An Overview of the Atmospheric Component of the Energy Exascale Earth System Model

The Energy Exascale Earth System Model Atmosphere Model version 1, the atmospheric component of the Department of Energy’s Energy Exascale Earth System Model is described. The model began as a fork of the wellâ known Community Atmosphere Model, but it has evolved in new ways, and coding, performance...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Rasch, P. J., Xie, S., Ma, P.‐l., Lin, W., Wang, H., Tang, Q., Burrows, S. M., Caldwell, P., Zhang, K., Easter, R. C., Cameron‐smith, P., Singh, B., Wan, H., Golaz, J.‐c., Harrop, B. E., Roesler, E., Bacmeister, J., Larson, V. E., Evans, K. J., Qian, Y., Taylor, M., Leung, L. R., Zhang, Y., Brent, L., Branstetter, M., Hannay, C., Mahajan, S., Mametjanov, A., Neale, R., Richter, J. H., Yoon, J.‐h., Zender, C. S., Bader, D., Flanner, M., Foucar, J. G., Jacob, R., Keen, N., Klein, S. A., Liu, X., Salinger, A.G., Shrivastava, M., Yang, Y.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2019
Subjects:
Online Access:http://hdl.handle.net/2027.42/151811
https://doi.org/10.1029/2019MS001629
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151811
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic climate change
Earth system
atmospheric model
climate
climate modeling
general circulation modeling
Geological Sciences
Science
spellingShingle climate change
Earth system
atmospheric model
climate
climate modeling
general circulation modeling
Geological Sciences
Science
Rasch, P. J.
Xie, S.
Ma, P.‐l.
Lin, W.
Wang, H.
Tang, Q.
Burrows, S. M.
Caldwell, P.
Zhang, K.
Easter, R. C.
Cameron‐smith, P.
Singh, B.
Wan, H.
Golaz, J.‐c.
Harrop, B. E.
Roesler, E.
Bacmeister, J.
Larson, V. E.
Evans, K. J.
Qian, Y.
Taylor, M.
Leung, L. R.
Zhang, Y.
Brent, L.
Branstetter, M.
Hannay, C.
Mahajan, S.
Mametjanov, A.
Neale, R.
Richter, J. H.
Yoon, J.‐h.
Zender, C. S.
Bader, D.
Flanner, M.
Foucar, J. G.
Jacob, R.
Keen, N.
Klein, S. A.
Liu, X.
Salinger, A.G.
Shrivastava, M.
Yang, Y.
An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
topic_facet climate change
Earth system
atmospheric model
climate
climate modeling
general circulation modeling
Geological Sciences
Science
description The Energy Exascale Earth System Model Atmosphere Model version 1, the atmospheric component of the Department of Energy’s Energy Exascale Earth System Model is described. The model began as a fork of the wellâ known Community Atmosphere Model, but it has evolved in new ways, and coding, performance, resolution, physical processes (primarily cloud and aerosols formulations), testing and development procedures now differ significantly. Vertical resolution was increased (from 30 to 72 layers), and the model top extended to 60 km (~0.1 hPa). A simple ozone photochemistry predicts stratospheric ozone, and the model now supports increased and more realistic variability in the upper troposphere and stratosphere. An optional improved treatment of lightâ absorbing particle deposition to snowpack and ice is available, and stronger connections with Earth system biogeochemistry can be used for some science problems. Satellite and groundâ based cloud and aerosol simulators were implemented to facilitate evaluation of clouds, aerosols, and aerosolâ cloud interactions. Higher horizontal and vertical resolution, increased complexity, and more predicted and transported variables have increased the model computational cost and changed the simulations considerably. These changes required development of alternate strategies for tuning and evaluation as it was not feasible to â brute forceâ tune the highâ resolution configurations, so shortâ term hindcasts, perturbed parameter ensemble simulations, and regionally refined simulations provided guidance on tuning and parameterization sensitivity to higher resolution. A brief overview of the model and model climate is provided. Model fidelity has generally improved compared to its predecessors and the CMIP5 generation of climate models.Plain Language SummaryThis study provides an overview of a new computer model of the Earth’s atmosphere that is used as one component of the Department of Energy’s latest Earth system model. The model can be used to help understand past, present, and ...
format Article in Journal/Newspaper
author Rasch, P. J.
Xie, S.
Ma, P.‐l.
Lin, W.
Wang, H.
Tang, Q.
Burrows, S. M.
Caldwell, P.
Zhang, K.
Easter, R. C.
Cameron‐smith, P.
Singh, B.
Wan, H.
Golaz, J.‐c.
Harrop, B. E.
Roesler, E.
Bacmeister, J.
Larson, V. E.
Evans, K. J.
Qian, Y.
Taylor, M.
Leung, L. R.
Zhang, Y.
Brent, L.
Branstetter, M.
Hannay, C.
Mahajan, S.
Mametjanov, A.
Neale, R.
Richter, J. H.
Yoon, J.‐h.
Zender, C. S.
Bader, D.
Flanner, M.
Foucar, J. G.
Jacob, R.
Keen, N.
Klein, S. A.
Liu, X.
Salinger, A.G.
Shrivastava, M.
Yang, Y.
author_facet Rasch, P. J.
Xie, S.
Ma, P.‐l.
Lin, W.
Wang, H.
Tang, Q.
Burrows, S. M.
Caldwell, P.
Zhang, K.
Easter, R. C.
Cameron‐smith, P.
Singh, B.
Wan, H.
Golaz, J.‐c.
Harrop, B. E.
Roesler, E.
Bacmeister, J.
Larson, V. E.
Evans, K. J.
Qian, Y.
Taylor, M.
Leung, L. R.
Zhang, Y.
Brent, L.
Branstetter, M.
Hannay, C.
Mahajan, S.
Mametjanov, A.
Neale, R.
Richter, J. H.
Yoon, J.‐h.
Zender, C. S.
Bader, D.
Flanner, M.
Foucar, J. G.
Jacob, R.
Keen, N.
Klein, S. A.
Liu, X.
Salinger, A.G.
Shrivastava, M.
Yang, Y.
author_sort Rasch, P. J.
title An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
title_short An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
title_full An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
title_fullStr An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
title_full_unstemmed An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
title_sort overview of the atmospheric component of the energy exascale earth system model
publisher Wiley Periodicals, Inc.
publishDate 2019
url http://hdl.handle.net/2027.42/151811
https://doi.org/10.1029/2019MS001629
genre Arctic
genre_facet Arctic
op_relation Rasch, P. J.; Xie, S.; Ma, P.‐l.
Lin, W.; Wang, H.; Tang, Q.; Burrows, S. M.; Caldwell, P.; Zhang, K.; Easter, R. C.; Cameron‐smith, P.
Singh, B.; Wan, H.; Golaz, J.‐c.
Harrop, B. E.; Roesler, E.; Bacmeister, J.; Larson, V. E.; Evans, K. J.; Qian, Y.; Taylor, M.; Leung, L. R.; Zhang, Y.; Brent, L.; Branstetter, M.; Hannay, C.; Mahajan, S.; Mametjanov, A.; Neale, R.; Richter, J. H.; Yoon, J.‐h.
Zender, C. S.; Bader, D.; Flanner, M.; Foucar, J. G.; Jacob, R.; Keen, N.; Klein, S. A.; Liu, X.; Salinger, A.G.; Shrivastava, M.; Yang, Y. (2019). "An Overview of the Atmospheric Component of the Energy Exascale Earth System Model." Journal of Advances in Modeling Earth Systems 11(8): 2377-2411.
1942-2466
http://hdl.handle.net/2027.42/151811
doi:10.1029/2019MS001629
Journal of Advances in Modeling Earth Systems
Richter, J. H., Solomon, A., & Bacmeister, J. T. ( 2014a ). On the simulation of the quasiâ biennial oscillation in the Community Atmosphere Model, version 5. Journal of Geophysical Research: Atmospheres, 119, 3045 â 3062. https://doi.org/10.1002/2013JD021122
McFarlane, N. A. ( 1987 ). The effect of orographically excited wave drag on the general circulation of the lower stratosphere and troposphere. Journal of the Atmospheric Sciences, 44 ( 14 ), 1775 â 1800. https://doi.org/10.1175/1520â 0469(1987)044<1775:TEOOEG>2.0.CO;2
Mitchell, D. L. ( 2002 ). Effective Diameter in Radiation Transfer: General Deï¬ nition, Applications, and Limitations. Journal of the Atmospheric Sciences, 59, 17.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. ( 1997 ). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlatedâ k model for the longwave. Journal of Geophysical Research, 102 ( D14 ), 16,663 â 16,682. https://doi.org/10.1029/97JD00237
Mote, P. W., Holton, J. R., Russell, J. M., & Boville, B. A. ( 1993 ). A comparison of observed (Haloe) and modeled (CCM2) methane and stratospheric water vapor. Geophysical Research Letters, 20 ( 14 ), 1419 â 1422. https://doi.org/10.1029/93GL01764
Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Kinnison, D., Marsh, D., Smith, A. K., Vitt, F., Garcia, R., Lamarque, J.â F., Mills, M., Tilmes, S., Morrison, H., Cameronâ Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Liu, X., Ghan, S. J., Rasch, P. J., & Taylor, M. A. ( 2010 ). Description of the NCAR Community Atmosphere Model: CAM5.0. NCAR Technical Note, Boulder, Colorado, USA: National Center for Atmospheric Research.
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., & Zhang, M. ( 2013 ). The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. Journal of Climate, 26, 5150 â 5168. https://doi.org/10.1175/JCLIâ Dâ 12â 00236.1
Neale, R. B., Richter, J. H., & Jochum, M. ( 2008 ). The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events. Journal of Climate, 21 ( 22 ), 5904 â 5924. https://doi.org/10.1175/2008JCLI2244.1
O’Brien, T. A., Collins, W. D., Kashinath, K., Rübel, O., Byna, S., Gu, J., Krishnan, H., & Ullrich, P. A. ( 2016 ). Resolution dependence of precipitation statistical fidelity in hindcast simulations. Journal of Advances in Modeling Earth Systems, 8, 976 â 990. https://doi.org/10.1002/2016MS000671
Ogunro, O., Burrows, S. M., Elliott, S., Frossard, A. A., Hoffman, F., Letscher, R. T., Moore, J. K., Russell, L. M., Wang, S., & Wingenter, O. W. ( 2015 ). Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry. Biogeochemistry, 126 ( 1â 2 ), 25 â 56. https://doi.org/10.1007/s10533â 015â 0136â x
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., & Taira, R. ( 2007 ). The JRAâ 25 reanalysis. Journal of the Meteorological Society of Japan. Series II, 85 ( 3 ), 369 â 432. https://doi.org/10.2151/jmsj.85.369
Orlanski, I. ( 2008 ). Mesoscale dynamics. Eos, Transactions American Geophysical Union, 89 ( 42 ), 408 â 408. https://doi.org/10.1029/2008EO420004
Park, S., Bretherton, C. S., & Rasch, P. J. ( 2014 ). Integrating cloud processes in the Community Atmosphere Model, Version 5. Journal of Climate, 140811131149007. https://doi.org/10.1175/JCLIâ Dâ 14â 00087.1
Phillips, T. J., Potter, G. L., Williamson, D. L., Cederwall, R. T., Boyle, J. S., Fiorino, M., Hnilo, J. J., Olson, J. G., Xie, S., & Yio, J. J. ( 2004 ). Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bulletin of the American Meteorological Society, 85 ( 12 ), 1903 â 1916. https://doi.org/10.1175/BAMSâ 85â 12â 1903
Pincus, R., Barker, H. W., & Morcrette, J.â J. ( 2003 ). A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. Journal of Geophysical Research, 108 ( D13 ). https://doi.org/10.1029/2002JD003322
Qian, Y., Wan, H., Yang, B., Golaz, J.â C., Harrop, B., Hou, Z., Larson, V. E., Leung, L. R., Lin, G., Lin, W., Ma, P.â L., Ma, H.â Y., Rasch, P., Singh, B., Wang, H., Xie, S., & Zhang, K. ( 2018 ). Parametric sensitivity and uncertainty quantification in the version 1 of E3SM atmosphere model based on short perturbed parameter ensemble simulations. Journal of Geophysical Research: Atmospheres, 123, 13,046 â 13,073. https://doi.org/10.1029/2018JD028927
Qian, Y., Wang, H., Zhang, R., Flanner, M. G., & Rasch, P. J. ( 2014 ). A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environmental Research Letters, 9 ( 6 ), 064001. https://doi.org/10.1088/1748â 9326/9/6/064001
Qian, Y., Yan, H., Hou, Z., Johannesson, G., Klein, S., Lucas, D., Neale, R., Rasch, P., Swiler, L., Tannahill, J., Wang, H., Wang, M., & Zhao, C. ( 2015 ). Parametric sensitivity analysis of precipitation at global and local scales in the community atmosphere model CAM5. Journal of Advances in Modeling Earth Systems, 7, 382 â 411. https://doi.org/10.1002/2014ms000354
Richter, J. H., & Rasch, P. J. ( 2008 ). Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, Version 3. Journal of Climate, 21 ( 7 ), 1487 â 1499. https://doi.org/10.1175/2007JCLI1789.1
Richter, J. H., Sassi, F., & Garcia, R. R. ( 2010 ). Toward a physically based gravity wave source parameterization in a general circulation model. Journal of the Atmospheric Sciences, 67, 136 â 156.
Larson, V. E. ( 2017 ). CLUBBâ SILHS: A parameterization of subgrid variability in the atmosphere. arXiv:1711.03675.
Richter, J. H., Solomon, A., & Bacmeister, J. T. ( 2014b ). Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5. Journal of Advances in Modeling Earth Systems, 6, 357 â 383. https://doi.org/10.1002/2013MS000303
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, R., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.â K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., & Woollen, J. ( 2011 ). MERRA: NASA’s Modernâ Era Retrospective Analysis for research and applications. Journal of Climate, 24, 3624 â 3648.
Ringer, M. A., Andrews, T., & Webb, M. J. ( 2014 ). Globalâ mean radiative feedbacks and forcing in atmosphereâ only and coupled atmosphereâ ocean climate change experiments. Geophysical Research Letters, 41, 4035 â 4042. https://doi.org/10.1002/2014GL060347
Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., & Schulzweida, U. ( 2006 ). Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. Journal of Climate, 19 ( 16 ), 3771 â 3791. https://doi.org/10.1175/JCLI3824.1
Scinocca, J. F., & McFarlane, N. A. ( 2004 ). The variability of modeled tropical precipitation. Journal of the Atmospheric Sciences, 61 ( 16 ), 1993 â 2015. https://doi.org/10.1175/1520â 0469(2004)061<1993:TVOMTP>2.0.CO;2
Shrivastava, M., Easter, R. C., Liu, X., Zelenyuk, A., Singh, B., Zhang, K., Ma, P. L., Chand, D., Ghan, S., Jimenez, J. L., Zhang, Q., Fast, J., Rasch, P. J., & Tiitta, P. ( 2015 ). Global transformation and fate of SOA: Implications of lowâ volatility SOA and gasâ phase fragmentation reactions. Journal of Geophysical Research: Atmospheres, 120, 4169 â 4195. https://doi.org/10.1002/2014JD022563
Son, S.â W., Lim, Y., Yoo, C., Hendon, H. H., & Kim, J. ( 2017 ). Stratospheric control of Maddenâ Julian oscillation. Journal of Climate, 30 ( 6 ), 1909 â 1922. https://doi.org/10.1175/JCLIâ Dâ 16â 0620.1
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S., et al. ( 2012 ). An update on Earth’s energy balance in light of the latest global observations. Nature Geoscience, 5 ( 10 ), 691 â 696. https://doi.org/10.1038/ngeo1580
Tan, I., Storelvmo, T., & Zelinka, M. D. ( 2016 ). Observational constraints on mixedâ phase clouds imply higher climate sensitivity. Science, 352 ( 6282 ), 224 â 227. https://doi.org/110.1126/science.aad5300
Tang, Q., Klein, S. A., Xie, S., Lin, W., Golaz, J.â C., Roesler, E. L., Taylor, M. A., Rasch, P. J., Bader, D. C., Berg, L. K., Caldwell, P., Giangrande, S. E., Neale, R. B., Qian, Y., Riihimaki, L. D., Zender, C. S., Zhang, Y., & Zheng, X. ( 2019 ). Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling. Geoscientific Model Development, 12, 2679 â 2706. https://doi.org/10.5194/gmdâ 12â 2679â 2019
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. ( April 2012 ). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 ( 4 ), 485 â 498. https://doi.org/10.1175/BAMSâ Dâ 11â 00094.1
Taylor, K. E., Williamson, D., & Zwiers, F. ( 2000 ). The sea surface temperature and seaâ ice concentration boundary conditions of AMIP II simulations. PCMDI Rep. 60, 20 pp. pdf file available at http://wwwâ pcmdi.llnl.gov/publications/pdf/60.pdf
Taylor, M. A. ( 2011 ). Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. In P. H. Lauritzen, et al. (Eds.), Numerical techniques for global atmospheric models, Lecture Notes Comput. Sci. Eng. (Vol. 80, pp. 357 â 380 ). Heidelberg, Germany: Springer. https://doi.org/10.1007/978â 3â 642â 11640â 7_12
Taylor, M., Tribbia, J., & Iskandarani, M. ( 1997 ). The Spectral Element Method for the Shallow Water Equations on the Sphere. Journal of Computational Physics, 130 ( 1 ), 92 â 108. https://doi.org/10.1006/jcph.1996.5554
Taylor, M. A., & Fournier, A. ( 2010 ). A compatible and conservative spectral element method on unstructured grids. Journal of Computational Physics, 229 ( 17 ), 5879 â 5895. https://doi.org/10.1016/j.jcp.2010.04.008
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.â L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., & van der Werf, G. R. ( 2017 ). Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750â 2015). Geoscientific Model Development, 10 ( 9 ), 3329 â 3357. https://doi.org/10.5194/gmdâ 10â 3329â 2017
van Weverberg, K., Morcrette, C. J., Ma, H.â Y., Klein, S. A., & Petch, J. C. ( 2015 ). Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models. Quarterly Journal of the Royal Meteorological Society, 141 ( 693 ), 3190 â 3206. https://doi.org/10.1002/qj.2603
Wan, H., Rasch, P. J., Zhang, K., Qian, Y., Yan, H., & Zhao, C. ( 2014 ). Short ensembles: An efficient method for discerning climateâ relevant sensitivities in atmospheric general circulation models. Geoscientific Model Development, 7, 1961 â 1977. https://doi.org/10.5194/gmdâ 7â 1961â 2014
Wang, B., & Ding, Q. ( 2008 ). Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans, 44 ( 3â 4 ), 165 â 183. https://doi.org/10.1016/j.dynatmoce.2007.05.002
Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon, J.â H., Ma, P.â L., & Vinoj, V. ( 2013 ). Sensitivity of remote aerosol distributions to representation of cloudâ aerosol interactions in a global climate model. Geoscientific Model Development, 6 ( 3 ), 765 â 782. https://doi.org/10.5194/gmdâ 6â 765â 2013
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2019MS00162910.1175/1520â10.1029/2008EO42000410.1038/ngeo158010.1007/978â10.11578/E3SM/dc.20180418.3610.1029/2008JG00071010.1002/jgrd.5017610.5194/acpâ10.1175/JASâ10.1146/annurev.fl.14.010182.00102310.1175/BAMSâ10.1175/1520-0493(20
container_title Journal of Advances in Modeling Earth Systems
container_volume 11
container_issue 8
container_start_page 2377
op_container_end_page 2411
_version_ 1774713617875206144
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151811 2023-08-20T04:03:13+02:00 An Overview of the Atmospheric Component of the Energy Exascale Earth System Model Rasch, P. J. Xie, S. Ma, P.‐l. Lin, W. Wang, H. Tang, Q. Burrows, S. M. Caldwell, P. Zhang, K. Easter, R. C. Cameron‐smith, P. Singh, B. Wan, H. Golaz, J.‐c. Harrop, B. E. Roesler, E. Bacmeister, J. Larson, V. E. Evans, K. J. Qian, Y. Taylor, M. Leung, L. R. Zhang, Y. Brent, L. Branstetter, M. Hannay, C. Mahajan, S. Mametjanov, A. Neale, R. Richter, J. H. Yoon, J.‐h. Zender, C. S. Bader, D. Flanner, M. Foucar, J. G. Jacob, R. Keen, N. Klein, S. A. Liu, X. Salinger, A.G. Shrivastava, M. Yang, Y. 2019-08 application/pdf http://hdl.handle.net/2027.42/151811 https://doi.org/10.1029/2019MS001629 unknown Wiley Periodicals, Inc. Cambridge Univ. Press Rasch, P. J.; Xie, S.; Ma, P.‐l. Lin, W.; Wang, H.; Tang, Q.; Burrows, S. M.; Caldwell, P.; Zhang, K.; Easter, R. C.; Cameron‐smith, P. Singh, B.; Wan, H.; Golaz, J.‐c. Harrop, B. E.; Roesler, E.; Bacmeister, J.; Larson, V. E.; Evans, K. J.; Qian, Y.; Taylor, M.; Leung, L. R.; Zhang, Y.; Brent, L.; Branstetter, M.; Hannay, C.; Mahajan, S.; Mametjanov, A.; Neale, R.; Richter, J. H.; Yoon, J.‐h. Zender, C. S.; Bader, D.; Flanner, M.; Foucar, J. G.; Jacob, R.; Keen, N.; Klein, S. A.; Liu, X.; Salinger, A.G.; Shrivastava, M.; Yang, Y. (2019). "An Overview of the Atmospheric Component of the Energy Exascale Earth System Model." Journal of Advances in Modeling Earth Systems 11(8): 2377-2411. 1942-2466 http://hdl.handle.net/2027.42/151811 doi:10.1029/2019MS001629 Journal of Advances in Modeling Earth Systems Richter, J. H., Solomon, A., & Bacmeister, J. T. ( 2014a ). On the simulation of the quasiâ biennial oscillation in the Community Atmosphere Model, version 5. Journal of Geophysical Research: Atmospheres, 119, 3045 â 3062. https://doi.org/10.1002/2013JD021122 McFarlane, N. A. ( 1987 ). The effect of orographically excited wave drag on the general circulation of the lower stratosphere and troposphere. Journal of the Atmospheric Sciences, 44 ( 14 ), 1775 â 1800. https://doi.org/10.1175/1520â 0469(1987)044<1775:TEOOEG>2.0.CO;2 Mitchell, D. L. ( 2002 ). Effective Diameter in Radiation Transfer: General Deï¬ nition, Applications, and Limitations. Journal of the Atmospheric Sciences, 59, 17. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. ( 1997 ). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlatedâ k model for the longwave. Journal of Geophysical Research, 102 ( D14 ), 16,663 â 16,682. https://doi.org/10.1029/97JD00237 Mote, P. W., Holton, J. R., Russell, J. M., & Boville, B. A. ( 1993 ). A comparison of observed (Haloe) and modeled (CCM2) methane and stratospheric water vapor. Geophysical Research Letters, 20 ( 14 ), 1419 â 1422. https://doi.org/10.1029/93GL01764 Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Kinnison, D., Marsh, D., Smith, A. K., Vitt, F., Garcia, R., Lamarque, J.â F., Mills, M., Tilmes, S., Morrison, H., Cameronâ Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Liu, X., Ghan, S. J., Rasch, P. J., & Taylor, M. A. ( 2010 ). Description of the NCAR Community Atmosphere Model: CAM5.0. NCAR Technical Note, Boulder, Colorado, USA: National Center for Atmospheric Research. Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., & Zhang, M. ( 2013 ). The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. Journal of Climate, 26, 5150 â 5168. https://doi.org/10.1175/JCLIâ Dâ 12â 00236.1 Neale, R. B., Richter, J. H., & Jochum, M. ( 2008 ). The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events. Journal of Climate, 21 ( 22 ), 5904 â 5924. https://doi.org/10.1175/2008JCLI2244.1 O’Brien, T. A., Collins, W. D., Kashinath, K., Rübel, O., Byna, S., Gu, J., Krishnan, H., & Ullrich, P. A. ( 2016 ). Resolution dependence of precipitation statistical fidelity in hindcast simulations. Journal of Advances in Modeling Earth Systems, 8, 976 â 990. https://doi.org/10.1002/2016MS000671 Ogunro, O., Burrows, S. M., Elliott, S., Frossard, A. A., Hoffman, F., Letscher, R. T., Moore, J. K., Russell, L. M., Wang, S., & Wingenter, O. W. ( 2015 ). Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry. Biogeochemistry, 126 ( 1â 2 ), 25 â 56. https://doi.org/10.1007/s10533â 015â 0136â x Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., & Taira, R. ( 2007 ). The JRAâ 25 reanalysis. Journal of the Meteorological Society of Japan. Series II, 85 ( 3 ), 369 â 432. https://doi.org/10.2151/jmsj.85.369 Orlanski, I. ( 2008 ). Mesoscale dynamics. Eos, Transactions American Geophysical Union, 89 ( 42 ), 408 â 408. https://doi.org/10.1029/2008EO420004 Park, S., Bretherton, C. S., & Rasch, P. J. ( 2014 ). Integrating cloud processes in the Community Atmosphere Model, Version 5. Journal of Climate, 140811131149007. https://doi.org/10.1175/JCLIâ Dâ 14â 00087.1 Phillips, T. J., Potter, G. L., Williamson, D. L., Cederwall, R. T., Boyle, J. S., Fiorino, M., Hnilo, J. J., Olson, J. G., Xie, S., & Yio, J. J. ( 2004 ). Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bulletin of the American Meteorological Society, 85 ( 12 ), 1903 â 1916. https://doi.org/10.1175/BAMSâ 85â 12â 1903 Pincus, R., Barker, H. W., & Morcrette, J.â J. ( 2003 ). A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. Journal of Geophysical Research, 108 ( D13 ). https://doi.org/10.1029/2002JD003322 Qian, Y., Wan, H., Yang, B., Golaz, J.â C., Harrop, B., Hou, Z., Larson, V. E., Leung, L. R., Lin, G., Lin, W., Ma, P.â L., Ma, H.â Y., Rasch, P., Singh, B., Wang, H., Xie, S., & Zhang, K. ( 2018 ). Parametric sensitivity and uncertainty quantification in the version 1 of E3SM atmosphere model based on short perturbed parameter ensemble simulations. Journal of Geophysical Research: Atmospheres, 123, 13,046 â 13,073. https://doi.org/10.1029/2018JD028927 Qian, Y., Wang, H., Zhang, R., Flanner, M. G., & Rasch, P. J. ( 2014 ). A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environmental Research Letters, 9 ( 6 ), 064001. https://doi.org/10.1088/1748â 9326/9/6/064001 Qian, Y., Yan, H., Hou, Z., Johannesson, G., Klein, S., Lucas, D., Neale, R., Rasch, P., Swiler, L., Tannahill, J., Wang, H., Wang, M., & Zhao, C. ( 2015 ). Parametric sensitivity analysis of precipitation at global and local scales in the community atmosphere model CAM5. Journal of Advances in Modeling Earth Systems, 7, 382 â 411. https://doi.org/10.1002/2014ms000354 Richter, J. H., & Rasch, P. J. ( 2008 ). Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, Version 3. Journal of Climate, 21 ( 7 ), 1487 â 1499. https://doi.org/10.1175/2007JCLI1789.1 Richter, J. H., Sassi, F., & Garcia, R. R. ( 2010 ). Toward a physically based gravity wave source parameterization in a general circulation model. Journal of the Atmospheric Sciences, 67, 136 â 156. Larson, V. E. ( 2017 ). CLUBBâ SILHS: A parameterization of subgrid variability in the atmosphere. arXiv:1711.03675. Richter, J. H., Solomon, A., & Bacmeister, J. T. ( 2014b ). Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5. Journal of Advances in Modeling Earth Systems, 6, 357 â 383. https://doi.org/10.1002/2013MS000303 Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, R., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.â K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., & Woollen, J. ( 2011 ). MERRA: NASA’s Modernâ Era Retrospective Analysis for research and applications. Journal of Climate, 24, 3624 â 3648. Ringer, M. A., Andrews, T., & Webb, M. J. ( 2014 ). Globalâ mean radiative feedbacks and forcing in atmosphereâ only and coupled atmosphereâ ocean climate change experiments. Geophysical Research Letters, 41, 4035 â 4042. https://doi.org/10.1002/2014GL060347 Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., & Schulzweida, U. ( 2006 ). Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. Journal of Climate, 19 ( 16 ), 3771 â 3791. https://doi.org/10.1175/JCLI3824.1 Scinocca, J. F., & McFarlane, N. A. ( 2004 ). The variability of modeled tropical precipitation. Journal of the Atmospheric Sciences, 61 ( 16 ), 1993 â 2015. https://doi.org/10.1175/1520â 0469(2004)061<1993:TVOMTP>2.0.CO;2 Shrivastava, M., Easter, R. C., Liu, X., Zelenyuk, A., Singh, B., Zhang, K., Ma, P. L., Chand, D., Ghan, S., Jimenez, J. L., Zhang, Q., Fast, J., Rasch, P. J., & Tiitta, P. ( 2015 ). Global transformation and fate of SOA: Implications of lowâ volatility SOA and gasâ phase fragmentation reactions. Journal of Geophysical Research: Atmospheres, 120, 4169 â 4195. https://doi.org/10.1002/2014JD022563 Son, S.â W., Lim, Y., Yoo, C., Hendon, H. H., & Kim, J. ( 2017 ). Stratospheric control of Maddenâ Julian oscillation. Journal of Climate, 30 ( 6 ), 1909 â 1922. https://doi.org/10.1175/JCLIâ Dâ 16â 0620.1 Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S., et al. ( 2012 ). An update on Earth’s energy balance in light of the latest global observations. Nature Geoscience, 5 ( 10 ), 691 â 696. https://doi.org/10.1038/ngeo1580 Tan, I., Storelvmo, T., & Zelinka, M. D. ( 2016 ). Observational constraints on mixedâ phase clouds imply higher climate sensitivity. Science, 352 ( 6282 ), 224 â 227. https://doi.org/110.1126/science.aad5300 Tang, Q., Klein, S. A., Xie, S., Lin, W., Golaz, J.â C., Roesler, E. L., Taylor, M. A., Rasch, P. J., Bader, D. C., Berg, L. K., Caldwell, P., Giangrande, S. E., Neale, R. B., Qian, Y., Riihimaki, L. D., Zender, C. S., Zhang, Y., & Zheng, X. ( 2019 ). Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling. Geoscientific Model Development, 12, 2679 â 2706. https://doi.org/10.5194/gmdâ 12â 2679â 2019 Taylor, K. E., Stouffer, R. J., & Meehl, G. A. ( April 2012 ). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 ( 4 ), 485 â 498. https://doi.org/10.1175/BAMSâ Dâ 11â 00094.1 Taylor, K. E., Williamson, D., & Zwiers, F. ( 2000 ). The sea surface temperature and seaâ ice concentration boundary conditions of AMIP II simulations. PCMDI Rep. 60, 20 pp. pdf file available at http://wwwâ pcmdi.llnl.gov/publications/pdf/60.pdf Taylor, M. A. ( 2011 ). Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. In P. H. Lauritzen, et al. (Eds.), Numerical techniques for global atmospheric models, Lecture Notes Comput. Sci. Eng. (Vol. 80, pp. 357 â 380 ). Heidelberg, Germany: Springer. https://doi.org/10.1007/978â 3â 642â 11640â 7_12 Taylor, M., Tribbia, J., & Iskandarani, M. ( 1997 ). The Spectral Element Method for the Shallow Water Equations on the Sphere. Journal of Computational Physics, 130 ( 1 ), 92 â 108. https://doi.org/10.1006/jcph.1996.5554 Taylor, M. A., & Fournier, A. ( 2010 ). A compatible and conservative spectral element method on unstructured grids. Journal of Computational Physics, 229 ( 17 ), 5879 â 5895. https://doi.org/10.1016/j.jcp.2010.04.008 van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.â L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., & van der Werf, G. R. ( 2017 ). Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750â 2015). Geoscientific Model Development, 10 ( 9 ), 3329 â 3357. https://doi.org/10.5194/gmdâ 10â 3329â 2017 van Weverberg, K., Morcrette, C. J., Ma, H.â Y., Klein, S. A., & Petch, J. C. ( 2015 ). Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models. Quarterly Journal of the Royal Meteorological Society, 141 ( 693 ), 3190 â 3206. https://doi.org/10.1002/qj.2603 Wan, H., Rasch, P. J., Zhang, K., Qian, Y., Yan, H., & Zhao, C. ( 2014 ). Short ensembles: An efficient method for discerning climateâ relevant sensitivities in atmospheric general circulation models. Geoscientific Model Development, 7, 1961 â 1977. https://doi.org/10.5194/gmdâ 7â 1961â 2014 Wang, B., & Ding, Q. ( 2008 ). Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans, 44 ( 3â 4 ), 165 â 183. https://doi.org/10.1016/j.dynatmoce.2007.05.002 Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon, J.â H., Ma, P.â L., & Vinoj, V. ( 2013 ). Sensitivity of remote aerosol distributions to representation of cloudâ aerosol interactions in a global climate model. Geoscientific Model Development, 6 ( 3 ), 765 â 782. https://doi.org/10.5194/gmdâ 6â 765â 2013 IndexNoFollow climate change Earth system atmospheric model climate climate modeling general circulation modeling Geological Sciences Science Article 2019 ftumdeepblue https://doi.org/10.1029/2019MS00162910.1175/1520â10.1029/2008EO42000410.1038/ngeo158010.1007/978â10.11578/E3SM/dc.20180418.3610.1029/2008JG00071010.1002/jgrd.5017610.5194/acpâ10.1175/JASâ10.1146/annurev.fl.14.010182.00102310.1175/BAMSâ10.1175/1520-0493(20 2023-07-31T20:51:32Z The Energy Exascale Earth System Model Atmosphere Model version 1, the atmospheric component of the Department of Energy’s Energy Exascale Earth System Model is described. The model began as a fork of the wellâ known Community Atmosphere Model, but it has evolved in new ways, and coding, performance, resolution, physical processes (primarily cloud and aerosols formulations), testing and development procedures now differ significantly. Vertical resolution was increased (from 30 to 72 layers), and the model top extended to 60 km (~0.1 hPa). A simple ozone photochemistry predicts stratospheric ozone, and the model now supports increased and more realistic variability in the upper troposphere and stratosphere. An optional improved treatment of lightâ absorbing particle deposition to snowpack and ice is available, and stronger connections with Earth system biogeochemistry can be used for some science problems. Satellite and groundâ based cloud and aerosol simulators were implemented to facilitate evaluation of clouds, aerosols, and aerosolâ cloud interactions. Higher horizontal and vertical resolution, increased complexity, and more predicted and transported variables have increased the model computational cost and changed the simulations considerably. These changes required development of alternate strategies for tuning and evaluation as it was not feasible to â brute forceâ tune the highâ resolution configurations, so shortâ term hindcasts, perturbed parameter ensemble simulations, and regionally refined simulations provided guidance on tuning and parameterization sensitivity to higher resolution. A brief overview of the model and model climate is provided. Model fidelity has generally improved compared to its predecessors and the CMIP5 generation of climate models.Plain Language SummaryThis study provides an overview of a new computer model of the Earth’s atmosphere that is used as one component of the Department of Energy’s latest Earth system model. The model can be used to help understand past, present, and ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Journal of Advances in Modeling Earth Systems 11 8 2377 2411