A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers

Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/151877/1/jgrf21080.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/151877/2/jgrf21080_am.pdf

Bibliographic Details
Published in:Journal of Maps
Main Authors: Bassis, J. N., Ultee, L.
Format: Article in Journal/Newspaper
Language:unknown
Published: Reed Educational and Professional Publishing Ltd 2019
Subjects:
Online Access:https://hdl.handle.net/2027.42/151877
https://doi.org/10.1029/2019JF005160
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151877
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic ice dynamics
iceberg
calving
sea level
glacier
ice sheet
Geological Sciences
Science
spellingShingle ice dynamics
iceberg
calving
sea level
glacier
ice sheet
Geological Sciences
Science
Bassis, J. N.
Ultee, L.
A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers
topic_facet ice dynamics
iceberg
calving
sea level
glacier
ice sheet
Geological Sciences
Science
description Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/151877/1/jgrf21080.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/151877/2/jgrf21080_am.pdf
format Article in Journal/Newspaper
author Bassis, J. N.
Ultee, L.
author_facet Bassis, J. N.
Ultee, L.
author_sort Bassis, J. N.
title A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers
title_short A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers
title_full A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers
title_fullStr A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers
title_full_unstemmed A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers
title_sort thin film viscoplastic theory for calving glaciers: toward a bound on the calving rate of glaciers
publisher Reed Educational and Professional Publishing Ltd
publishDate 2019
url https://hdl.handle.net/2027.42/151877
https://doi.org/10.1029/2019JF005160
genre Ice Sheet
Journal of Glaciology
genre_facet Ice Sheet
Journal of Glaciology
op_relation Bassis, J. N.; Ultee, L. (2019). "A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers." Journal of Geophysical Research: Earth Surface 124(8): 2036-2055.
2169-9003
2169-9011
https://hdl.handle.net/2027.42/151877
doi:10.1029/2019JF005160
Journal of Geophysical Research: Earth Surface
Rist, M. A., Sammonds, P. R., Oerter, H., & Doake, C. S. M. ( 2002 ). Fracture of Antarctic shelf ice. Journal of Geophysical Research, 107 ( B1 ), 2002 – 2002. https://doi.org/10.1029/2000JB000058
Nick, F. M., Van der Veen, C. J., Vieli, A., & Benn, D. I. ( 2010 ). A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. Journal of Glaciology, 56 ( 199 ), 781 – 794. https://doi.org/10.3189/002214310794457344
Nye, J. F. ( 1957 ). The distribution of stress and velocity in glaciers and ice‐sheets. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 239 ( 1216 ), 113 – 133. https://doi.org/10.1098/rspa.1957.0026
O’Neel, S., Pfeffer, W. T., Krimmel, R., & Meier, M. ( 2005 ). Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. Journal of Geophysical Research, 110, F03012. https://doi.org/10.1029/2005JF000292
O’Neill, C., Moresi, L., Müller, D., Albert, R., & Dufour, F. ( 2006 ). Ellipsis 3D: A particle‐in‐cell finite‐element hybrid code for modelling mantle convection and lithospheric deformation. Computers & Geosciences, 32 ( 10 ), 1769 – 1779. https://doi.org/10.1016/j.cageo.2006.04.006
Oerlemans, J. ( 2008 ). Minimal glacier models. Universiteitsbibliotheek Utrecht: Igitur.
Pfeffer, W. T. ( 2003 ). Tidewater glaciers move at their own pace. Nature, 426 ( 6967 ), 602. https://doi.org/10.1038/426602b
Pralong, A., & Funk, M. ( 2005 ). Dynamic damage model of crevasse opening and application to glacier calving. Journal of Geophysical Research, 110, B01309. https://doi.org/10.1029/2004JB003104
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., & Lenaerts, J. T. M. ( 2011 ). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38, L05503. https://doi.org/10.1029/2011GL046583
Robel, A. A. ( 2017 ). Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nature Communications, 8 ( 14 ), 596. https://doi.org/10.1038/ncomms14596
Scambos, T. A., Hulbe, C., Fahnestock, M., & Bohlander, J. ( 2000 ). The link between climate warming and break‐up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46, 516 – 530. https://doi.org/10.3189/172756500781833043
Schoof, C. ( 2007 ). Marine ice‐sheet dynamics. Part 1. The case of rapid sliding. Journal of Fluid Mechanics, 573, 27 – 55. https://doi.org/10.1017/S0022112006003570
Schulson, E. M. ( 2001 ). Brittle failure of ice. Engineering Fracture Mechancis, 68 ( 17 ), 1839 – 1887. https://doi.org/10.1016/S0013-7944(01)00037-6
Schulson, E. M., & Duval, P. ( 2009 ). Creep and fracture of ice. Cambridge: Cambridge University Press. https://doi.org/10.3189/S0022143000206254
Straneo, F., Heimbach, P., Sergienko, O., Hamilton, G., Catania, G., Griffies, S., Hallberg, R., Jenkins, A., Joughin, I., Motyka, R., Pfeffer, W. T., Price, S. F., Rignot, E., Scambos, T., Truffer, M., & Vieli, A. ( 2013 ). Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bulletin of the American Meteorological Society, 94 ( 8 ), 1131 – 1144. https://doi.org/10.1175/BAMS-D-12-00100.1
Thomas, R. ( 1977 ). Calving bay dynamics and ice sheet retreat up the St Lawrence Valley system. Gé,ographie physique et Quaternaire, 31 ( 3‐4 ), 347 – 356. https://doi.org/10.7202/1000282ar
Ultee, L., & Bassis, J. ( 2016 ). The future is Nye: An extension of the perfect plastic approximation to tidewater glaciers. Journal of Glaciology, 62 ( 236 ), 1143 – 1152. https://doi.org/10.1017/jog.2016.108
Van Der Veen, C. J. ( 1996 ). Tidewater calving. Journal of Glaciology, 42 ( 141 ), 375 – 385. https://doi.org/10.3189/S0022143000004226
Van der Veen, C. J. ( 1999 ). Fundamentals of glacier dynamics. Boca Raton: CRC Press.
Vaughan, D. G. ( 1993 ). Relating the occurrence of crevasses to surface strain rates. Journal of Glaciology, 39 ( 132 ), 255 – 266. https://doi.org/10.3189/S0022143000015926
Weertman, J. ( 1974 ). Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology, 13 ( 67 ), 3 – 11. https://doi.org/10.3189/S0022143000023327
Weertman, J. ( 1980 ). Bottom crevasses. Journal of Glaciology, 25 ( 91 ), 185 – 88. https://doi.org/10.3189/S0022143000010418
Albrecht, T., & Levermann, A. ( 2012 ). Fracture field for large‐scale ice dynamics. Journal of Glaciology, 58 ( 207 ), 165 – 176. https://doi.org/10.3189/2012JoG11J191
Astrom, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O’Neel, S., Bartholomaus, T. C., Liu, Y, Riikilä, T. I., Zwinger, T., Timonen, J., & Moore, J. C. ( 2014 ). Termini of calving glaciers as self‐organized critical systems. Nature Geoscience, 7 ( 12 ), 874 – 878. https://doi.org/10.1038/NGEO2290
Balmforth, N. J., & Craster, R. V. ( 1999 ). A consistent thin‐layer theory for Bingham plastics. Journal of Non‐Newtonian Fluid Mechanics, 84 ( 1 ), 65 – 81. https://doi.org/10.1016/S0377-0257(98)00133-5
Bassis, J. N. ( 2011 ). The statistical physics of iceberg calving and the emergence of universal calving laws. Journal of Glaciology, 57 ( 201 ), 3 – 16. https://doi.org/10.3189/002214311795306745
Bassis, J. N., & Jacobs, S. S. ( 2013 ). Diverse calving patterns linked to glacier geometry. Nature Geoscience, 6 ( 10 ), 833 – 836. https://doi.org/10.1038/NGEO1887
Bassis, J. N., & Ma, Y. ( 2015 ). Evolution of basal crevasses links ice shelf stability to ocean forcing. Earth and Planetary Science Letters, 409, 203 – 211. https://doi.org/10.1016/j.epsl.2014.11.003
Bassis, J. N., Petersen, S. V., & Cathles, L. M. ( 2017 ). Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature, 542, 332 – 334. https://doi.org/10.1038/nature21069
Bassis, J. N., & Walker, C. C. ( 2012 ). Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings of the Royal Society A: Mathematical Physical and Engineering Science, 468 ( 2140 ), 913 – 931. https://doi.org/10.1098/rspa.2011.0422
Benn, D. I., Warren, C. R., & Mottram, R. H. ( 2007 ). Calving processes and the dynamics of calving glaciers. Earth‐Science Reviews, 82 ( 3‐4 ), 143 – 179. https://doi.org/10.1016/j.earscirev.2007.02.002
Borstad, C., Khazendar, A., & Larour, E. ( 2012a ). A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically‐based calving law. Geophysical Research Letters, 39, L11604. https://doi.org/10.1029/2012GL053317
Borstad, C. P., Khazendar, A., Larour, E., Morlighem, M., Rignot, E., Schodlok, M. P., & Seroussi, H. ( 2012b ). A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically‐based calving law. Geophysical Research Letters, 39, L18502. https://doi.org/10.1029/2012GL053317
Borstad, C., Khazendar, A., Scheuchl, B., Morlighem, M., Larour, E., & Rignot, E. ( 2016 ). A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophysical Research Letters, 43, 2027 – 2035. https://doi.org/10.1002/2015GL067365
Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J., Bartholomaus, T. C., Morlighem, M., Shroyer, E., & Nash, J. ( 2018 ). Geometric controls on tidewater glacier retreat in central western Greenland. Journal of Geophysical Research: Earth Surface, 123, 2024 – 2038. https://doi.org/10.1029/2017JF004499
Cuffey, K., & Paterson, W. S. B. ( 1994 ). The physics of glaciers (3rd ed.). Oxford: Reed Educational and Professional Publishing Ltd.
Dahlen, F. A. ( 1990 ). Critical taper model of fold‐and‐thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18 ( 1 ), 55 – 99. https://doi.org/10.1146/annurev.ea.18.050190.000415
DeConto, R. M., & Pollard, D. ( 2016 ). Contribution of Antarctica to past and future sea‐level rise. Nature, 531 ( 7596 ), 591 – 597. https://doi.org/10.1038/nature17145
Duddu, R., Bassis, J. N., & Waisman, H. ( 2013 ). A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics. Geophysical Research Letters, 40, 3064 – 3068. https://doi.org/10.1002/grl.50602
Enderlin, E. M., O’Neel, S., Bartholomaus, T. C., & Joughin, I. ( 2018 ). Evolving environmental and geometric controls on Columbia glacier’s continued retreat. Journal of Geophysical Research: Earth Surface, 123, 1528 – 1545. https://doi.org/10.1029/2017JF004541
Greve, R., & Blatter, H. ( 2009 ). Dynamics of ice sheets and glaciers. Berlin: Springer. https://doi.org/10.1007/978-3-642-03415-2
Howat, I. M., Joughin, I., & Scambos, T. A. ( 2007 ). Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315 ( 5818 ), 1559 – 1561. https://doi.org/10.1126/science.1138478
Howat, I. M., Joughin, I., Tulaczyk, S., & Gogineni, S. P. ( 2005 ). Rapid retreat and acceleration of Helheim Glacier, East Greenland. Geophysical Research Letters, 32, L22502. https://doi.org/10.1029/2005GL024737
Joughin, I., Howat, I., Alley, R. B., Ekstrom, G., Fahnestock, M., Moon, T., Nettles, M., Truffer, M., & Tsai, V. C. ( 2008 ). Ice‐front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. Journal of Geophysical Research, 113, F01004. https://doi.org/10.1029/2007JF000837
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2019JF00516010.1098/rspa.1957.002610.1038/426602b10.1038/ncomms1459610.1017/S002211200600357010.1016/S0013-7944(01)00037-610.7202/1000282ar10.3189/S002214300000422610.3189/S002214300001592610.3189/S002214300002332710.3189/S00221430
container_title Journal of Maps
container_volume 9
container_issue 3
container_start_page 373
op_container_end_page 389
_version_ 1774718721579810816
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151877 2023-08-20T04:07:14+02:00 A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers Bassis, J. N. Ultee, L. 2019-08 application/pdf https://hdl.handle.net/2027.42/151877 https://doi.org/10.1029/2019JF005160 unknown Reed Educational and Professional Publishing Ltd Wiley Periodicals, Inc. Bassis, J. N.; Ultee, L. (2019). "A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers." Journal of Geophysical Research: Earth Surface 124(8): 2036-2055. 2169-9003 2169-9011 https://hdl.handle.net/2027.42/151877 doi:10.1029/2019JF005160 Journal of Geophysical Research: Earth Surface Rist, M. A., Sammonds, P. R., Oerter, H., & Doake, C. S. M. ( 2002 ). Fracture of Antarctic shelf ice. Journal of Geophysical Research, 107 ( B1 ), 2002 – 2002. https://doi.org/10.1029/2000JB000058 Nick, F. M., Van der Veen, C. J., Vieli, A., & Benn, D. I. ( 2010 ). A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. Journal of Glaciology, 56 ( 199 ), 781 – 794. https://doi.org/10.3189/002214310794457344 Nye, J. F. ( 1957 ). The distribution of stress and velocity in glaciers and ice‐sheets. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 239 ( 1216 ), 113 – 133. https://doi.org/10.1098/rspa.1957.0026 O’Neel, S., Pfeffer, W. T., Krimmel, R., & Meier, M. ( 2005 ). Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. Journal of Geophysical Research, 110, F03012. https://doi.org/10.1029/2005JF000292 O’Neill, C., Moresi, L., Müller, D., Albert, R., & Dufour, F. ( 2006 ). Ellipsis 3D: A particle‐in‐cell finite‐element hybrid code for modelling mantle convection and lithospheric deformation. Computers & Geosciences, 32 ( 10 ), 1769 – 1779. https://doi.org/10.1016/j.cageo.2006.04.006 Oerlemans, J. ( 2008 ). Minimal glacier models. Universiteitsbibliotheek Utrecht: Igitur. Pfeffer, W. T. ( 2003 ). Tidewater glaciers move at their own pace. Nature, 426 ( 6967 ), 602. https://doi.org/10.1038/426602b Pralong, A., & Funk, M. ( 2005 ). Dynamic damage model of crevasse opening and application to glacier calving. Journal of Geophysical Research, 110, B01309. https://doi.org/10.1029/2004JB003104 Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., & Lenaerts, J. T. M. ( 2011 ). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38, L05503. https://doi.org/10.1029/2011GL046583 Robel, A. A. ( 2017 ). Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nature Communications, 8 ( 14 ), 596. https://doi.org/10.1038/ncomms14596 Scambos, T. A., Hulbe, C., Fahnestock, M., & Bohlander, J. ( 2000 ). The link between climate warming and break‐up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46, 516 – 530. https://doi.org/10.3189/172756500781833043 Schoof, C. ( 2007 ). Marine ice‐sheet dynamics. Part 1. The case of rapid sliding. Journal of Fluid Mechanics, 573, 27 – 55. https://doi.org/10.1017/S0022112006003570 Schulson, E. M. ( 2001 ). Brittle failure of ice. Engineering Fracture Mechancis, 68 ( 17 ), 1839 – 1887. https://doi.org/10.1016/S0013-7944(01)00037-6 Schulson, E. M., & Duval, P. ( 2009 ). Creep and fracture of ice. Cambridge: Cambridge University Press. https://doi.org/10.3189/S0022143000206254 Straneo, F., Heimbach, P., Sergienko, O., Hamilton, G., Catania, G., Griffies, S., Hallberg, R., Jenkins, A., Joughin, I., Motyka, R., Pfeffer, W. T., Price, S. F., Rignot, E., Scambos, T., Truffer, M., & Vieli, A. ( 2013 ). Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bulletin of the American Meteorological Society, 94 ( 8 ), 1131 – 1144. https://doi.org/10.1175/BAMS-D-12-00100.1 Thomas, R. ( 1977 ). Calving bay dynamics and ice sheet retreat up the St Lawrence Valley system. Gé,ographie physique et Quaternaire, 31 ( 3‐4 ), 347 – 356. https://doi.org/10.7202/1000282ar Ultee, L., & Bassis, J. ( 2016 ). The future is Nye: An extension of the perfect plastic approximation to tidewater glaciers. Journal of Glaciology, 62 ( 236 ), 1143 – 1152. https://doi.org/10.1017/jog.2016.108 Van Der Veen, C. J. ( 1996 ). Tidewater calving. Journal of Glaciology, 42 ( 141 ), 375 – 385. https://doi.org/10.3189/S0022143000004226 Van der Veen, C. J. ( 1999 ). Fundamentals of glacier dynamics. Boca Raton: CRC Press. Vaughan, D. G. ( 1993 ). Relating the occurrence of crevasses to surface strain rates. Journal of Glaciology, 39 ( 132 ), 255 – 266. https://doi.org/10.3189/S0022143000015926 Weertman, J. ( 1974 ). Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology, 13 ( 67 ), 3 – 11. https://doi.org/10.3189/S0022143000023327 Weertman, J. ( 1980 ). Bottom crevasses. Journal of Glaciology, 25 ( 91 ), 185 – 88. https://doi.org/10.3189/S0022143000010418 Albrecht, T., & Levermann, A. ( 2012 ). Fracture field for large‐scale ice dynamics. Journal of Glaciology, 58 ( 207 ), 165 – 176. https://doi.org/10.3189/2012JoG11J191 Astrom, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O’Neel, S., Bartholomaus, T. C., Liu, Y, Riikilä, T. I., Zwinger, T., Timonen, J., & Moore, J. C. ( 2014 ). Termini of calving glaciers as self‐organized critical systems. Nature Geoscience, 7 ( 12 ), 874 – 878. https://doi.org/10.1038/NGEO2290 Balmforth, N. J., & Craster, R. V. ( 1999 ). A consistent thin‐layer theory for Bingham plastics. Journal of Non‐Newtonian Fluid Mechanics, 84 ( 1 ), 65 – 81. https://doi.org/10.1016/S0377-0257(98)00133-5 Bassis, J. N. ( 2011 ). The statistical physics of iceberg calving and the emergence of universal calving laws. Journal of Glaciology, 57 ( 201 ), 3 – 16. https://doi.org/10.3189/002214311795306745 Bassis, J. N., & Jacobs, S. S. ( 2013 ). Diverse calving patterns linked to glacier geometry. Nature Geoscience, 6 ( 10 ), 833 – 836. https://doi.org/10.1038/NGEO1887 Bassis, J. N., & Ma, Y. ( 2015 ). Evolution of basal crevasses links ice shelf stability to ocean forcing. Earth and Planetary Science Letters, 409, 203 – 211. https://doi.org/10.1016/j.epsl.2014.11.003 Bassis, J. N., Petersen, S. V., & Cathles, L. M. ( 2017 ). Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature, 542, 332 – 334. https://doi.org/10.1038/nature21069 Bassis, J. N., & Walker, C. C. ( 2012 ). Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings of the Royal Society A: Mathematical Physical and Engineering Science, 468 ( 2140 ), 913 – 931. https://doi.org/10.1098/rspa.2011.0422 Benn, D. I., Warren, C. R., & Mottram, R. H. ( 2007 ). Calving processes and the dynamics of calving glaciers. Earth‐Science Reviews, 82 ( 3‐4 ), 143 – 179. https://doi.org/10.1016/j.earscirev.2007.02.002 Borstad, C., Khazendar, A., & Larour, E. ( 2012a ). A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically‐based calving law. Geophysical Research Letters, 39, L11604. https://doi.org/10.1029/2012GL053317 Borstad, C. P., Khazendar, A., Larour, E., Morlighem, M., Rignot, E., Schodlok, M. P., & Seroussi, H. ( 2012b ). A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically‐based calving law. Geophysical Research Letters, 39, L18502. https://doi.org/10.1029/2012GL053317 Borstad, C., Khazendar, A., Scheuchl, B., Morlighem, M., Larour, E., & Rignot, E. ( 2016 ). A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophysical Research Letters, 43, 2027 – 2035. https://doi.org/10.1002/2015GL067365 Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J., Bartholomaus, T. C., Morlighem, M., Shroyer, E., & Nash, J. ( 2018 ). Geometric controls on tidewater glacier retreat in central western Greenland. Journal of Geophysical Research: Earth Surface, 123, 2024 – 2038. https://doi.org/10.1029/2017JF004499 Cuffey, K., & Paterson, W. S. B. ( 1994 ). The physics of glaciers (3rd ed.). Oxford: Reed Educational and Professional Publishing Ltd. Dahlen, F. A. ( 1990 ). Critical taper model of fold‐and‐thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18 ( 1 ), 55 – 99. https://doi.org/10.1146/annurev.ea.18.050190.000415 DeConto, R. M., & Pollard, D. ( 2016 ). Contribution of Antarctica to past and future sea‐level rise. Nature, 531 ( 7596 ), 591 – 597. https://doi.org/10.1038/nature17145 Duddu, R., Bassis, J. N., & Waisman, H. ( 2013 ). A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics. Geophysical Research Letters, 40, 3064 – 3068. https://doi.org/10.1002/grl.50602 Enderlin, E. M., O’Neel, S., Bartholomaus, T. C., & Joughin, I. ( 2018 ). Evolving environmental and geometric controls on Columbia glacier’s continued retreat. Journal of Geophysical Research: Earth Surface, 123, 1528 – 1545. https://doi.org/10.1029/2017JF004541 Greve, R., & Blatter, H. ( 2009 ). Dynamics of ice sheets and glaciers. Berlin: Springer. https://doi.org/10.1007/978-3-642-03415-2 Howat, I. M., Joughin, I., & Scambos, T. A. ( 2007 ). Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315 ( 5818 ), 1559 – 1561. https://doi.org/10.1126/science.1138478 Howat, I. M., Joughin, I., Tulaczyk, S., & Gogineni, S. P. ( 2005 ). Rapid retreat and acceleration of Helheim Glacier, East Greenland. Geophysical Research Letters, 32, L22502. https://doi.org/10.1029/2005GL024737 Joughin, I., Howat, I., Alley, R. B., Ekstrom, G., Fahnestock, M., Moon, T., Nettles, M., Truffer, M., & Tsai, V. C. ( 2008 ). Ice‐front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. Journal of Geophysical Research, 113, F01004. https://doi.org/10.1029/2007JF000837 IndexNoFollow ice dynamics iceberg calving sea level glacier ice sheet Geological Sciences Science Article 2019 ftumdeepblue https://doi.org/10.1029/2019JF00516010.1098/rspa.1957.002610.1038/426602b10.1038/ncomms1459610.1017/S002211200600357010.1016/S0013-7944(01)00037-610.7202/1000282ar10.3189/S002214300000422610.3189/S002214300001592610.3189/S002214300002332710.3189/S00221430 2023-07-31T20:47:09Z Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/151877/1/jgrf21080.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/151877/2/jgrf21080_am.pdf Article in Journal/Newspaper Ice Sheet Journal of Glaciology University of Michigan: Deep Blue Journal of Maps 9 3 373 389