new fractional snowâ covered area parameterization for the Community Land Model and its effect on the surface energy balance. Journal of Geophysical Research, 117 ( D21 ). https://doi.org/10.1029/2012JD018178 Swenson, S. C., Lawrence, D. M., & Lee, H. ( 2012 ). Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. Journal of Advances in Modeling Earth Systems, 4 ( 3 ). https://doi.org/10.1029/2012ms000165 Terrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P., Reich, P. B., Finzi, A. C., & Prentice, I. C. ( 2018 ). Ecosystem responses to elevated CO 2 governed by plantâ soil interactions and the cost of nitrogen acquisition. New Phytologist, 217 ( 2 ), 507 â 522. https://doi.org/10.1111/nph.14872 Teuling, A. J., Seneviratne, S. I., Williams, C., & Troch, P. A. ( 2006 ). Observed timescales of evapotranspiration response to soil moisture. Geophysical Research Letters, 33 ( 23 ). https://doi.org/10.1029/2006gl028178 IndexNoFollow global land model Earth System Modeling carbon and nitrogen cycling hydrology benchmarking Geological Sciences Science Article 2019 ftumdeepblue https://doi.org/10.1029/2018MS00158310.1175/1525â10.1175/2010JHM1189.110.1007/s10546â10.1016/b978â 2023-07-31T21:17:48Z The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and timeâ evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5.Plain Language SummaryThe Community Land Model (CLM) is the land component of the widely used Community Earth System Model (CESM). Here, we introduce model developments included in CLM version 5 (CLM5), the default land component for ... Article in Journal/Newspaper The Cryosphere University of Michigan: Deep Blue Journal of Advances in Modeling Earth Systems 11 12 4245 4287