Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis
The rapid changes of magnetic fields associated with large, isolated magnetic perturbations with amplitudes |ΔB| of hundreds of nanotesla and 5‐ to 10‐min periods can induce bursts of geomagnetically induced currents that can harm technological systems. This paper presents statistical summaries of t...
Published in: | Journal of Geophysical Research: Space Physics |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Wiley Periodicals, Inc.
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/2027.42/151970 https://doi.org/10.1029/2019JA026794 |
_version_ | 1835008604327903232 |
---|---|
author | Engebretson, M. J. Pilipenko, V. A. Ahmed, L. Y. Posch, J. L. Steinmetz, E. S. Moldwin, M. B. Connors, M. G. Weygand, J. M. Mann, I. R. Boteler, D. H. Russell, C. T. Vorobev, A. V. |
author_facet | Engebretson, M. J. Pilipenko, V. A. Ahmed, L. Y. Posch, J. L. Steinmetz, E. S. Moldwin, M. B. Connors, M. G. Weygand, J. M. Mann, I. R. Boteler, D. H. Russell, C. T. Vorobev, A. V. |
author_sort | Engebretson, M. J. |
collection | Unknown |
container_issue | 9 |
container_start_page | 7442 |
container_title | Journal of Geophysical Research: Space Physics |
container_volume | 124 |
description | The rapid changes of magnetic fields associated with large, isolated magnetic perturbations with amplitudes |ΔB| of hundreds of nanotesla and 5‐ to 10‐min periods can induce bursts of geomagnetically induced currents that can harm technological systems. This paper presents statistical summaries of the characteristics of nightside magnetic perturbation events observed in Eastern Arctic Canada from 2014 through 2017 using data from stations that are part of four magnetometer arrays: MACCS, AUTUMNX, CANMOS, and CARISMA, covering a range of magnetic latitudes from 68 to 78°. Most but not all of the magnetic perturbation events were associated with substorms: roughly two thirds occurred between 5 and 30 min after onset. The association of intense nighttime magnetic perturbation events with magnetic storms was significantly reduced at latitudes above 73°, presumably above the nominal auroral oval. A superposed epoch study of 21 strong events at Cape Dorset showed that the largest |dB/dt| values appeared within an ~275‐km radius that was associated with a region of shear between upward and downward field‐aligned currents. The statistical distributions of impulse amplitudes of both |ΔB| and |dB/dt| fit well the log‐normal distribution at all stations. The |ΔB| distributions are similar over the magnetic latitude range studied, but the kurtosis and skewness of the |dB/dt| distributions show a slight increase with latitude. Knowledge of the statistical characteristics of these events has enabled us to estimate the occurrence probability of extreme impulsive disturbances using the approximation of a log‐normal distribution.Key PointsMost intense events were associated with substorms; their association with magnetic storms was much lower above 73° MLATLargest |dB/dt| values appeared within an ~275‐km radius associated with a region of shear between upward and downward field‐aligned currentsThe statistical distributions of impulse amplitudes of both |ΔX| and |dX/dt| fit well the log‐normal distribution but varied with ... |
format | Article in Journal/Newspaper |
genre | Antarctica Journal Arctic Arctic Cape Dorset |
genre_facet | Antarctica Journal Arctic Arctic Cape Dorset |
geographic | Arctic Canada Cape Dorset |
geographic_facet | Arctic Canada Cape Dorset |
id | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151970 |
institution | Open Polar |
language | unknown |
long_lat | ENVELOPE(-76.482,-76.482,64.179,64.179) |
op_collection_id | ftumdeepblue |
op_container_end_page | 7458 |
op_relation | https://hdl.handle.net/2027.42/151970 doi:10.1029/2019JA026794 Journal of Geophysical Research: Space Physics Pulkkinen, A., Pirjola, R., & Viljanen, A. ( 2008 ). Statistics of extreme geomagnetically induced current events. Space Weather, 6, S07001. https://doi.org/10.1029/2008SW000388 Connors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth, Planets and Space, 68 ( 1 ). https://doi.org/10.1186/s40623‐015‐0354‐4 Consolini, G., & De Michelis, P. ( 1998 ). Non‐Gaussian distribution function of AE index fluctuations: Evidence for time intermittency. Geophysical Research Letters, 25 ( 21 ), 4087 – 4090. https://doi.org/10.1029/1998GL900073 Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J. Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100 ( A10 ), 19,371 – 19,386. https://doi.org/10.1029/95JA00768 Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., Boteler, D. H., Mann, I. R., Hartinger, M. D., Weygand, J. M., Lyons, L. R., Nishimura, Y., Singer, H. J., Ohtani, S., Russell, C. T., Fazakerley, A., & Kistler, L. M. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐instrument observations. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA026797 Engebretson, M. J., Yeoman, T. K., Oksavik, K., Søraas, F., Sigernes, F., Moen, J. I., Johnsen, M. G., Pilipenko, V. A., Posch, J. L., Lessard, M. R., Lavraud, B., Hartinger, M. D., Clausen, L. B. N., Raita, T., & Stolle, C. ( 2013 ). Multi‐instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. Journal of Geophysical Research: Space Physics, 118, 2975 – 2997. https://doi.org/10.1002/jgra.50291 Friis‐Christensen, E., McHenry, M. A., Clauer, C. R., & Vennerstrøm, S. ( 1988 ). Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind. Geophysical Research Letters, 15 ( 3 ), 253 – 256. https://doi.org/10.1029/GL015i003p00253 Kappenman, J. G. ( 2005 ). An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent sun‐earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather, 3, S08C01. https://doi.org/10.1029/2004SW000128 Kataoka, R., Fukunishi, H., & Lanzerotti, L. J. ( 2003 ). Statistical identification of solar wind origins of magnetic impulse events. Journal of Geophysical Research, 108 ( A12 ), 1436. https://doi.org/10.1029/2003JA010202 Knipp, D. J. ( 2015 ). Synthesis of geomagnetically induced currents: Commentary and research. Space Weather, 13, 727 – 729. https://doi.org/10.1002/2015SW001317 Kozak, L. V., Petrenko, B. A., Lui, A. T. Y., Kronberg, E. A., Grigorenko, E. E., & Prokhorenkov, A. S. ( 2018 ). Turbulent processes in the Earth’s magnetotail: spectral and statistical research. Annales Geophysicae, 36 ( 5 ), 1303 – 1318. https://doi.org/10.5194/angeo‐36‐1303‐2018 Langlois, P., Bolduci, L., & Chouteau, M. C. ( 1996 ). Probability of occurrence of geomagnetic storms based on a study of the distribution of the electric field amplitudes measured in Abitibi, Quebec, in 1993‐94. Journal of Geomagnetism and Geoelectricity, 48 ( 8 ), 1033 – 1041. https://doi.org/10.5636/jgg.48.1033 Lanzerotti, L. J. ( 2001 ). Space weather effects on technologies. In Space Weather, Geophysical Monograph Series (Vol. 125, pp. 11 – 22 ). Washington, DC: AGU. Lanzerotti, L. J., Wolfe, A., Trivedi, N., Maclennan, C. G., & Medford, L. V. ( 1990 ). Magnetic impulse events at high latitudes: magnetopause and boundary layer plasma processes. Journal of Geophysical Research, 95 ( A1 ), 97 – 107. https://doi.org/10.1029/JA095iA01p00097 Lyons, L. R., Lee, D.‐Y., Wang, C.‐P., & Mende, S. B. ( 2005 ). Global auroral responses to abrupt solar wind changes: Dynamic pressure, substorm, and null events. Journal of Geophysical Research, 110, A08208. https://doi.org/10.1029/2005JA011089 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, A., Kale, Z. C., Murphy, K. R., Parent, A., Usanova, M., Pahud, D. M., Lee, E. A., Amalraj, V., Wallis, D. D., Angelopoulos, V., Glassmeier, K. H., Russell, C. T., Auster, H. U., & Singer, H. J. ( 2008 ). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141 ( 1‐4 ), 413 – 451. https://doi.org/10.1007/s11214‐008‐9457‐6 Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061 Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local dB ∕d t variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911 Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386 Pulkkinen, A., Hesse, M., Kuznetsova, M., & Rastätter, L. ( 2007 ). First‐principles modeling of geomagnetically induced electromagnetic fields and currents from upstream solar wind to the surface of the Earth. Annales Geophysicae, 25 ( 4 ), 881 – 893. https://doi.org/10.5194/angeo‐25‐881‐2007 Sato, M., Fukunishi, H., Lanzerotti, L. J., & Maclennan, C. G. ( 1999 ). Magnetic impulse events and related Pc1 bursts observed by the Automatic Geophysical Observatories network in Antarctica. Journal of Geophysical Research, 104 ( A9 ), 19,971 – 19,982. https://doi.org/10.1029/1999JA900111 Stepanova, M. V., Antonova, E. E., & Troshichev, O. ( 2003 ). Intermittency of magnetospheric dynamics through non‐Gaussian distribution function of PC‐index fluctuations. Geophysical Research Letters, 30 ( 3 ), 1127. https://doi.org/10.1029/2002GL016070 Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24 ( 6 ), 631 – 634. https://doi.org/10.1029/97GL00538 Viljanen, A. ( 1998 ). Relation of geomagnetically induced currents and local geomagnetic field variations. IEEE Transactions on Power Delivery, 13 ( 4 ), 1285 – 1290. https://doi.org/10.1109/61.714497 Viljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24 ( 2 ), 725 – 733. https://doi.org/10.5194/angeo‐24‐725‐2006 Vorobjev, V. G., Zverev, V. L., & Starkov, G. V. ( 1993 ). Geomagnetic impulses in day‐side high latitude region: main morphological characteristics and relation with dynamics of dayside aurora. Geomagnetism and Aeronomy, 33, 69 – 79. Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., & Mann, I. R. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116, A03305. https://doi.org/10.1029/2010JA016177 Weygand, J. M., Kivelson, M. G., Khurana, K. K., Schwarzl, H. K., Thomson, S. M., McPherron, R. L., Balogh, A., Kistler, L. M., & Goldstein, M. L. ( 2005 ). Plasma sheet turbulence observed by Cluster II. Journal of Geophysical Research, 110, A01205. https://doi.org/10.1029/2004JA010581 Weygand, J. M., Kivelson, M. G., Khurana, K. K., Schwarzl, H. K., Walker, R. J., Balogh, A., Kistler, L. M., & Goldstein, M. L. ( 2006 ). Non‐self‐similar scaling of plasma sheet and solar wind probability distribution functions of magnetic field fluctuations. Journal of Geophysical Research, 111, A11209. https://doi.org/10.1029/2006JA011820 Wygant, J. R., Keiling, A., Cattell, C. A., Johnson, M., Lysak, R. L., Temerin, M., Mozer, F. S., Kletzing, C. A., Scudder, J. D., Peterson, W., Russell, C. T., Parks, G., Brittnacher, M., Germany, G., & Spann, J. ( 2000 ). Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet‐tail lobe boundary to UVI images: An energy source for the aurora. Journal of Geophysical Research, 105 ( A8 ), 18,675 – 18,692. https://doi.org/10.1029/1999JA900500 Zhang, J. J., Wang, C., & Tang, B. B. ( 2012 ). Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one‐dimensional method. Space Weather, 10, S05005. https://doi.org/10.1029/2012SW000772 Amm, O., & Viljanen, A. ( 1999 ). Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary currents systems. Earth, Planets and Space, 51 ( 6 ), 431 – 440. https://doi.org/10.1186/BF03352247 Apatenkov, S. V., Sergeev, V. A., Pirjola, R., & Viljanen, A. ( 2004 ). Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations. Annales Geophysicae, 22 ( 1 ), 63 – 72. https://doi.org/10.5194/angeo‐22‐63‐2004 Belakhovsky, V. B., Pilipenko, V. A., Sakharov, Y. A., & Selivanov, V. N. ( 2018 ). Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems. Izvestiya Physics of the Solid Earth, 54 ( 1 ), 52 – 65, ISSN 1069‐3513. https://doi.org/10.1134/S1069351318010032 Boteler, D. H., Pirjola, R. J., & Nevanlinna, H. ( 1998 ). The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Advances in Space Research, 22 ( 1 ), 17 – 27. https://doi.org/10.1016/S0273‐1177(97)01096‐X |
op_rights | IndexNoFollow |
publishDate | 2019 |
publisher | Wiley Periodicals, Inc. |
record_format | openpolar |
spelling | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151970 2025-06-15T14:13:40+00:00 Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis Engebretson, M. J. Pilipenko, V. A. Ahmed, L. Y. Posch, J. L. Steinmetz, E. S. Moldwin, M. B. Connors, M. G. Weygand, J. M. Mann, I. R. Boteler, D. H. Russell, C. T. Vorobev, A. V. 2019-09 application/pdf https://hdl.handle.net/2027.42/151970 https://doi.org/10.1029/2019JA026794 unknown Wiley Periodicals, Inc. AGU https://hdl.handle.net/2027.42/151970 doi:10.1029/2019JA026794 Journal of Geophysical Research: Space Physics Pulkkinen, A., Pirjola, R., & Viljanen, A. ( 2008 ). Statistics of extreme geomagnetically induced current events. Space Weather, 6, S07001. https://doi.org/10.1029/2008SW000388 Connors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. ( 2016 ). The AUTUMNX magnetometer meridian chain in Québec, Canada. Earth, Planets and Space, 68 ( 1 ). https://doi.org/10.1186/s40623‐015‐0354‐4 Consolini, G., & De Michelis, P. ( 1998 ). Non‐Gaussian distribution function of AE index fluctuations: Evidence for time intermittency. Geophysical Research Letters, 25 ( 21 ), 4087 – 4090. https://doi.org/10.1029/1998GL900073 Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J. Jr., Arnoldy, R. L., & Reeves, G. D. ( 1995 ). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. Journal of Geophysical Research, 100 ( A10 ), 19,371 – 19,386. https://doi.org/10.1029/95JA00768 Engebretson, M. J., Steinmetz, E. S., Posch, J. L., Pilipenko, V. A., Moldwin, M. B., Connors, M. G., Boteler, D. H., Mann, I. R., Hartinger, M. D., Weygand, J. M., Lyons, L. R., Nishimura, Y., Singer, H. J., Ohtani, S., Russell, C. T., Fazakerley, A., & Kistler, L. M. ( 2019 ). Nighttime magnetic perturbation events observed in Arctic Canada: 2. Multiple‐instrument observations. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA026797 Engebretson, M. J., Yeoman, T. K., Oksavik, K., Søraas, F., Sigernes, F., Moen, J. I., Johnsen, M. G., Pilipenko, V. A., Posch, J. L., Lessard, M. R., Lavraud, B., Hartinger, M. D., Clausen, L. B. N., Raita, T., & Stolle, C. ( 2013 ). Multi‐instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. Journal of Geophysical Research: Space Physics, 118, 2975 – 2997. https://doi.org/10.1002/jgra.50291 Friis‐Christensen, E., McHenry, M. A., Clauer, C. R., & Vennerstrøm, S. ( 1988 ). Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind. Geophysical Research Letters, 15 ( 3 ), 253 – 256. https://doi.org/10.1029/GL015i003p00253 Kappenman, J. G. ( 2005 ). An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent sun‐earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather, 3, S08C01. https://doi.org/10.1029/2004SW000128 Kataoka, R., Fukunishi, H., & Lanzerotti, L. J. ( 2003 ). Statistical identification of solar wind origins of magnetic impulse events. Journal of Geophysical Research, 108 ( A12 ), 1436. https://doi.org/10.1029/2003JA010202 Knipp, D. J. ( 2015 ). Synthesis of geomagnetically induced currents: Commentary and research. Space Weather, 13, 727 – 729. https://doi.org/10.1002/2015SW001317 Kozak, L. V., Petrenko, B. A., Lui, A. T. Y., Kronberg, E. A., Grigorenko, E. E., & Prokhorenkov, A. S. ( 2018 ). Turbulent processes in the Earth’s magnetotail: spectral and statistical research. Annales Geophysicae, 36 ( 5 ), 1303 – 1318. https://doi.org/10.5194/angeo‐36‐1303‐2018 Langlois, P., Bolduci, L., & Chouteau, M. C. ( 1996 ). Probability of occurrence of geomagnetic storms based on a study of the distribution of the electric field amplitudes measured in Abitibi, Quebec, in 1993‐94. Journal of Geomagnetism and Geoelectricity, 48 ( 8 ), 1033 – 1041. https://doi.org/10.5636/jgg.48.1033 Lanzerotti, L. J. ( 2001 ). Space weather effects on technologies. In Space Weather, Geophysical Monograph Series (Vol. 125, pp. 11 – 22 ). Washington, DC: AGU. Lanzerotti, L. J., Wolfe, A., Trivedi, N., Maclennan, C. G., & Medford, L. V. ( 1990 ). Magnetic impulse events at high latitudes: magnetopause and boundary layer plasma processes. Journal of Geophysical Research, 95 ( A1 ), 97 – 107. https://doi.org/10.1029/JA095iA01p00097 Lyons, L. R., Lee, D.‐Y., Wang, C.‐P., & Mende, S. B. ( 2005 ). Global auroral responses to abrupt solar wind changes: Dynamic pressure, substorm, and null events. Journal of Geophysical Research, 110, A08208. https://doi.org/10.1029/2005JA011089 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, A., Kale, Z. C., Murphy, K. R., Parent, A., Usanova, M., Pahud, D. M., Lee, E. A., Amalraj, V., Wallis, D. D., Angelopoulos, V., Glassmeier, K. H., Russell, C. T., Auster, H. U., & Singer, H. J. ( 2008 ). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141 ( 1‐4 ), 413 – 451. https://doi.org/10.1007/s11214‐008‐9457‐6 Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A., & Crowley, G. ( 2015 ). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophysical Research Letters, 42, 6916 – 6921. https://doi.org/10.1002/2015GL065061 Ngwira, C. M., Sibeck, D. G., Silveira, M. D. V., Georgiou, M., Weygand, J. M., Nishimura, Y., & Hampton, D. ( 2018 ). A study of intense local dB ∕d t variations during two geomagnetic storms. Space Weather, 16, 676 – 693. https://doi.org/10.1029/2018SW001911 Nikitina, L., Trichtchenko, L., & Boteler, D. H. ( 2016 ). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, 481 – 494. https://doi.org/10.1002/2016SW001386 Pulkkinen, A., Hesse, M., Kuznetsova, M., & Rastätter, L. ( 2007 ). First‐principles modeling of geomagnetically induced electromagnetic fields and currents from upstream solar wind to the surface of the Earth. Annales Geophysicae, 25 ( 4 ), 881 – 893. https://doi.org/10.5194/angeo‐25‐881‐2007 Sato, M., Fukunishi, H., Lanzerotti, L. J., & Maclennan, C. G. ( 1999 ). Magnetic impulse events and related Pc1 bursts observed by the Automatic Geophysical Observatories network in Antarctica. Journal of Geophysical Research, 104 ( A9 ), 19,971 – 19,982. https://doi.org/10.1029/1999JA900111 Stepanova, M. V., Antonova, E. E., & Troshichev, O. ( 2003 ). Intermittency of magnetospheric dynamics through non‐Gaussian distribution function of PC‐index fluctuations. Geophysical Research Letters, 30 ( 3 ), 1127. https://doi.org/10.1029/2002GL016070 Viljanen, A. ( 1997 ). The relation between geomagnetic variations and their time derivatives and implications for estimation of induction risks. Geophysical Research Letters, 24 ( 6 ), 631 – 634. https://doi.org/10.1029/97GL00538 Viljanen, A. ( 1998 ). Relation of geomagnetically induced currents and local geomagnetic field variations. IEEE Transactions on Power Delivery, 13 ( 4 ), 1285 – 1290. https://doi.org/10.1109/61.714497 Viljanen, A., Tanskanen, E. I., & Pulkkinen, A. ( 2006 ). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Annales Geophysicae, 24 ( 2 ), 725 – 733. https://doi.org/10.5194/angeo‐24‐725‐2006 Vorobjev, V. G., Zverev, V. L., & Starkov, G. V. ( 1993 ). Geomagnetic impulses in day‐side high latitude region: main morphological characteristics and relation with dynamics of dayside aurora. Geomagnetism and Aeronomy, 33, 69 – 79. Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., & Mann, I. R. ( 2011 ). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 116, A03305. https://doi.org/10.1029/2010JA016177 Weygand, J. M., Kivelson, M. G., Khurana, K. K., Schwarzl, H. K., Thomson, S. M., McPherron, R. L., Balogh, A., Kistler, L. M., & Goldstein, M. L. ( 2005 ). Plasma sheet turbulence observed by Cluster II. Journal of Geophysical Research, 110, A01205. https://doi.org/10.1029/2004JA010581 Weygand, J. M., Kivelson, M. G., Khurana, K. K., Schwarzl, H. K., Walker, R. J., Balogh, A., Kistler, L. M., & Goldstein, M. L. ( 2006 ). Non‐self‐similar scaling of plasma sheet and solar wind probability distribution functions of magnetic field fluctuations. Journal of Geophysical Research, 111, A11209. https://doi.org/10.1029/2006JA011820 Wygant, J. R., Keiling, A., Cattell, C. A., Johnson, M., Lysak, R. L., Temerin, M., Mozer, F. S., Kletzing, C. A., Scudder, J. D., Peterson, W., Russell, C. T., Parks, G., Brittnacher, M., Germany, G., & Spann, J. ( 2000 ). Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet‐tail lobe boundary to UVI images: An energy source for the aurora. Journal of Geophysical Research, 105 ( A8 ), 18,675 – 18,692. https://doi.org/10.1029/1999JA900500 Zhang, J. J., Wang, C., & Tang, B. B. ( 2012 ). Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one‐dimensional method. Space Weather, 10, S05005. https://doi.org/10.1029/2012SW000772 Amm, O., & Viljanen, A. ( 1999 ). Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary currents systems. Earth, Planets and Space, 51 ( 6 ), 431 – 440. https://doi.org/10.1186/BF03352247 Apatenkov, S. V., Sergeev, V. A., Pirjola, R., & Viljanen, A. ( 2004 ). Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations. Annales Geophysicae, 22 ( 1 ), 63 – 72. https://doi.org/10.5194/angeo‐22‐63‐2004 Belakhovsky, V. B., Pilipenko, V. A., Sakharov, Y. A., & Selivanov, V. N. ( 2018 ). Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems. Izvestiya Physics of the Solid Earth, 54 ( 1 ), 52 – 65, ISSN 1069‐3513. https://doi.org/10.1134/S1069351318010032 Boteler, D. H., Pirjola, R. J., & Nevanlinna, H. ( 1998 ). The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Advances in Space Research, 22 ( 1 ), 17 – 27. https://doi.org/10.1016/S0273‐1177(97)01096‐X IndexNoFollow substorms magnetic storms geomagnetically induced currents magnetic impulse events Astronomy and Astrophysics Science Article 2019 ftumdeepblue 2025-06-04T05:59:14Z The rapid changes of magnetic fields associated with large, isolated magnetic perturbations with amplitudes |ΔB| of hundreds of nanotesla and 5‐ to 10‐min periods can induce bursts of geomagnetically induced currents that can harm technological systems. This paper presents statistical summaries of the characteristics of nightside magnetic perturbation events observed in Eastern Arctic Canada from 2014 through 2017 using data from stations that are part of four magnetometer arrays: MACCS, AUTUMNX, CANMOS, and CARISMA, covering a range of magnetic latitudes from 68 to 78°. Most but not all of the magnetic perturbation events were associated with substorms: roughly two thirds occurred between 5 and 30 min after onset. The association of intense nighttime magnetic perturbation events with magnetic storms was significantly reduced at latitudes above 73°, presumably above the nominal auroral oval. A superposed epoch study of 21 strong events at Cape Dorset showed that the largest |dB/dt| values appeared within an ~275‐km radius that was associated with a region of shear between upward and downward field‐aligned currents. The statistical distributions of impulse amplitudes of both |ΔB| and |dB/dt| fit well the log‐normal distribution at all stations. The |ΔB| distributions are similar over the magnetic latitude range studied, but the kurtosis and skewness of the |dB/dt| distributions show a slight increase with latitude. Knowledge of the statistical characteristics of these events has enabled us to estimate the occurrence probability of extreme impulsive disturbances using the approximation of a log‐normal distribution.Key PointsMost intense events were associated with substorms; their association with magnetic storms was much lower above 73° MLATLargest |dB/dt| values appeared within an ~275‐km radius associated with a region of shear between upward and downward field‐aligned currentsThe statistical distributions of impulse amplitudes of both |ΔX| and |dX/dt| fit well the log‐normal distribution but varied with ... Article in Journal/Newspaper Antarctica Journal Arctic Arctic Cape Dorset Unknown Arctic Canada Cape Dorset ENVELOPE(-76.482,-76.482,64.179,64.179) Journal of Geophysical Research: Space Physics 124 9 7442 7458 |
spellingShingle | substorms magnetic storms geomagnetically induced currents magnetic impulse events Astronomy and Astrophysics Science Engebretson, M. J. Pilipenko, V. A. Ahmed, L. Y. Posch, J. L. Steinmetz, E. S. Moldwin, M. B. Connors, M. G. Weygand, J. M. Mann, I. R. Boteler, D. H. Russell, C. T. Vorobev, A. V. Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis |
title | Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis |
title_full | Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis |
title_fullStr | Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis |
title_full_unstemmed | Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis |
title_short | Nighttime Magnetic Perturbation Events Observed in Arctic Canada: 1. Survey and Statistical Analysis |
title_sort | nighttime magnetic perturbation events observed in arctic canada: 1. survey and statistical analysis |
topic | substorms magnetic storms geomagnetically induced currents magnetic impulse events Astronomy and Astrophysics Science |
topic_facet | substorms magnetic storms geomagnetically induced currents magnetic impulse events Astronomy and Astrophysics Science |
url | https://hdl.handle.net/2027.42/151970 https://doi.org/10.1029/2019JA026794 |