Summertime Atmospheric Boundary Layer Gradients of O2 and CO2 over the Southern Ocean
We present airborne observations of the vertical gradient of atmospheric oxygen (δ(O2/N2)) and carbon dioxide (CO2) through the atmospheric boundary layer (BL) over the Drake Passage region of the Southern Ocean, during the O2/N2 Ratio and CO2 Airborne Southern Ocean Study, from 15 January to 29 Fe...
Published in: | Journal of Geophysical Research: Atmospheres |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Wiley Periodicals, Inc.
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/2027.42/152846 https://doi.org/10.1029/2019JD031479 |
_version_ | 1835013926337642496 |
---|---|
author | Morgan, Eric J. Stephens, Britton B. Long, Matthew C. Keeling, Ralph F. Bent, Jonathan D. McKain, Kathryn Sweeney, Colm Hoecker‐martínez, Martín S. Kort, Eric A. |
author_facet | Morgan, Eric J. Stephens, Britton B. Long, Matthew C. Keeling, Ralph F. Bent, Jonathan D. McKain, Kathryn Sweeney, Colm Hoecker‐martínez, Martín S. Kort, Eric A. |
author_sort | Morgan, Eric J. |
collection | Unknown |
container_issue | 23 |
container_start_page | 13439 |
container_title | Journal of Geophysical Research: Atmospheres |
container_volume | 124 |
description | We present airborne observations of the vertical gradient of atmospheric oxygen (δ(O2/N2)) and carbon dioxide (CO2) through the atmospheric boundary layer (BL) over the Drake Passage region of the Southern Ocean, during the O2/N2 Ratio and CO2 Airborne Southern Ocean Study, from 15 January to 29 February 2016. Gradients were predominately anticorrelated, with excesses of δ(O2/N2) and depletions of CO2 found within the boundary layer, relative to a mean reference height of 1.7 km. Through analysis of the molar ratio of the gradients (GR), the behavior of other trace gases measured in situ, and modeling experiments with the Community Earth System Model, we found that the main driver of gradients was airâ sea exchange of O2 and CO2 driven by biological processes, more so than solubility effects. An exception to this was in the eastern Drake Passage, where positive GRs were occasionally observed, likely due to the dominance of thermal forcing on the airâ sea flux of both species. GRs were more spatially consistent than the magnitudes of the gradients, suggesting that GRs can provide integrated process constraints over broad spatial scales. Based on the model simulation within a domain bounded by 45°S, 75°S, 100°W, and 45°W, we show that the sampling density of the campaign was such that the observed mean GR (± standard error), â 4.0± 0.8 mol O2 per mol CO2, was a reasonable proxy for both the mean GR and the mean molar ratio of airâ sea fluxes of O2 and CO2 during the O2/N2 Ratio and CO2 Airborne Southern Ocean Study.Plain Language SummaryUsing an aircraft, we measured changes in atmospheric oxygen and carbon dioxide over the surface of the Southern Ocean. We show that these changes can be used to estimate the relative amounts of oxygen and carbon dioxide that the Southern Ocean exchanges in summer.Key PointsWe present atmospheric boundary layer gradients of oxygen and carbon dioxide over the Southern OceanGradients are driven primarily by airâ sea fluxes due to biological productionThe ratio of these ... |
format | Article in Journal/Newspaper |
genre | Drake Passage Southern Ocean |
genre_facet | Drake Passage Southern Ocean |
geographic | Drake Passage Southern Ocean |
geographic_facet | Drake Passage Southern Ocean |
id | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/152846 |
institution | Open Polar |
language | unknown |
op_collection_id | ftumdeepblue |
op_container_end_page | 13456 |
op_doi | https://doi.org/10.1029/2019JD03147910.5065/D6DR2SJP10.5065/D6RX99HX |
op_relation | https://hdl.handle.net/2027.42/152846 doi:10.1029/2019JD031479 Journal of Geophysical Research: Atmospheres Monteiro, P., Gregor, L., Lévy, M., Maenner, S., Sabine, C., & Swart, S. ( 2015 ). Intraseasonal variability linked to sampling alias in airâ sea CO 2 fluxes in the Southern Ocean. Geophysical Research Letters, 42, 8507 â 8514. https://doi.org/10.1002/2015GL066009 Ito, T., Bracco, A., Deutsch, C., Frenzel, H., Long, M., & Takano, Y. ( 2015 ). Sustained growth of the Southern Ocean carbon storage in a warming climate. Geophysical Research Letters, 42, 4516 â 4522. https://doi.org/10.1002/2015GL064320 Kanamitsu, M. ( 1989 ). Description of the NMC Global Data Assimilation and Forecast System. Weather and Forecasting, 4, 335 â 342. Keeling, R., Blaine, T., Paplawsky, B., Katz, L., Atwood, C., & Brockwell, T. ( 2004 ). Measurement of changes in atmospheric Ar/N 2 ratio using a rapidâ switching, singleâ capillary mass spectrometer system. Tellus B, 56B ( 4 ), 322 â 338. Keeling, R., Manning, A., McEvoy, E., & Shertz, S. ( 1998 ). Methods for measuring changes in atmospheric O 2 concentration and their application in Southern Hemisphere air. Journal of Geophysical Research, 103 ( D3 ), 3381 â 3397. Keeling, R., Najjar, R., Bender, M., & Tans, P. ( 1993 ). What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochemical Cycles, 7 ( 1 ), 37 â 67. Keeling, R., Piper, S., & Heimann, M. ( 1996 ). Global and hemispheric CO 2 sinks deduced from changes in atmospheric O 2 concentration. Nature, 381, 218 â 221. Keeling, R., & Shertz, S. ( 1992 ). Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature, 358, 723 â 727. Khatiwala, S., Primeau, F., & Hall, T. ( 2009 ). Reconstruction of the history of anthropogenic CO 2 concentrations in the ocean. Nature, 462 ( 7271 ), 346 â 349. Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D., Van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., & Wanninkhof, R. ( 2015 ). The reinvigoration of the Southern Ocean carbon sink. Science, 349 ( 6253 ), 1221 â 1224. Langenfelds, R. L. ( 2002 ), Studies of the global carbon cycle using atmospheric oxygen and associated tracers, PhD thesis, University of Tasmania. Lauderdale, J. M., Dutkiewicz, S., Williams, R. G., & Follows, M. J. ( 2016 ). Quantifying the drivers of oceanâ atmosphere CO 2 fluxes. Global Biogeochemical Cycles, 30, 983 â 999. https://doi.org/10.1002/2016GB005400 Lin, J., Gerbig, C., Wofsy, S., Andrews, A., Daube, B., Davis, K., & Grainger, C. ( 2003 ). A nearâ field tool for simulating the upstream influence of atmospheric observations: The Stochastic Timeâ Inverted Lagrangian Transport (STILT) model. Journal of Geophysical Research, 108 ( D16 ), 4493. https://doi.org/10.1029/2002JD003161 Munro, D., Lovenduski, N., Takahashi, T., Stephens, B., Newberger, T., & Sweeney, C. ( 2015 ). Recent evidence for a strengthening CO 2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002â 2015). Geophysical Research Letters, 42, 7623 â 7630. https://doi.org/10.1002/2015GL065194 Petron, G., A. Crotwell, P. Lang, and E. Dlugokencky ( 2018 ), Atmospheric carbon monoxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1988â 2017, Version: 2018â 10â 17, ftp://aftp.cmdl.noaa.gov/data/trace_gases/co/flask/surface/, accessed: 2019â 07â 11. Steinbach, J. ( 2010 ), Enhancing the usability of atmospheric oxygen measurements through emission source characterization and airborne measurements, PhD thesis, Friedrichâ Schillerâ Universität. Stephens, B. ( 2017 ), ORCAS merge products. Version 1.0. UCAR/NCAR Earth Observing Laboratory. Stephens, B., Keeling, R., Heimann, M., Six, K., Murnane, R., & Caldeira, K. ( 1998 ). Testing global ocean carbon cycle models using measurements of atmospheric O 2 and CO 2 concentration. Global Biogeochemical Cycles, 12 ( 2 ), 213 â 230. Stephens, B., Keeling, R., & Paplawsky, W. ( 2003 ). Shipboard measurements of atmospheric oxygen using a vacuumâ ultraviolet absorption technique. Tellus, 55B, 857 â 878. Stephens, B., Long, M., Keeling, R., Kort, E., Sweeney, C., Apel, E., et al. ( 2018 ). The O 2 /N 2 Ratio and CO 2 Airborne Southern Ocean (ORCAS) study. Bulletin of the American Meteorological Society, 99 ( 2 ), 381 â 402. Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C., Schuster, U., Metzl, N., Yoshikawaâ Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C., Delille, B., Bates, N., & de Baar, H. J. ( 2009 ). Climatological mean and decadal change in surface ocean p CO 2, and net seaâ air CO 2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56 ( 8 ), 554 â 577. https://doi.org/10.1016/j.dsr2.2008.12.009 UCAR/NCAR â Earth Observing Laboratory ( 2005 ). NSF/NCAR GV HIAPER Aircraft. UCAR/NCAR â Earth Observing Laboratory. https://doi.org/10.5065/D6DR2SJP Retrieved December 14, 2016 Battle, M., Bender, M., Hendricks, M. B., Ho, D. T., Mika, R., Mckinley, G., Fan, S.â M., Blaine, T., & Keeling, R. F. ( 2003 ). Measurements and models of the atmospheric Ar/N 2 ratio. Geophysical Research Letters, 30 ( 15 ), 1786. https://doi.org/10.1029/2003GL017411 Bender, M., Tans, P., Ellis, J., Orchardo, J., & Habfast, K. ( 1994 ). A high precision isotope ratio mass spectrometry method for measuring the O 2 /N 2 ratio of air. Geochimica et Cosmochimica Acta, 58 ( 21 ), 4751 â 4758. Bent, J. ( 2014 ), Airborne oxygen measurements over the Southern Ocean as an integrated constraint of seasonal biogeochemical processes, PhD thesis, University of California, San Diego. Blaine, T. ( 2005 ), Continuous measurements of atmospheric Ar/N 2 as a tracer of airâ sea heat flux: Models, methods, and data, PhD thesis, University of California, San Diego. Bopp, L., & Le Quéré, C. ( 2009 ). Ocean carbon cycle. Washington DC American Geophysical Union Geophysical Monograph Series, 187, 181 â 195. https://doi.org/10.1029/2008GM000780 Computational and Information Systems Laboratory ( 2017 ). Cheyenne: HPE/SGI ICE XA System (Climate Simulation Laboratory). Boulder, CO: National Center for Atmospheric Research. https://doi.org/10.5065/D6RX99HX IPCC ( 2013 ), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Integovernmental Panel on Climate Change. |
op_rights | IndexNoFollow |
publishDate | 2019 |
publisher | Wiley Periodicals, Inc. |
record_format | openpolar |
spelling | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/152846 2025-06-15T14:26:02+00:00 Summertime Atmospheric Boundary Layer Gradients of O2 and CO2 over the Southern Ocean Morgan, Eric J. Stephens, Britton B. Long, Matthew C. Keeling, Ralph F. Bent, Jonathan D. McKain, Kathryn Sweeney, Colm Hoecker‐martínez, Martín S. Kort, Eric A. 2019-12-16 application/pdf https://hdl.handle.net/2027.42/152846 https://doi.org/10.1029/2019JD031479 unknown Wiley Periodicals, Inc. National Center for Atmospheric Research https://hdl.handle.net/2027.42/152846 doi:10.1029/2019JD031479 Journal of Geophysical Research: Atmospheres Monteiro, P., Gregor, L., Lévy, M., Maenner, S., Sabine, C., & Swart, S. ( 2015 ). Intraseasonal variability linked to sampling alias in airâ sea CO 2 fluxes in the Southern Ocean. Geophysical Research Letters, 42, 8507 â 8514. https://doi.org/10.1002/2015GL066009 Ito, T., Bracco, A., Deutsch, C., Frenzel, H., Long, M., & Takano, Y. ( 2015 ). Sustained growth of the Southern Ocean carbon storage in a warming climate. Geophysical Research Letters, 42, 4516 â 4522. https://doi.org/10.1002/2015GL064320 Kanamitsu, M. ( 1989 ). Description of the NMC Global Data Assimilation and Forecast System. Weather and Forecasting, 4, 335 â 342. Keeling, R., Blaine, T., Paplawsky, B., Katz, L., Atwood, C., & Brockwell, T. ( 2004 ). Measurement of changes in atmospheric Ar/N 2 ratio using a rapidâ switching, singleâ capillary mass spectrometer system. Tellus B, 56B ( 4 ), 322 â 338. Keeling, R., Manning, A., McEvoy, E., & Shertz, S. ( 1998 ). Methods for measuring changes in atmospheric O 2 concentration and their application in Southern Hemisphere air. Journal of Geophysical Research, 103 ( D3 ), 3381 â 3397. Keeling, R., Najjar, R., Bender, M., & Tans, P. ( 1993 ). What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochemical Cycles, 7 ( 1 ), 37 â 67. Keeling, R., Piper, S., & Heimann, M. ( 1996 ). Global and hemispheric CO 2 sinks deduced from changes in atmospheric O 2 concentration. Nature, 381, 218 â 221. Keeling, R., & Shertz, S. ( 1992 ). Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature, 358, 723 â 727. Khatiwala, S., Primeau, F., & Hall, T. ( 2009 ). Reconstruction of the history of anthropogenic CO 2 concentrations in the ocean. Nature, 462 ( 7271 ), 346 â 349. Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D., Van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi, T., Tilbrook, B., & Wanninkhof, R. ( 2015 ). The reinvigoration of the Southern Ocean carbon sink. Science, 349 ( 6253 ), 1221 â 1224. Langenfelds, R. L. ( 2002 ), Studies of the global carbon cycle using atmospheric oxygen and associated tracers, PhD thesis, University of Tasmania. Lauderdale, J. M., Dutkiewicz, S., Williams, R. G., & Follows, M. J. ( 2016 ). Quantifying the drivers of oceanâ atmosphere CO 2 fluxes. Global Biogeochemical Cycles, 30, 983 â 999. https://doi.org/10.1002/2016GB005400 Lin, J., Gerbig, C., Wofsy, S., Andrews, A., Daube, B., Davis, K., & Grainger, C. ( 2003 ). A nearâ field tool for simulating the upstream influence of atmospheric observations: The Stochastic Timeâ Inverted Lagrangian Transport (STILT) model. Journal of Geophysical Research, 108 ( D16 ), 4493. https://doi.org/10.1029/2002JD003161 Munro, D., Lovenduski, N., Takahashi, T., Stephens, B., Newberger, T., & Sweeney, C. ( 2015 ). Recent evidence for a strengthening CO 2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002â 2015). Geophysical Research Letters, 42, 7623 â 7630. https://doi.org/10.1002/2015GL065194 Petron, G., A. Crotwell, P. Lang, and E. Dlugokencky ( 2018 ), Atmospheric carbon monoxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1988â 2017, Version: 2018â 10â 17, ftp://aftp.cmdl.noaa.gov/data/trace_gases/co/flask/surface/, accessed: 2019â 07â 11. Steinbach, J. ( 2010 ), Enhancing the usability of atmospheric oxygen measurements through emission source characterization and airborne measurements, PhD thesis, Friedrichâ Schillerâ Universität. Stephens, B. ( 2017 ), ORCAS merge products. Version 1.0. UCAR/NCAR Earth Observing Laboratory. Stephens, B., Keeling, R., Heimann, M., Six, K., Murnane, R., & Caldeira, K. ( 1998 ). Testing global ocean carbon cycle models using measurements of atmospheric O 2 and CO 2 concentration. Global Biogeochemical Cycles, 12 ( 2 ), 213 â 230. Stephens, B., Keeling, R., & Paplawsky, W. ( 2003 ). Shipboard measurements of atmospheric oxygen using a vacuumâ ultraviolet absorption technique. Tellus, 55B, 857 â 878. Stephens, B., Long, M., Keeling, R., Kort, E., Sweeney, C., Apel, E., et al. ( 2018 ). The O 2 /N 2 Ratio and CO 2 Airborne Southern Ocean (ORCAS) study. Bulletin of the American Meteorological Society, 99 ( 2 ), 381 â 402. Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C., Schuster, U., Metzl, N., Yoshikawaâ Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C., Delille, B., Bates, N., & de Baar, H. J. ( 2009 ). Climatological mean and decadal change in surface ocean p CO 2, and net seaâ air CO 2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56 ( 8 ), 554 â 577. https://doi.org/10.1016/j.dsr2.2008.12.009 UCAR/NCAR â Earth Observing Laboratory ( 2005 ). NSF/NCAR GV HIAPER Aircraft. UCAR/NCAR â Earth Observing Laboratory. https://doi.org/10.5065/D6DR2SJP Retrieved December 14, 2016 Battle, M., Bender, M., Hendricks, M. B., Ho, D. T., Mika, R., Mckinley, G., Fan, S.â M., Blaine, T., & Keeling, R. F. ( 2003 ). Measurements and models of the atmospheric Ar/N 2 ratio. Geophysical Research Letters, 30 ( 15 ), 1786. https://doi.org/10.1029/2003GL017411 Bender, M., Tans, P., Ellis, J., Orchardo, J., & Habfast, K. ( 1994 ). A high precision isotope ratio mass spectrometry method for measuring the O 2 /N 2 ratio of air. Geochimica et Cosmochimica Acta, 58 ( 21 ), 4751 â 4758. Bent, J. ( 2014 ), Airborne oxygen measurements over the Southern Ocean as an integrated constraint of seasonal biogeochemical processes, PhD thesis, University of California, San Diego. Blaine, T. ( 2005 ), Continuous measurements of atmospheric Ar/N 2 as a tracer of airâ sea heat flux: Models, methods, and data, PhD thesis, University of California, San Diego. Bopp, L., & Le Quéré, C. ( 2009 ). Ocean carbon cycle. Washington DC American Geophysical Union Geophysical Monograph Series, 187, 181 â 195. https://doi.org/10.1029/2008GM000780 Computational and Information Systems Laboratory ( 2017 ). Cheyenne: HPE/SGI ICE XA System (Climate Simulation Laboratory). Boulder, CO: National Center for Atmospheric Research. https://doi.org/10.5065/D6RX99HX IPCC ( 2013 ), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Integovernmental Panel on Climate Change. IndexNoFollow airâ sea fluxes Southern Ocean O2 CO2 Atmospheric and Oceanic Sciences Science Article 2019 ftumdeepblue https://doi.org/10.1029/2019JD03147910.5065/D6DR2SJP10.5065/D6RX99HX 2025-06-04T05:59:20Z We present airborne observations of the vertical gradient of atmospheric oxygen (δ(O2/N2)) and carbon dioxide (CO2) through the atmospheric boundary layer (BL) over the Drake Passage region of the Southern Ocean, during the O2/N2 Ratio and CO2 Airborne Southern Ocean Study, from 15 January to 29 February 2016. Gradients were predominately anticorrelated, with excesses of δ(O2/N2) and depletions of CO2 found within the boundary layer, relative to a mean reference height of 1.7 km. Through analysis of the molar ratio of the gradients (GR), the behavior of other trace gases measured in situ, and modeling experiments with the Community Earth System Model, we found that the main driver of gradients was airâ sea exchange of O2 and CO2 driven by biological processes, more so than solubility effects. An exception to this was in the eastern Drake Passage, where positive GRs were occasionally observed, likely due to the dominance of thermal forcing on the airâ sea flux of both species. GRs were more spatially consistent than the magnitudes of the gradients, suggesting that GRs can provide integrated process constraints over broad spatial scales. Based on the model simulation within a domain bounded by 45°S, 75°S, 100°W, and 45°W, we show that the sampling density of the campaign was such that the observed mean GR (± standard error), â 4.0± 0.8 mol O2 per mol CO2, was a reasonable proxy for both the mean GR and the mean molar ratio of airâ sea fluxes of O2 and CO2 during the O2/N2 Ratio and CO2 Airborne Southern Ocean Study.Plain Language SummaryUsing an aircraft, we measured changes in atmospheric oxygen and carbon dioxide over the surface of the Southern Ocean. We show that these changes can be used to estimate the relative amounts of oxygen and carbon dioxide that the Southern Ocean exchanges in summer.Key PointsWe present atmospheric boundary layer gradients of oxygen and carbon dioxide over the Southern OceanGradients are driven primarily by airâ sea fluxes due to biological productionThe ratio of these ... Article in Journal/Newspaper Drake Passage Southern Ocean Unknown Drake Passage Southern Ocean Journal of Geophysical Research: Atmospheres 124 23 13439 13456 |
spellingShingle | airâ sea fluxes Southern Ocean O2 CO2 Atmospheric and Oceanic Sciences Science Morgan, Eric J. Stephens, Britton B. Long, Matthew C. Keeling, Ralph F. Bent, Jonathan D. McKain, Kathryn Sweeney, Colm Hoecker‐martínez, Martín S. Kort, Eric A. Summertime Atmospheric Boundary Layer Gradients of O2 and CO2 over the Southern Ocean |
title | Summertime Atmospheric Boundary Layer Gradients of O2 and CO2 over the Southern Ocean |
title_full | Summertime Atmospheric Boundary Layer Gradients of O2 and CO2 over the Southern Ocean |
title_fullStr | Summertime Atmospheric Boundary Layer Gradients of O2 and CO2 over the Southern Ocean |
title_full_unstemmed | Summertime Atmospheric Boundary Layer Gradients of O2 and CO2 over the Southern Ocean |
title_short | Summertime Atmospheric Boundary Layer Gradients of O2 and CO2 over the Southern Ocean |
title_sort | summertime atmospheric boundary layer gradients of o2 and co2 over the southern ocean |
topic | airâ sea fluxes Southern Ocean O2 CO2 Atmospheric and Oceanic Sciences Science |
topic_facet | airâ sea fluxes Southern Ocean O2 CO2 Atmospheric and Oceanic Sciences Science |
url | https://hdl.handle.net/2027.42/152846 https://doi.org/10.1029/2019JD031479 |