Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing
The new Energy Exascale Earth System Model Version 1 (E3SMv1) developed for the U.S. Department of Energy has significant new treatments of aerosols and lightâ absorbing snow impurities as well as their interactions with clouds and radiation. This study describes seven sets of new aerosolâ related t...
Published in: | Journal of Advances in Modeling Earth Systems |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Cambridge University Press
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/2027.42/153241 https://doi.org/10.1029/2019MS001851 |
id |
ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/153241 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
University of Michigan: Deep Blue |
op_collection_id |
ftumdeepblue |
language |
unknown |
topic |
radiative forcing EAMv1 E3SM aerosol snow impurity aerosolâ cloud interaction Geological Sciences Science |
spellingShingle |
radiative forcing EAMv1 E3SM aerosol snow impurity aerosolâ cloud interaction Geological Sciences Science Wang, Hailong Easter, Richard C. Zhang, Rudong Ma, Po‐lun Singh, Balwinder Zhang, Kai Ganguly, Dilip Rasch, Philip J. Burrows, Susannah M. Ghan, Steven J. Lou, Sijia Qian, Yun Yang, Yang Feng, Yan Flanner, Mark Leung, Ruby L. Liu, Xiaohong Shrivastava, Manish Sun, Jian Tang, Qi Xie, Shaocheng Yoon, Jin‐ho Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing |
topic_facet |
radiative forcing EAMv1 E3SM aerosol snow impurity aerosolâ cloud interaction Geological Sciences Science |
description |
The new Energy Exascale Earth System Model Version 1 (E3SMv1) developed for the U.S. Department of Energy has significant new treatments of aerosols and lightâ absorbing snow impurities as well as their interactions with clouds and radiation. This study describes seven sets of new aerosolâ related treatments (involving emissions, new particle formation, aerosol transport, wet scavenging and resuspension, and snow radiative transfer) and examines how they affect global aerosols and radiative forcing in E3SMv1. Altogether, they give a reduced total aerosol radiative forcing (â 1.6 W/m2) and sensitivity in cloud liquid water to aerosols, but an increased sensitivity in cloud droplet size to aerosols. A new approach for H2SO4 production and loss largely reduces a low bias in small particles concentrations and leads to substantial increases in cloud condensation nuclei concentrations and cloud radiative cooling. Emitting secondary organic aerosol precursor gases from elevated sources increases the column burden of secondary organic aerosol, contributing substantially to global clearâ sky aerosol radiative cooling (â 0.15 out of â 0.5 W/m2). A new treatment of aerosol resuspension from evaporating precipitation, developed to remedy two shortcomings of the original treatment, produces a modest reduction in aerosols and cloud droplets; its impact depends strongly on the model physics and is much stronger in E3SM Version 0. New treatments of the mixing state and optical properties of snow impurities and snow grains introduce a positive presentâ day shortwave radiative forcing (0.26 W/m2), but changes in aerosol transport and wet removal processes also affect the concentration and radiative forcing of lightâ absorbing impurities in snow/ice.Plain Language SummaryAerosol and aerosolâ cloud interactions continue to be a major uncertainty in Earth system models, impeding their ability to reproduce the observed historical warming and to project changes in global climate and water cycle. The U.S. DOE Energy Exascale Earth ... |
format |
Article in Journal/Newspaper |
author |
Wang, Hailong Easter, Richard C. Zhang, Rudong Ma, Po‐lun Singh, Balwinder Zhang, Kai Ganguly, Dilip Rasch, Philip J. Burrows, Susannah M. Ghan, Steven J. Lou, Sijia Qian, Yun Yang, Yang Feng, Yan Flanner, Mark Leung, Ruby L. Liu, Xiaohong Shrivastava, Manish Sun, Jian Tang, Qi Xie, Shaocheng Yoon, Jin‐ho |
author_facet |
Wang, Hailong Easter, Richard C. Zhang, Rudong Ma, Po‐lun Singh, Balwinder Zhang, Kai Ganguly, Dilip Rasch, Philip J. Burrows, Susannah M. Ghan, Steven J. Lou, Sijia Qian, Yun Yang, Yang Feng, Yan Flanner, Mark Leung, Ruby L. Liu, Xiaohong Shrivastava, Manish Sun, Jian Tang, Qi Xie, Shaocheng Yoon, Jin‐ho |
author_sort |
Wang, Hailong |
title |
Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing |
title_short |
Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing |
title_full |
Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing |
title_fullStr |
Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing |
title_full_unstemmed |
Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing |
title_sort |
aerosols in the e3sm version 1: new developments and their impacts on radiative forcing |
publisher |
Cambridge University Press |
publishDate |
2020 |
url |
https://hdl.handle.net/2027.42/153241 https://doi.org/10.1029/2019MS001851 |
genre |
Arctic |
genre_facet |
Arctic |
op_relation |
Wang, Hailong; Easter, Richard C.; Zhang, Rudong; Ma, Po‐lun Singh, Balwinder; Zhang, Kai; Ganguly, Dilip; Rasch, Philip J.; Burrows, Susannah M.; Ghan, Steven J.; Lou, Sijia; Qian, Yun; Yang, Yang; Feng, Yan; Flanner, Mark; Leung, Ruby L.; Liu, Xiaohong; Shrivastava, Manish; Sun, Jian; Tang, Qi; Xie, Shaocheng; Yoon, Jin‐ho (2020). "Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing." Journal of Advances in Modeling Earth Systems 12(1): n/a-n/a. 1942-2466 https://hdl.handle.net/2027.42/153241 doi:10.1029/2019MS001851 Journal of Advances in Modeling Earth Systems Shrivastava, M., Easter, R. C., Liu, X., Zelenyuk, A., Singh, B., Zhang, K., Ma, P.â L., Chand, D., Ghan, S., Jimenez, J. L., Zhang, Q., Fast, J., Rasch, P. J., & Tiitta, P. ( 2015 ). Global transformation and fate of SOA: Implications of lowâ volatility SOA and gasâ phase fragmentation reactions. Journal of Geophysical Research: Atmospheres, 120, 4169 â 4195. https://doi.org/10.1002/2014JD022563 Khairoutdinov, M., & Kogan, Y. ( 2000 ). A new cloud physics parameterization in a largeâ eddy simulation model of marine stratocumulus. Monthly Weather Review, 128 ( 1 ), 229 â 243. Kinne, S., O’Donnel, D., Stier, P., Kloster, S., Zhang, K., Schmidt, H., Rast, S., Giorgetta, M., Eck, T. F., & Stevens, B. ( 2013 ). MACâ v1: A new global aerosol climatology for climate studies. Journal of Advances in Modeling Earth Systems, 5, 704 â 740. https://doi.org/10.1002/jame.20035 Kokkola, H., Hommel, R., Kazil, J., Niemeier, U., Partanen, A.â I., Feichter, J., & Timmreck, C. ( 2009 ). Aerosol microphysics modules in the framework of the ECHAM5 climate modelâ Intercomparison under stratospheric conditions. Geoscientific Model Development, 2, 97 â 112. https://doi.org/10.5194/gmdâ 2â 97â 2009 Kopacz, M., Mauzerall, D. L., Wang, J., Leibensperger, E. M., Henze, D. K., & Singh, K. ( 2011 ). Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 11, 2837 â 2852. https://doi.org/10.5194/acpâ 11â 2837â 2011 Larson, V. E., Golaz, J.â C., & Cotton, W. R. ( 2002 ). Smallâ scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. Journal of the Atmospheric Sciences, 59 ( 24 ), 3519 â 3539. https://doi.org/10.1175/1520â 0469(2002)059<3519:SSAMVI>2.0.CO;2 Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.â F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., & Mitchell, D. ( 2012 ). Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 5 ( 3 ), 709 â 739. https://doi.org/10.5194/gmdâ 5â 709â 2012 Liu, X., Ma, P. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., & Rasch, P. J. ( 2016 ). Description and evaluation of a new fourâ mode version of the modal aerosol module (MAM4) within Version 5.3 of the Community Atmosphere Model. Geoscientific Model Development, 9 ( 2 ), 505 â 522. https://doi.org/10.5194/gmdâ 9â 505â 2016 Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M., Asmi, A., Spracklen, D. V., Ridley, D. A., Woodhouse, M. T., Lee, L. A., Zhang, K., Ghan, S. J., Easter, R. C., Liu, X., Stier, P., Lee, Y. H., Adams, P. J., Tost, H., Lelieveld, J., Bauer, S. E., Tsigaridis, K., van Noije, T. P. C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson, C. E., Bergman, T., Kokkola, H., von Salzen, K., Yu, F., Luo, G., Petzold, A., Heintzenberg, J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U., Kaminski, U., Jennings, S. G., O'Dowd, C. D., Harrison, R. M., Beddows, D. C. S., Kulmala, M., Viisanen, Y., Ulevicius, V., Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H. C., Swietlicki, E., & Henzing, J. S. ( 2014 ). Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 14 ( 9 ), 4679 â 4713. https://doi.org/10.5194/acpâ 14â 4679â 2014 Marshall, J. S., & Palmer, W. M. ( 1948 ). The distribution of raindrops with size. Journal of Meteorology, 5, 165 â 166. Mitra, S. K., Brinkmann, J., & Pruppacher, H. R. ( 1992 ). A wind tunnel study on the dropâ toâ particle conversion. Journal of Aerosol Science, 23, 245 â 256. https://doi.org/10.1016/0021â 8502(92)90326â Q Morrison, H., & Gettelman, A. ( 2008 ). A new twoâ moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3). Part I: Description and numerical tests. Journal of Climate, 21, 3642 â 3659. https://doi.org/10.1175/2008JCLI2105.1 Qian, Y., Flanner, M., Leung, L., & Wang, W. ( 2011 ). Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmospheric Chemistry and Physics, 11 ( 5 ), 1929 â 1948. https://doi.org/10.5194/acpâ 11â 1929â 2011 Qian, Y., Wang, H., Zhang, R., Flanner, M. G., & Rasch, P. J. ( 2014 ). A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environmental Research Letters, 9, 064001. https://doi.org/10.1088/1748â 9326/9/6/064001 Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M., Ming, J., Wang, H., Wang, M., Warren, S. G., & Zhang, R. ( 2015 ). Lightâ absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences, 32 ( 1 ), 64 â 91. https://doi.org/10.1007/s00376â 014â 0010â 0 Rahimi, S., Liu, X., Wu, C., Lau, W. K., Brown, H., Wu, M., & Qian, Y. ( 2019 ). Quantifying snow darkening and atmospheric radiative effects of black carbon and dust on the South Asian monsoon and hydrological cycle: Experiments using variableâ resolution CESM. Atmospheric Chemistry and Physics, 19, 12025 â 12049. https://doi.org/10.5194/acpâ 19â 12025â 2019 Rasch, P. J., et al. ( 2019 ). An overview of the atmospheric component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 11, 2377 â 2411. https://doi.org/10.1029/2019MS001629 Rogers, R. R., & Yau, M. K. ( 1989 ). A short course in cloud physics, (p. 293 ). New York: Pergamon. Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K. S., Suni, T., Wagner, T., Wild, M., & Quaas, J. ( 2014 ). Global observations of aerosolâ cloudâ precipitationâ climate interactions. Reviews of Geophysics, 52, 750 â 808. https://doi.org/10.1002/2013RG000441 Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., DeCarlo, P. F., Aiken, A. C., Sueper, D., Jimenez, J. L., & Martin, S. T. ( 2009 ). Loadingâ dependent elemental composition of alphaâ pinene SOA particles. Atmospheric Chemistry and Physics, 9 ( 3 ), 771 â 782. https://doi.org/10.5194/acpâ 9â 771â 2009 Abraham, F. F., Jordon, S. K., Kortzeborn, R. N., & Kolsky, H. G. ( 1972 ). Model for timeâ dependent raindrop size distributions; application to the washout of airborne contaminants, IBM J. Resolution Development, 16, 91 â 100. Slinn, W. G. N. ( 1984 ). Precipitation scavenging, Atmospheric Science and Power Production D. Randerson, (pp. 466 â 532 ). Oak Ridge, Tenn: U.S. Department of Energy, Technical Information Center. Sorooshian, A., Anderson, B., Bauer, S. E., Braun, R. A., Cairns, B., Crosbie, E., Dadashazar, H., Diskin, G., Ferrare, R., Flagan, R. C., Hair, J., Hostetler, C., Jonsson, H. H., Kleb, M. M., Liu, H., MacDonald, A. B., McComiskey, A., Moore, R., Painemal, D., Russell, L. M., Seinfeld, J. H., Shook, M., Smith, W. L. Jr., Thornhill, K., Tselioudis, G., Wang, H., Zeng, X., Zhang, B., Ziemba, L., & Zuidema, P. ( 2019 ). Aerosolâ cloudâ meteorology interaction airborne field investigations: Using lessons learned from the U.S. West Coast in the design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 100 ( 8 ), 1511 â 1528. https://doi.org/10.1175/BAMSâ Dâ 18â 0100.1 Stensland, G. J., & de Pena, R. G. D. ( 1975 ). A model of belowâ cloud precipitation scavenging of NaCl. Journal of Geophysical Research, 80, 3410 â 3418. Sun, J., Zhang, K., Wan, H., Ma, P.â L., Tang, Q., & Zhang, S. ( 2019 ). Impact of nudging strategy on the climate representativeness and hindcast skill of constrained EAMv1 simulations. Journal of Advances in Modeling Earth Systems, 11. https://doi.org/10.1029/2019MS001831 Turpin, B. J., & Lim, H. J. ( 2001 ). Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology, 35 ( 1 ), 602 â 610. https://doi.org/10.1080/02786820152051454 Wan, H., Rasch, P. J., Zhang, K., Kazil, J., & Leung, L. ( 2013 ). Numerical issues associated with compensating and competing processes in climate models: An example from ECHAMâ HAM. Geoscientific Model Development, 6 ( 3 ), 861 â 874. Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon, J. H., Ma, P. L., & Vinoj, V. ( 2013 ). Sensitivity of remote aerosol distributions to representation of cloudâ aerosol interactions in a global climate model. Geoscientific Model Development, 6 ( 3 ), 765 â 782. https://doi.org/10.5194/gmdâ 6â 765â 2013 Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P. L., Qian, Y., Ghan, S. J., & Beagley, N. ( 2014 ). Using an explicit emission taggingmethod in global modeling of sourceâ receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways. Journal of Geophysical Research: Atmospheres, 119, 12,888 â 12,909. https://doi.org/10.1002/2014JD022297 Wang, H., Rasch, P. J., & Feingold, G. ( 2011 ). Manipulating marine stratocumulus cloud amount and albedo: A processâ modelling study of aerosolâ cloudâ precipitation interactions in response to injection of cloud condensation nuclei. Atmospheric Chemistry and Physics, 11, 4237 â 4249. https://doi.org/10.5194/acpâ 11â 4237â 2011 Wang, M., Ghan, S., Liu, X., L’Ecuyer, T. S., Zhang, K., Morrison, H., Ovchinnikov, M., Easter, R., Marchand, R., Chand, D., Qian, Y., & Penner, J. E. ( 2012 ). Constraining cloud lifetime effects of aerosols using Aâ Train satellite observations. Geophysical Research Letters, 39, L15709. https://doi.org/10.1029/2012GL052204 Wang, Y., Liu, X., Hoose, C., & Wang, B. ( 2014 ). Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5. Atmospheric Chemistry and Physics, 14 ( 19 ), 10,411 â 10,430. https://doi.org/10.5194/acpâ 14â 10411â 2014 Warren, S. G., & Wiscombe, W. J. ( 1980 ). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of the Atmospheric Sciences, 37 ( 12 ), 2734 â 2745. Wu, C., Liu, X., Lin, Z., Rahimiâ Esfarjani, S. R., & Lu, Z. ( 2018 ). Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variableâ resolution CESM (VRâ CESM) simulations. Atmospheric Chemistry and Physics, 18, 511 â 533. https://doi.org/10.5194/acpâ 18â 511â 2018 Xie, S., Lin, W., Rasch, P. J., Ma, P. L., Neale, R., Larson, V. E., Qian, Y., Bogenschutz, P. A., Caldwell, P., Cameronâ Smith, P., Golaz, J. C., Mahajan, S., Singh, B., Tang, Q., Wang, H., Yoon, J. H., Zhang, K., & Zhang, Y. ( 2018 ). Understanding cloud and convective characteristics in Version 1 of the E3SM Atmosphere Model. Journal of Advances in Modeling Earth Systems, 10 ( 10 ), 2618 â 2644. https://doi.org/10.1029/2018ms001350 Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Qian, Y., Ma, P.â L., & Rasch, P. J. ( 2018a ). Recent intensification of winter haze in China linked to foreign emissions and meteorology. Scientific Reports, 8 ( 1 ), 2107. https://doi.org/10.1038/s41598â 018â 20437â 7 Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Yu, H., Li, C., & Rasch, P. J. ( 2018b ). Source apportionments of aerosols and their direct radiative forcing and longâ term trends over continental United States. Earth’s Future, 6 ( 6 ), 793 â 808. https://doi.org/10.1029/2018EF000859 Yu, F., & Luo, G. ( 2009 ). Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations. Atmospheric Chemistry and Physics, 9 ( 20 ), 7691 â 7710. Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P.â L., Rasch, P. J., Neubauer, D., & Lohmann, U. ( 2014 ). Technical Note: On the use of nudging for aerosolâ climate model intercomparison studies. Atmospheric Chemistry and Physics, 14 ( 16 ), 8631 â 8645. Zhang, L. M., Gong, S. L., Padro, J., & Barrie, L. ( 2001 ). A sizeâ segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 35 ( 3 ), 549 â 560. https://doi.org/10.1016/s1352â 2310(00)00326â 5 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., & Worsnop, D. R. ( 2007 ). Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 34, L13801. https://doi.org/10.1029/2007gl029979 Zhang, R., Hegg, D. A., Huang, J., & Fu, Q. ( 2013 ). Source attribution of insoluble lightâ absorbing particles in seasonal snow across northern China. Atmospheric Chemistry and Physics, 13 ( 12 ), 6091 â 6099. Zhang, R., Wang, H., Hegg, D. A., Qian, Y., Doherty, S. J., Dang, C., Ma, P. L., Rasch, P. J., & Fu, Q. ( 2015 ). Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model. Atmospheric Chemistry and Physics, 15, 12,805 â 12,822. https://doi.org/10.5194/acpâ 15â 12805â 2015 Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S., Takeamura, T., Gettelman, A., Morrison, H., Lee, Y., Shindell, D. T., Partridge, D. G., Stier, P., Kipling, Z., & Fu, C. ( 2016 ). On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmospheric Chemistry and Physics, 16 ( 5 ), 2765 â 2783. https://doi.org/10.5194/acpâ 16â 2765â 2016 |
op_rights |
IndexNoFollow |
op_doi |
https://doi.org/10.1029/2019MS00185110.1029/2019MS00162910.5194/acpâ |
container_title |
Journal of Advances in Modeling Earth Systems |
container_volume |
12 |
container_issue |
1 |
_version_ |
1774713598423072768 |
spelling |
ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/153241 2023-08-20T04:03:11+02:00 Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing Wang, Hailong Easter, Richard C. Zhang, Rudong Ma, Po‐lun Singh, Balwinder Zhang, Kai Ganguly, Dilip Rasch, Philip J. Burrows, Susannah M. Ghan, Steven J. Lou, Sijia Qian, Yun Yang, Yang Feng, Yan Flanner, Mark Leung, Ruby L. Liu, Xiaohong Shrivastava, Manish Sun, Jian Tang, Qi Xie, Shaocheng Yoon, Jin‐ho 2020-01 application/pdf https://hdl.handle.net/2027.42/153241 https://doi.org/10.1029/2019MS001851 unknown Cambridge University Press Wiley Periodicals, Inc. Wang, Hailong; Easter, Richard C.; Zhang, Rudong; Ma, Po‐lun Singh, Balwinder; Zhang, Kai; Ganguly, Dilip; Rasch, Philip J.; Burrows, Susannah M.; Ghan, Steven J.; Lou, Sijia; Qian, Yun; Yang, Yang; Feng, Yan; Flanner, Mark; Leung, Ruby L.; Liu, Xiaohong; Shrivastava, Manish; Sun, Jian; Tang, Qi; Xie, Shaocheng; Yoon, Jin‐ho (2020). "Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing." Journal of Advances in Modeling Earth Systems 12(1): n/a-n/a. 1942-2466 https://hdl.handle.net/2027.42/153241 doi:10.1029/2019MS001851 Journal of Advances in Modeling Earth Systems Shrivastava, M., Easter, R. C., Liu, X., Zelenyuk, A., Singh, B., Zhang, K., Ma, P.â L., Chand, D., Ghan, S., Jimenez, J. L., Zhang, Q., Fast, J., Rasch, P. J., & Tiitta, P. ( 2015 ). Global transformation and fate of SOA: Implications of lowâ volatility SOA and gasâ phase fragmentation reactions. Journal of Geophysical Research: Atmospheres, 120, 4169 â 4195. https://doi.org/10.1002/2014JD022563 Khairoutdinov, M., & Kogan, Y. ( 2000 ). A new cloud physics parameterization in a largeâ eddy simulation model of marine stratocumulus. Monthly Weather Review, 128 ( 1 ), 229 â 243. Kinne, S., O’Donnel, D., Stier, P., Kloster, S., Zhang, K., Schmidt, H., Rast, S., Giorgetta, M., Eck, T. F., & Stevens, B. ( 2013 ). MACâ v1: A new global aerosol climatology for climate studies. Journal of Advances in Modeling Earth Systems, 5, 704 â 740. https://doi.org/10.1002/jame.20035 Kokkola, H., Hommel, R., Kazil, J., Niemeier, U., Partanen, A.â I., Feichter, J., & Timmreck, C. ( 2009 ). Aerosol microphysics modules in the framework of the ECHAM5 climate modelâ Intercomparison under stratospheric conditions. Geoscientific Model Development, 2, 97 â 112. https://doi.org/10.5194/gmdâ 2â 97â 2009 Kopacz, M., Mauzerall, D. L., Wang, J., Leibensperger, E. M., Henze, D. K., & Singh, K. ( 2011 ). Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 11, 2837 â 2852. https://doi.org/10.5194/acpâ 11â 2837â 2011 Larson, V. E., Golaz, J.â C., & Cotton, W. R. ( 2002 ). Smallâ scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. Journal of the Atmospheric Sciences, 59 ( 24 ), 3519 â 3539. https://doi.org/10.1175/1520â 0469(2002)059<3519:SSAMVI>2.0.CO;2 Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.â F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., & Mitchell, D. ( 2012 ). Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 5 ( 3 ), 709 â 739. https://doi.org/10.5194/gmdâ 5â 709â 2012 Liu, X., Ma, P. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., & Rasch, P. J. ( 2016 ). Description and evaluation of a new fourâ mode version of the modal aerosol module (MAM4) within Version 5.3 of the Community Atmosphere Model. Geoscientific Model Development, 9 ( 2 ), 505 â 522. https://doi.org/10.5194/gmdâ 9â 505â 2016 Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M., Asmi, A., Spracklen, D. V., Ridley, D. A., Woodhouse, M. T., Lee, L. A., Zhang, K., Ghan, S. J., Easter, R. C., Liu, X., Stier, P., Lee, Y. H., Adams, P. J., Tost, H., Lelieveld, J., Bauer, S. E., Tsigaridis, K., van Noije, T. P. C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson, C. E., Bergman, T., Kokkola, H., von Salzen, K., Yu, F., Luo, G., Petzold, A., Heintzenberg, J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U., Kaminski, U., Jennings, S. G., O'Dowd, C. D., Harrison, R. M., Beddows, D. C. S., Kulmala, M., Viisanen, Y., Ulevicius, V., Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H. C., Swietlicki, E., & Henzing, J. S. ( 2014 ). Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 14 ( 9 ), 4679 â 4713. https://doi.org/10.5194/acpâ 14â 4679â 2014 Marshall, J. S., & Palmer, W. M. ( 1948 ). The distribution of raindrops with size. Journal of Meteorology, 5, 165 â 166. Mitra, S. K., Brinkmann, J., & Pruppacher, H. R. ( 1992 ). A wind tunnel study on the dropâ toâ particle conversion. Journal of Aerosol Science, 23, 245 â 256. https://doi.org/10.1016/0021â 8502(92)90326â Q Morrison, H., & Gettelman, A. ( 2008 ). A new twoâ moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3). Part I: Description and numerical tests. Journal of Climate, 21, 3642 â 3659. https://doi.org/10.1175/2008JCLI2105.1 Qian, Y., Flanner, M., Leung, L., & Wang, W. ( 2011 ). Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmospheric Chemistry and Physics, 11 ( 5 ), 1929 â 1948. https://doi.org/10.5194/acpâ 11â 1929â 2011 Qian, Y., Wang, H., Zhang, R., Flanner, M. G., & Rasch, P. J. ( 2014 ). A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environmental Research Letters, 9, 064001. https://doi.org/10.1088/1748â 9326/9/6/064001 Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M., Ming, J., Wang, H., Wang, M., Warren, S. G., & Zhang, R. ( 2015 ). Lightâ absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Advances in Atmospheric Sciences, 32 ( 1 ), 64 â 91. https://doi.org/10.1007/s00376â 014â 0010â 0 Rahimi, S., Liu, X., Wu, C., Lau, W. K., Brown, H., Wu, M., & Qian, Y. ( 2019 ). Quantifying snow darkening and atmospheric radiative effects of black carbon and dust on the South Asian monsoon and hydrological cycle: Experiments using variableâ resolution CESM. Atmospheric Chemistry and Physics, 19, 12025 â 12049. https://doi.org/10.5194/acpâ 19â 12025â 2019 Rasch, P. J., et al. ( 2019 ). An overview of the atmospheric component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 11, 2377 â 2411. https://doi.org/10.1029/2019MS001629 Rogers, R. R., & Yau, M. K. ( 1989 ). A short course in cloud physics, (p. 293 ). New York: Pergamon. Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K. S., Suni, T., Wagner, T., Wild, M., & Quaas, J. ( 2014 ). Global observations of aerosolâ cloudâ precipitationâ climate interactions. Reviews of Geophysics, 52, 750 â 808. https://doi.org/10.1002/2013RG000441 Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., DeCarlo, P. F., Aiken, A. C., Sueper, D., Jimenez, J. L., & Martin, S. T. ( 2009 ). Loadingâ dependent elemental composition of alphaâ pinene SOA particles. Atmospheric Chemistry and Physics, 9 ( 3 ), 771 â 782. https://doi.org/10.5194/acpâ 9â 771â 2009 Abraham, F. F., Jordon, S. K., Kortzeborn, R. N., & Kolsky, H. G. ( 1972 ). Model for timeâ dependent raindrop size distributions; application to the washout of airborne contaminants, IBM J. Resolution Development, 16, 91 â 100. Slinn, W. G. N. ( 1984 ). Precipitation scavenging, Atmospheric Science and Power Production D. Randerson, (pp. 466 â 532 ). Oak Ridge, Tenn: U.S. Department of Energy, Technical Information Center. Sorooshian, A., Anderson, B., Bauer, S. E., Braun, R. A., Cairns, B., Crosbie, E., Dadashazar, H., Diskin, G., Ferrare, R., Flagan, R. C., Hair, J., Hostetler, C., Jonsson, H. H., Kleb, M. M., Liu, H., MacDonald, A. B., McComiskey, A., Moore, R., Painemal, D., Russell, L. M., Seinfeld, J. H., Shook, M., Smith, W. L. Jr., Thornhill, K., Tselioudis, G., Wang, H., Zeng, X., Zhang, B., Ziemba, L., & Zuidema, P. ( 2019 ). Aerosolâ cloudâ meteorology interaction airborne field investigations: Using lessons learned from the U.S. West Coast in the design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 100 ( 8 ), 1511 â 1528. https://doi.org/10.1175/BAMSâ Dâ 18â 0100.1 Stensland, G. J., & de Pena, R. G. D. ( 1975 ). A model of belowâ cloud precipitation scavenging of NaCl. Journal of Geophysical Research, 80, 3410 â 3418. Sun, J., Zhang, K., Wan, H., Ma, P.â L., Tang, Q., & Zhang, S. ( 2019 ). Impact of nudging strategy on the climate representativeness and hindcast skill of constrained EAMv1 simulations. Journal of Advances in Modeling Earth Systems, 11. https://doi.org/10.1029/2019MS001831 Turpin, B. J., & Lim, H. J. ( 2001 ). Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology, 35 ( 1 ), 602 â 610. https://doi.org/10.1080/02786820152051454 Wan, H., Rasch, P. J., Zhang, K., Kazil, J., & Leung, L. ( 2013 ). Numerical issues associated with compensating and competing processes in climate models: An example from ECHAMâ HAM. Geoscientific Model Development, 6 ( 3 ), 861 â 874. Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon, J. H., Ma, P. L., & Vinoj, V. ( 2013 ). Sensitivity of remote aerosol distributions to representation of cloudâ aerosol interactions in a global climate model. Geoscientific Model Development, 6 ( 3 ), 765 â 782. https://doi.org/10.5194/gmdâ 6â 765â 2013 Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P. L., Qian, Y., Ghan, S. J., & Beagley, N. ( 2014 ). Using an explicit emission taggingmethod in global modeling of sourceâ receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways. Journal of Geophysical Research: Atmospheres, 119, 12,888 â 12,909. https://doi.org/10.1002/2014JD022297 Wang, H., Rasch, P. J., & Feingold, G. ( 2011 ). Manipulating marine stratocumulus cloud amount and albedo: A processâ modelling study of aerosolâ cloudâ precipitation interactions in response to injection of cloud condensation nuclei. Atmospheric Chemistry and Physics, 11, 4237 â 4249. https://doi.org/10.5194/acpâ 11â 4237â 2011 Wang, M., Ghan, S., Liu, X., L’Ecuyer, T. S., Zhang, K., Morrison, H., Ovchinnikov, M., Easter, R., Marchand, R., Chand, D., Qian, Y., & Penner, J. E. ( 2012 ). Constraining cloud lifetime effects of aerosols using Aâ Train satellite observations. Geophysical Research Letters, 39, L15709. https://doi.org/10.1029/2012GL052204 Wang, Y., Liu, X., Hoose, C., & Wang, B. ( 2014 ). Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5. Atmospheric Chemistry and Physics, 14 ( 19 ), 10,411 â 10,430. https://doi.org/10.5194/acpâ 14â 10411â 2014 Warren, S. G., & Wiscombe, W. J. ( 1980 ). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of the Atmospheric Sciences, 37 ( 12 ), 2734 â 2745. Wu, C., Liu, X., Lin, Z., Rahimiâ Esfarjani, S. R., & Lu, Z. ( 2018 ). Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variableâ resolution CESM (VRâ CESM) simulations. Atmospheric Chemistry and Physics, 18, 511 â 533. https://doi.org/10.5194/acpâ 18â 511â 2018 Xie, S., Lin, W., Rasch, P. J., Ma, P. L., Neale, R., Larson, V. E., Qian, Y., Bogenschutz, P. A., Caldwell, P., Cameronâ Smith, P., Golaz, J. C., Mahajan, S., Singh, B., Tang, Q., Wang, H., Yoon, J. H., Zhang, K., & Zhang, Y. ( 2018 ). Understanding cloud and convective characteristics in Version 1 of the E3SM Atmosphere Model. Journal of Advances in Modeling Earth Systems, 10 ( 10 ), 2618 â 2644. https://doi.org/10.1029/2018ms001350 Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Qian, Y., Ma, P.â L., & Rasch, P. J. ( 2018a ). Recent intensification of winter haze in China linked to foreign emissions and meteorology. Scientific Reports, 8 ( 1 ), 2107. https://doi.org/10.1038/s41598â 018â 20437â 7 Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Yu, H., Li, C., & Rasch, P. J. ( 2018b ). Source apportionments of aerosols and their direct radiative forcing and longâ term trends over continental United States. Earth’s Future, 6 ( 6 ), 793 â 808. https://doi.org/10.1029/2018EF000859 Yu, F., & Luo, G. ( 2009 ). Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations. Atmospheric Chemistry and Physics, 9 ( 20 ), 7691 â 7710. Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P.â L., Rasch, P. J., Neubauer, D., & Lohmann, U. ( 2014 ). Technical Note: On the use of nudging for aerosolâ climate model intercomparison studies. Atmospheric Chemistry and Physics, 14 ( 16 ), 8631 â 8645. Zhang, L. M., Gong, S. L., Padro, J., & Barrie, L. ( 2001 ). A sizeâ segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 35 ( 3 ), 549 â 560. https://doi.org/10.1016/s1352â 2310(00)00326â 5 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., & Worsnop, D. R. ( 2007 ). Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 34, L13801. https://doi.org/10.1029/2007gl029979 Zhang, R., Hegg, D. A., Huang, J., & Fu, Q. ( 2013 ). Source attribution of insoluble lightâ absorbing particles in seasonal snow across northern China. Atmospheric Chemistry and Physics, 13 ( 12 ), 6091 â 6099. Zhang, R., Wang, H., Hegg, D. A., Qian, Y., Doherty, S. J., Dang, C., Ma, P. L., Rasch, P. J., & Fu, Q. ( 2015 ). Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model. Atmospheric Chemistry and Physics, 15, 12,805 â 12,822. https://doi.org/10.5194/acpâ 15â 12805â 2015 Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S., Takeamura, T., Gettelman, A., Morrison, H., Lee, Y., Shindell, D. T., Partridge, D. G., Stier, P., Kipling, Z., & Fu, C. ( 2016 ). On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmospheric Chemistry and Physics, 16 ( 5 ), 2765 â 2783. https://doi.org/10.5194/acpâ 16â 2765â 2016 IndexNoFollow radiative forcing EAMv1 E3SM aerosol snow impurity aerosolâ cloud interaction Geological Sciences Science Article 2020 ftumdeepblue https://doi.org/10.1029/2019MS00185110.1029/2019MS00162910.5194/acpâ 2023-07-31T20:31:01Z The new Energy Exascale Earth System Model Version 1 (E3SMv1) developed for the U.S. Department of Energy has significant new treatments of aerosols and lightâ absorbing snow impurities as well as their interactions with clouds and radiation. This study describes seven sets of new aerosolâ related treatments (involving emissions, new particle formation, aerosol transport, wet scavenging and resuspension, and snow radiative transfer) and examines how they affect global aerosols and radiative forcing in E3SMv1. Altogether, they give a reduced total aerosol radiative forcing (â 1.6 W/m2) and sensitivity in cloud liquid water to aerosols, but an increased sensitivity in cloud droplet size to aerosols. A new approach for H2SO4 production and loss largely reduces a low bias in small particles concentrations and leads to substantial increases in cloud condensation nuclei concentrations and cloud radiative cooling. Emitting secondary organic aerosol precursor gases from elevated sources increases the column burden of secondary organic aerosol, contributing substantially to global clearâ sky aerosol radiative cooling (â 0.15 out of â 0.5 W/m2). A new treatment of aerosol resuspension from evaporating precipitation, developed to remedy two shortcomings of the original treatment, produces a modest reduction in aerosols and cloud droplets; its impact depends strongly on the model physics and is much stronger in E3SM Version 0. New treatments of the mixing state and optical properties of snow impurities and snow grains introduce a positive presentâ day shortwave radiative forcing (0.26 W/m2), but changes in aerosol transport and wet removal processes also affect the concentration and radiative forcing of lightâ absorbing impurities in snow/ice.Plain Language SummaryAerosol and aerosolâ cloud interactions continue to be a major uncertainty in Earth system models, impeding their ability to reproduce the observed historical warming and to project changes in global climate and water cycle. The U.S. DOE Energy Exascale Earth ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Journal of Advances in Modeling Earth Systems 12 1 |