Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple‐Instrument Observations

The rapid changes of magnetic fields associated with nighttime magnetic perturbations with amplitudes |ΔB| of hundreds of nanoteslas and 5‐ to 10‐min periods can induce bursts of geomagnetically induced currents that can harm technological systems. This paper presents three cases of intervals of int...

Full description

Bibliographic Details
Published in:Revista Colombiana de Biotecnología
Main Authors: Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., Boteler, D. H., Mann, I. R., Hartinger, M. D., Weygand, J. M., Lyons, L. R., Nishimura, Y., Singer, H. J., Ohtani, S., Russell, C. T., Fazakerley, A., Kistler, L. M.
Format: Article in Journal/Newspaper
Language:unknown
Published: ESA Publications 2019
Subjects:
Online Access:https://hdl.handle.net/2027.42/151990
https://doi.org/10.1029/2019JA026797
_version_ 1835011455182700544
author Engebretson, M. J.
Steinmetz, E. S.
Posch, J. L.
Pilipenko, V. A.
Moldwin, M. B.
Connors, M. G.
Boteler, D. H.
Mann, I. R.
Hartinger, M. D.
Weygand, J. M.
Lyons, L. R.
Nishimura, Y.
Singer, H. J.
Ohtani, S.
Russell, C. T.
Fazakerley, A.
Kistler, L. M.
author_facet Engebretson, M. J.
Steinmetz, E. S.
Posch, J. L.
Pilipenko, V. A.
Moldwin, M. B.
Connors, M. G.
Boteler, D. H.
Mann, I. R.
Hartinger, M. D.
Weygand, J. M.
Lyons, L. R.
Nishimura, Y.
Singer, H. J.
Ohtani, S.
Russell, C. T.
Fazakerley, A.
Kistler, L. M.
author_sort Engebretson, M. J.
collection Unknown
container_issue 1
container_title Revista Colombiana de Biotecnología
container_volume 18
description The rapid changes of magnetic fields associated with nighttime magnetic perturbations with amplitudes |ΔB| of hundreds of nanoteslas and 5‐ to 10‐min periods can induce bursts of geomagnetically induced currents that can harm technological systems. This paper presents three cases of intervals of intense and complex nighttime magnetic perturbations in eastern Arctic Canada in 2015, augmented by observations from auroral imagers and high‐altitude spacecraft in the nightside magnetosphere. Each case occurred within 1 hr after substorm onsets. None occurred during the main phase of a geomagnetic storm, and only the first during the early recovery phase (of a moderate storm). The cases were similar in that two or three intervals occurred in this region over a span of ~1 hr; these showed a spatial progression, in that successive intervals occurred later at more western and northern stations. During several intervals, individual peak Bx impulses occurred nearly simultaneously (within 1–2 min) at several stations, while during others the impulses occurred later at more western and northern stations, and during one interval they occurred later at southern stations. During both of the cases for which auroral images were available, a westward traveling surge and a poleward auroral expansion and/or poleward boundary intensification occurred, and during two events auroral streamers coincided in time and location with magnetic perturbations. These observations appear to be consistent with several earlier studies connecting nighttime magnetic perturbation events to localized auroral structures and to dipolarizing flux bundles and bursty bulk flows in the magnetotail.Key PointsIn each case study, two or three perturbation intervals occurred within a span of less than 1 hr; later intervals appeared to the north and westIndividual perturbation events typically had a horizontal radius (center to half maximum amplitude) of ~275 kmEvents were closely associated with auroral streamers and less closely associated with substorm onsets ...
format Article in Journal/Newspaper
genre Arctic
genre_facet Arctic
geographic Arctic
Canada
geographic_facet Arctic
Canada
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151990
institution Open Polar
language unknown
op_collection_id ftumdeepblue
op_relation https://hdl.handle.net/2027.42/151990
doi:10.1029/2019JA026797
Journal of Geophysical Research: Space Physics
Nishimura, Y., Lyons, L. R., Kikuchi, T., Angelopoulos, V., Donovan, E., Mende, S., Chi, P. J., & Nagatsuma, T. ( 2012 ). Formation of substorm Pi2: A coherent response to auroral streamers and currents. Journal of Geophysical Research, 117, A09218. https://doi.org/10.1029/2012JA017889
Huttunen, K. E. J., Koskinen, H. E. J., Pulkkinen, T. I., Pulkkinen, A., Palmroth, M., Reeves, E. G. D., & Singer, H. J. ( 2002 ). April 2000 magnetic storm: Solar wind driver and magnetospheric response. Journal of Geophysical Research, 107 ( A12 ), 1440. https://doi.org/10.1029/2001JA009154
Iijima, T., & Potemra, T. A. ( 1978 ). Large‐scale characteristics of field‐aligned currents associated with substorms. Journal of Geophysical Research, 83, 599 – 615. https://doi.org/10.1029/JA083iA02p00599
Johnstone, A. D., Alsop, C., Burge, S., Carter, P. J., Coates, A. J., Coker, A. J., Fazakerley, A. N., Grande, M., Gowen, R. A., Gurgiolo, C., Hancock, B. K., Narheim, B., Preece, A., Sheather, P. H., Winningham, J. D., & Woodliffe, R. D. ( 1997 ). Peace: A plasma electron and current experiment. Space Science Reviews, 79, 351 – 398. https://doi.org/10.1023/A1004938001388
Kauristie, K., Sergeev, V. A., Kubyshkina, M., Pulkkinen, T. I., Angelopoulos, V., Phan, T., Lin, R. P., & Slavin, J. A. ( 2000 ). Ionospheric current signatures of transient plasma sheet flows. Journal of Geophysical Research, 105, 10,677 – 10,690. https://doi.org/10.1029/1999JA900487
Kistler, L. M., Mouikis, C. G., Cao, X., Frey, H., Klecker, B., Dandouras, I., Korth, A., Marcucci, M. F., Lundin, R., McCarthy, M., Friedel, R., & Lucek, E. ( 2006 ). Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near‐Earth neutral line. Journal of Geophysical Research, 111, A11222. https://doi.org/10.1029/2006JA011939
Kozyreva, O. V., Pilipenko, V. A., Belakhovsky, V. B., & Sakharov, Y. A. ( 2018 ). Ground geomagnetic field and GIC response to March 17, 2015 storm. Earth, Planets, and Space, 70. https://doi.org/10.1186/s40623‐018‐0933‐2
Liu, J., Angelopoulos, V., Zhou, X.‐Z., & Runov, A. ( 2014 ). Magnetic flux transport by dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 119, 909 – 926. https://doi.org/10.1002/2013JA019395
Liu, Y., Kistler, L. M., Mouikis, C. G., Klecker, B., & Dandouras, I. ( 2013 ). Heavy ion effects on substorm loading and unloading in the Earth’s magnetotail. Journal of Geophysical Research: Space Physics, 118, 2101 – 2112. https://doi.org/10.1002/jgra.50240
Lühr, H., Aylward, A., Buchert, S. C., Pajunpää, A., Pajunpää, K., Holmboe, T., & Zalewski, S. M. ( 1998 ). Westward moving dynamic substorm features observed with the IMAGE magnetometer network and other ground‐based instruments. Annales Geophysicae, 16, 425 – 440. https://doi.org/10.1007/s00585‐998‐0425‐y
Lyons, L. R., Nishimura, Y., Donovan, E., & Angelopoulos, V. ( 2013 ). Distinction between auroral substorm onset and traditional ground magnetic onset signatures. Journal of Geophysical Research: Space Physics, 118, 4080 – 4092. https://doi.org/10.1002/jgra.50384
Lyons, L. R., Nishimura, Y., Xing, X., Runov, A., Angelopoulos, V., Donovan, E., & Kikuchi, T. ( 2012 ). Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere. Journal of Geophysical Research, 117, A02212. https://doi.org/10.1029/2011JA017265
Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, A., Kale, Z. C., Murphy, K. R., Parent, A., Usanova, M., Pahud, D. M., Lee, E. A., Amalraj, V., Wallis, D. D., Angelopoulos, V., Glassmeier, K. H., Russell, C. T., Auster, H. U., & Singer, H. J. ( 2008 ). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141 ( 1‐4 ), 413 – 451. https://doi.org/10.1007/s11214‐008‐9457‐6
Mende, S. B., Harris, S. E., Frey, H. U., Angelopoulos, V., Russell, C. T., Donovan, E., Jackel, B., Greffen, M., & Peticolas, L. M. ( 2008 ). The THEMIS array of ground‐based observatories for the study of auroral substorms. Space Science Reviews, 141, 357. https://doi.org/10.1007/s11214‐008‐9380‐x
Moore, T., Arnoldy, R., Feynman, J., & Hardy, D. ( 1981 ). Propagating substorm injection fronts. Journal of Geophysical Research, 86, 6713 – 6726. https://doi.org/10.1029/JA086iA08p06713
Murphy, K. R., Mann, I. R., Rae, I. J., Waters, C. L., Frey, H. U., Kale, A., Singer, H. J., Anderson, B. J., & Korth, H. ( 2013 ). The detailed spatial structure of field‐aligned currents comprising the substorm current wedge. Journal of Geophysical Research: Space Physics, 118, 7714 – 7727. https://doi.org/10.1002/2013JA018979
Nakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Rème, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., Glassmeier, K. H., Kistler, L., Mouikis, C., Zhang, T. L., Eichelberger, H., & Runov, A. ( 2002 ). Motion of the dipolarization front during a flow burst event observed by Cluster. Geophysical Research Letters, 29 ( 20 ), 1942. https://doi.org/10.1029/2002GL015763
Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779
Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061
Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local d B ∕d t variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911
Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386
Pulkkinen, A., Thomson, A., Clarke, E., & McKay, A. ( 2003 ). April 2000 geomagnetic storm: Ionospheric drivers of large geomagnetically induced currents. Annales Geophysicae, 21 ( 3 ), 709 – 717. https://doi.org/10.5194/angeo‐21‐709‐2003
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., Coeur‐Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d’Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano‐Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J. B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., & Sonnerup, B. ( 2001 ). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Annals of Geophysics, 19 ( 10/12 ), 1303 – 1354. https://doi.org/10.5194/angeo‐19‐1303‐2001
Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., Larson, D., Glassmeier, K.‐H., & Auster, U. ( 2009 ). THEMIS observations of an earthward‐propagating dipolarization front. Geophysical Research Letters, 36, L14106. https://doi.org/10.1029/2009GL038980
Runov, A., Angelopoulos, V., Zhou, X.‐Z., Zhang, X.‐J., Li, S., Plaschke, F., & Bonnell, J. ( 2011 ). A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. Journal of Geophysical Research, 116, A05216. https://doi.org/10.1029/2010JA016316
Sergeev, V. A., Liou, K., Meng, C.‐I., Newell, P. T., Brittnacher, M., Parks, G., & Reeves, G. D. ( 1999 ). Development of auroral streamers in association with localized impulsive injections to the inner magnetotail. Geophysical Research Letters, 26, 417 – 420. https://doi.org/10.1029/1998GL900311
Singer, H. J., Matheson, L., Grubb, R., Newman, A., & Bouwer, S. D. ( 1996 ). Monitoring space weather with the GOES magnetometers, in SPIE Conference Proceedings, vol. 2812, edited by E. R. Washwell, pp. 299–308, GOES‐8 and Beyond SPIE, Bellingham, Wash.
Solovyev, S. I., Baishev, D. G., Barkova, E. S., Molochushkin, N. E., & Yumoto, K. ( 2000 ). Pi2 magnetic pulsations as response on spatiotemporal oscillations of auroral arc current system. Geophysical Research Letters, 27, 1839 – 1842. https://doi.org/10.1029/2000GL000037
Tsyganenko, N. A. ( 1987 ). Global quantitative models of the geomagnetic field in the cislunar magnetosphere for different disturbance levels. Planetary and Space Science, 35, 1347 – 1358. https://doi.org/10.1016/0032‐0633(87)90046‐8
Tsyganenko, N. A. ( 1989 ). A magnetospheric magnetic field model with a warped tail current sheet. Planetary and Space Science, 37 ( 1 ), 5 – 20. https://doi.org/10.1016/0032‐0633(89)90066‐4
Tsyganenko, N. A. ( 1996 ). Effects of the solar wind conditions on the global magnetospheric configuration as deduced from data‐based field models, in Proceedings of the ICS‐3 Conference on Substorms, Eur. Space Agency Spec. Publ., ESA SP‐389, 181.
Tu, J.‐N., Tsuruda, K., Hayakawa, H., Matsuoka, A., Mukai, T., Nagano, I., & Yagitani, S. ( 2000 ). Statistical nature of impulsive electric fields associated with fast ion flow in the near‐Earth plasma sheet. Journal of Geophysical Research, 105, 18,901. https://doi.org/10.1029/1999JA000428
Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538
Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., & Mann, I. R. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116, A03305. https://doi.org/10.1029/2010JA06177
Zesta, E., Lyons, L., & Donovan, E. ( 2000 ). The auroral signature of Earthward flow bursts observed in the magnetotail. Geophysical Research Letters, 27, 3241 – 3244. https://doi.org/10.1029/2000GL000027
Zesta, E., Lyons, L., Wang, C.‐P., Donovan, E., Frey, H., & Nagai, T. ( 2006 ). Auroral poleward boundary intensifications (PBIs): Their two‐dimensional structure and associated dynamics in the plasma sheet. Journal of Geophysical Research, 111, A05201. https://doi.org/10.1029/2004JA010640
Amm, O., Janhunen, P., Kauristie, K., Opgenoorth, H. J., Pulkkinen, T. I., & Viljanen, A. ( 2001 ). Mesoscale ionospheric electrodynamics observed with the MIRACLE network: 1. Analysis of a pseudobreakup spiral. Journal of Geophysical Research, 106, 24,675 – 24,690. https://doi.org/10.1029/2001JA900072
Amm, O., & Viljanen, A. ( 1999 ). Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary currents systems. Earth Planets Space, 51, 431 – 440.
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Luehr, H., & Paschmann, G. ( 1992 ). Bursty bulk flows in the inner central plasma sheet. Journal of Geophysical Research, 97, 4027 – 4039. https://doi.org/10.1029/91JA02701
Apatenkov, S. V., Sergeev, V. A., Pirjola, R., & Viljanen, A. ( 2004 ). Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations. Annals of Geophysics, 22, 63 – 72. https://doi.org/10.5194/angeo‐22‐63‐2004
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornaçon, K.‐H., Georgescu, E., Glassmeier, K.‐H., Harris, J., Musmann, G., Oddy, T., & Schwingenschuh, K. ( 2001 ). The Cluster magnetic field investigation: Overview of in‐flight performance and initial results. Annals of Geophysics, 19, 1207 – 1217. https://doi.org/10.5194/angeo‐19‐1207‐2001
Baumjohann, W., Paschmann, G., & Lühr, H. ( 1990 ). Characteristics of high‐speed flows in the plasma sheet. Journal of Geophysical Research, 95, 3801 – 3809. https://doi.org/10.1029/JA095iA04p03801
Belakhovsky, V. B., Pilipenko, V. A., Sakharov, Y. A., & Selivanov, V. N. ( 2018 ). Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems. Izvestiya, Physics of the Solid Earth, 54, 52 – 65.
Clauer, C. R., Kim, H., Deshpande, K., Xu, Z., Weimer, D., Musko, S., Crowley, G., Fish, C., Nealy, R., Humphreys, T. E., Bhatti, J. A., & Ridley, A. J. ( 2014 ). An autonomous adaptive low‐power instrument platform (AAL‐PIP) for remote high‐latitude geospace data collection. Geoscientific Instrumentation, Methods and Data Systems, 3, 211 – 227. https://doi.org/10.5194/gi‐3‐211‐2014
Connors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth, Planets and Space, 68, 2. https://doi.org/10.1186/s40623‐015‐0354‐4
Dimmock, A. P., Rosenqvist, L., Hall, J.‐O., Viljanen, A., Yordanova, E., Honkonen, I., André, M., & Sjöberg, E. C. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7‐8 September 2017 geomagnetic storm. Space Weather, 17, 989 – 1010. https://doi.org/10.1029/2018SW002132
Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J. Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100, 19,371 – 19,386. https://doi.org/10.1029/95JA00768
op_rights IndexNoFollow
publishDate 2019
publisher ESA Publications
record_format openpolar
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151990 2025-06-15T14:21:11+00:00 Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple‐Instrument Observations Engebretson, M. J. Steinmetz, E. S. Posch, J. L. Pilipenko, V. A. Moldwin, M. B. Connors, M. G. Boteler, D. H. Mann, I. R. Hartinger, M. D. Weygand, J. M. Lyons, L. R. Nishimura, Y. Singer, H. J. Ohtani, S. Russell, C. T. Fazakerley, A. Kistler, L. M. 2019-09 application/pdf https://hdl.handle.net/2027.42/151990 https://doi.org/10.1029/2019JA026797 unknown ESA Publications Wiley Periodicals, Inc. https://hdl.handle.net/2027.42/151990 doi:10.1029/2019JA026797 Journal of Geophysical Research: Space Physics Nishimura, Y., Lyons, L. R., Kikuchi, T., Angelopoulos, V., Donovan, E., Mende, S., Chi, P. J., & Nagatsuma, T. ( 2012 ). Formation of substorm Pi2: A coherent response to auroral streamers and currents. Journal of Geophysical Research, 117, A09218. https://doi.org/10.1029/2012JA017889 Huttunen, K. E. J., Koskinen, H. E. J., Pulkkinen, T. I., Pulkkinen, A., Palmroth, M., Reeves, E. G. D., & Singer, H. J. ( 2002 ). April 2000 magnetic storm: Solar wind driver and magnetospheric response. Journal of Geophysical Research, 107 ( A12 ), 1440. https://doi.org/10.1029/2001JA009154 Iijima, T., & Potemra, T. A. ( 1978 ). Large‐scale characteristics of field‐aligned currents associated with substorms. Journal of Geophysical Research, 83, 599 – 615. https://doi.org/10.1029/JA083iA02p00599 Johnstone, A. D., Alsop, C., Burge, S., Carter, P. J., Coates, A. J., Coker, A. J., Fazakerley, A. N., Grande, M., Gowen, R. A., Gurgiolo, C., Hancock, B. K., Narheim, B., Preece, A., Sheather, P. H., Winningham, J. D., & Woodliffe, R. D. ( 1997 ). Peace: A plasma electron and current experiment. Space Science Reviews, 79, 351 – 398. https://doi.org/10.1023/A1004938001388 Kauristie, K., Sergeev, V. A., Kubyshkina, M., Pulkkinen, T. I., Angelopoulos, V., Phan, T., Lin, R. P., & Slavin, J. A. ( 2000 ). Ionospheric current signatures of transient plasma sheet flows. Journal of Geophysical Research, 105, 10,677 – 10,690. https://doi.org/10.1029/1999JA900487 Kistler, L. M., Mouikis, C. G., Cao, X., Frey, H., Klecker, B., Dandouras, I., Korth, A., Marcucci, M. F., Lundin, R., McCarthy, M., Friedel, R., & Lucek, E. ( 2006 ). Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near‐Earth neutral line. Journal of Geophysical Research, 111, A11222. https://doi.org/10.1029/2006JA011939 Kozyreva, O. V., Pilipenko, V. A., Belakhovsky, V. B., & Sakharov, Y. A. ( 2018 ). Ground geomagnetic field and GIC response to March 17, 2015 storm. Earth, Planets, and Space, 70. https://doi.org/10.1186/s40623‐018‐0933‐2 Liu, J., Angelopoulos, V., Zhou, X.‐Z., & Runov, A. ( 2014 ). Magnetic flux transport by dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 119, 909 – 926. https://doi.org/10.1002/2013JA019395 Liu, Y., Kistler, L. M., Mouikis, C. G., Klecker, B., & Dandouras, I. ( 2013 ). Heavy ion effects on substorm loading and unloading in the Earth’s magnetotail. Journal of Geophysical Research: Space Physics, 118, 2101 – 2112. https://doi.org/10.1002/jgra.50240 Lühr, H., Aylward, A., Buchert, S. C., Pajunpää, A., Pajunpää, K., Holmboe, T., & Zalewski, S. M. ( 1998 ). Westward moving dynamic substorm features observed with the IMAGE magnetometer network and other ground‐based instruments. Annales Geophysicae, 16, 425 – 440. https://doi.org/10.1007/s00585‐998‐0425‐y Lyons, L. R., Nishimura, Y., Donovan, E., & Angelopoulos, V. ( 2013 ). Distinction between auroral substorm onset and traditional ground magnetic onset signatures. Journal of Geophysical Research: Space Physics, 118, 4080 – 4092. https://doi.org/10.1002/jgra.50384 Lyons, L. R., Nishimura, Y., Xing, X., Runov, A., Angelopoulos, V., Donovan, E., & Kikuchi, T. ( 2012 ). Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere. Journal of Geophysical Research, 117, A02212. https://doi.org/10.1029/2011JA017265 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, A., Kale, Z. C., Murphy, K. R., Parent, A., Usanova, M., Pahud, D. M., Lee, E. A., Amalraj, V., Wallis, D. D., Angelopoulos, V., Glassmeier, K. H., Russell, C. T., Auster, H. U., & Singer, H. J. ( 2008 ). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141 ( 1‐4 ), 413 – 451. https://doi.org/10.1007/s11214‐008‐9457‐6 Mende, S. B., Harris, S. E., Frey, H. U., Angelopoulos, V., Russell, C. T., Donovan, E., Jackel, B., Greffen, M., & Peticolas, L. M. ( 2008 ). The THEMIS array of ground‐based observatories for the study of auroral substorms. Space Science Reviews, 141, 357. https://doi.org/10.1007/s11214‐008‐9380‐x Moore, T., Arnoldy, R., Feynman, J., & Hardy, D. ( 1981 ). Propagating substorm injection fronts. Journal of Geophysical Research, 86, 6713 – 6726. https://doi.org/10.1029/JA086iA08p06713 Murphy, K. R., Mann, I. R., Rae, I. J., Waters, C. L., Frey, H. U., Kale, A., Singer, H. J., Anderson, B. J., & Korth, H. ( 2013 ). The detailed spatial structure of field‐aligned currents comprising the substorm current wedge. Journal of Geophysical Research: Space Physics, 118, 7714 – 7727. https://doi.org/10.1002/2013JA018979 Nakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Rème, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., Glassmeier, K. H., Kistler, L., Mouikis, C., Zhang, T. L., Eichelberger, H., & Runov, A. ( 2002 ). Motion of the dipolarization front during a flow burst event observed by Cluster. Geophysical Research Letters, 29 ( 20 ), 1942. https://doi.org/10.1029/2002GL015763 Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779 Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061 Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local d B ∕d t variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911 Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386 Pulkkinen, A., Thomson, A., Clarke, E., & McKay, A. ( 2003 ). April 2000 geomagnetic storm: Ionospheric drivers of large geomagnetically induced currents. Annales Geophysicae, 21 ( 3 ), 709 – 717. https://doi.org/10.5194/angeo‐21‐709‐2003 Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., Coeur‐Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d’Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano‐Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J. B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., & Sonnerup, B. ( 2001 ). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Annals of Geophysics, 19 ( 10/12 ), 1303 – 1354. https://doi.org/10.5194/angeo‐19‐1303‐2001 Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., Larson, D., Glassmeier, K.‐H., & Auster, U. ( 2009 ). THEMIS observations of an earthward‐propagating dipolarization front. Geophysical Research Letters, 36, L14106. https://doi.org/10.1029/2009GL038980 Runov, A., Angelopoulos, V., Zhou, X.‐Z., Zhang, X.‐J., Li, S., Plaschke, F., & Bonnell, J. ( 2011 ). A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. Journal of Geophysical Research, 116, A05216. https://doi.org/10.1029/2010JA016316 Sergeev, V. A., Liou, K., Meng, C.‐I., Newell, P. T., Brittnacher, M., Parks, G., & Reeves, G. D. ( 1999 ). Development of auroral streamers in association with localized impulsive injections to the inner magnetotail. Geophysical Research Letters, 26, 417 – 420. https://doi.org/10.1029/1998GL900311 Singer, H. J., Matheson, L., Grubb, R., Newman, A., & Bouwer, S. D. ( 1996 ). Monitoring space weather with the GOES magnetometers, in SPIE Conference Proceedings, vol. 2812, edited by E. R. Washwell, pp. 299–308, GOES‐8 and Beyond SPIE, Bellingham, Wash. Solovyev, S. I., Baishev, D. G., Barkova, E. S., Molochushkin, N. E., & Yumoto, K. ( 2000 ). Pi2 magnetic pulsations as response on spatiotemporal oscillations of auroral arc current system. Geophysical Research Letters, 27, 1839 – 1842. https://doi.org/10.1029/2000GL000037 Tsyganenko, N. A. ( 1987 ). Global quantitative models of the geomagnetic field in the cislunar magnetosphere for different disturbance levels. Planetary and Space Science, 35, 1347 – 1358. https://doi.org/10.1016/0032‐0633(87)90046‐8 Tsyganenko, N. A. ( 1989 ). A magnetospheric magnetic field model with a warped tail current sheet. Planetary and Space Science, 37 ( 1 ), 5 – 20. https://doi.org/10.1016/0032‐0633(89)90066‐4 Tsyganenko, N. A. ( 1996 ). Effects of the solar wind conditions on the global magnetospheric configuration as deduced from data‐based field models, in Proceedings of the ICS‐3 Conference on Substorms, Eur. Space Agency Spec. Publ., ESA SP‐389, 181. Tu, J.‐N., Tsuruda, K., Hayakawa, H., Matsuoka, A., Mukai, T., Nagano, I., & Yagitani, S. ( 2000 ). Statistical nature of impulsive electric fields associated with fast ion flow in the near‐Earth plasma sheet. Journal of Geophysical Research, 105, 18,901. https://doi.org/10.1029/1999JA000428 Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24, 631 – 634. https://doi.org/10.1029/97GL00538 Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., & Mann, I. R. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116, A03305. https://doi.org/10.1029/2010JA06177 Zesta, E., Lyons, L., & Donovan, E. ( 2000 ). The auroral signature of Earthward flow bursts observed in the magnetotail. Geophysical Research Letters, 27, 3241 – 3244. https://doi.org/10.1029/2000GL000027 Zesta, E., Lyons, L., Wang, C.‐P., Donovan, E., Frey, H., & Nagai, T. ( 2006 ). Auroral poleward boundary intensifications (PBIs): Their two‐dimensional structure and associated dynamics in the plasma sheet. Journal of Geophysical Research, 111, A05201. https://doi.org/10.1029/2004JA010640 Amm, O., Janhunen, P., Kauristie, K., Opgenoorth, H. J., Pulkkinen, T. I., & Viljanen, A. ( 2001 ). Mesoscale ionospheric electrodynamics observed with the MIRACLE network: 1. Analysis of a pseudobreakup spiral. Journal of Geophysical Research, 106, 24,675 – 24,690. https://doi.org/10.1029/2001JA900072 Amm, O., & Viljanen, A. ( 1999 ). Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary currents systems. Earth Planets Space, 51, 431 – 440. Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Luehr, H., & Paschmann, G. ( 1992 ). Bursty bulk flows in the inner central plasma sheet. Journal of Geophysical Research, 97, 4027 – 4039. https://doi.org/10.1029/91JA02701 Apatenkov, S. V., Sergeev, V. A., Pirjola, R., & Viljanen, A. ( 2004 ). Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations. Annals of Geophysics, 22, 63 – 72. https://doi.org/10.5194/angeo‐22‐63‐2004 Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornaçon, K.‐H., Georgescu, E., Glassmeier, K.‐H., Harris, J., Musmann, G., Oddy, T., & Schwingenschuh, K. ( 2001 ). The Cluster magnetic field investigation: Overview of in‐flight performance and initial results. Annals of Geophysics, 19, 1207 – 1217. https://doi.org/10.5194/angeo‐19‐1207‐2001 Baumjohann, W., Paschmann, G., & Lühr, H. ( 1990 ). Characteristics of high‐speed flows in the plasma sheet. Journal of Geophysical Research, 95, 3801 – 3809. https://doi.org/10.1029/JA095iA04p03801 Belakhovsky, V. B., Pilipenko, V. A., Sakharov, Y. A., & Selivanov, V. N. ( 2018 ). Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems. Izvestiya, Physics of the Solid Earth, 54, 52 – 65. Clauer, C. R., Kim, H., Deshpande, K., Xu, Z., Weimer, D., Musko, S., Crowley, G., Fish, C., Nealy, R., Humphreys, T. E., Bhatti, J. A., & Ridley, A. J. ( 2014 ). An autonomous adaptive low‐power instrument platform (AAL‐PIP) for remote high‐latitude geospace data collection. Geoscientific Instrumentation, Methods and Data Systems, 3, 211 – 227. https://doi.org/10.5194/gi‐3‐211‐2014 Connors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth, Planets and Space, 68, 2. https://doi.org/10.1186/s40623‐015‐0354‐4 Dimmock, A. P., Rosenqvist, L., Hall, J.‐O., Viljanen, A., Yordanova, E., Honkonen, I., André, M., & Sjöberg, E. C. ( 2019 ). The GIC and geomagnetic response over Fennoscandia to the 7‐8 September 2017 geomagnetic storm. Space Weather, 17, 989 – 1010. https://doi.org/10.1029/2018SW002132 Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J. Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100, 19,371 – 19,386. https://doi.org/10.1029/95JA00768 IndexNoFollow geomagneticall induced currents magnetic perturbation events auroral streamers substorms Astronomy and Astrophysics Science Article 2019 ftumdeepblue 2025-06-04T05:59:22Z The rapid changes of magnetic fields associated with nighttime magnetic perturbations with amplitudes |ΔB| of hundreds of nanoteslas and 5‐ to 10‐min periods can induce bursts of geomagnetically induced currents that can harm technological systems. This paper presents three cases of intervals of intense and complex nighttime magnetic perturbations in eastern Arctic Canada in 2015, augmented by observations from auroral imagers and high‐altitude spacecraft in the nightside magnetosphere. Each case occurred within 1 hr after substorm onsets. None occurred during the main phase of a geomagnetic storm, and only the first during the early recovery phase (of a moderate storm). The cases were similar in that two or three intervals occurred in this region over a span of ~1 hr; these showed a spatial progression, in that successive intervals occurred later at more western and northern stations. During several intervals, individual peak Bx impulses occurred nearly simultaneously (within 1–2 min) at several stations, while during others the impulses occurred later at more western and northern stations, and during one interval they occurred later at southern stations. During both of the cases for which auroral images were available, a westward traveling surge and a poleward auroral expansion and/or poleward boundary intensification occurred, and during two events auroral streamers coincided in time and location with magnetic perturbations. These observations appear to be consistent with several earlier studies connecting nighttime magnetic perturbation events to localized auroral structures and to dipolarizing flux bundles and bursty bulk flows in the magnetotail.Key PointsIn each case study, two or three perturbation intervals occurred within a span of less than 1 hr; later intervals appeared to the north and westIndividual perturbation events typically had a horizontal radius (center to half maximum amplitude) of ~275 kmEvents were closely associated with auroral streamers and less closely associated with substorm onsets ... Article in Journal/Newspaper Arctic Unknown Arctic Canada Revista Colombiana de Biotecnología 18 1
spellingShingle geomagneticall induced currents
magnetic perturbation events
auroral streamers
substorms
Astronomy and Astrophysics
Science
Engebretson, M. J.
Steinmetz, E. S.
Posch, J. L.
Pilipenko, V. A.
Moldwin, M. B.
Connors, M. G.
Boteler, D. H.
Mann, I. R.
Hartinger, M. D.
Weygand, J. M.
Lyons, L. R.
Nishimura, Y.
Singer, H. J.
Ohtani, S.
Russell, C. T.
Fazakerley, A.
Kistler, L. M.
Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple‐Instrument Observations
title Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple‐Instrument Observations
title_full Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple‐Instrument Observations
title_fullStr Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple‐Instrument Observations
title_full_unstemmed Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple‐Instrument Observations
title_short Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 2. Multiple‐Instrument Observations
title_sort nighttime magnetic perturbation events observed in arctic canada: 2. multiple‐instrument observations
topic geomagneticall induced currents
magnetic perturbation events
auroral streamers
substorms
Astronomy and Astrophysics
Science
topic_facet geomagneticall induced currents
magnetic perturbation events
auroral streamers
substorms
Astronomy and Astrophysics
Science
url https://hdl.handle.net/2027.42/151990
https://doi.org/10.1029/2019JA026797