Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years

Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water column denitrification. When combined with additional productivity proxies, it provides insights into the driving forces behind long‐term changes in water column oxygenation. High‐resolution (~2 years) δ15Nsed and productivity p...

Full description

Bibliographic Details
Published in:Quaternary Research
Main Authors: Wang, Yi, Hendy, Ingrid L., Thunell, Robert
Format: Article in Journal/Newspaper
Language:unknown
Published: Advances in Global Change Research. Springer 2019
Subjects:
Online Access:http://hdl.handle.net/2027.42/151806
https://doi.org/10.1029/2019PA003577
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151806
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic California margin
ITCZ
upwelling
denitrification
Geological Sciences
Science
spellingShingle California margin
ITCZ
upwelling
denitrification
Geological Sciences
Science
Wang, Yi
Hendy, Ingrid L.
Thunell, Robert
Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years
topic_facet California margin
ITCZ
upwelling
denitrification
Geological Sciences
Science
description Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water column denitrification. When combined with additional productivity proxies, it provides insights into the driving forces behind long‐term changes in water column oxygenation. High‐resolution (~2 years) δ15Nsed and productivity proxy records (total organic carbon [TOC], Si/Ti, and Ca/Ti) from Santa Barbara Basin, California, were generated from a well‐dated Kasten core (SPR0901‐03KC). These records reveal the relationship between Southern California upwelling and oxygenation over the past 2,000 years. Inconsistencies between Si/Ti (coastal upwelling proxy) and TOC (total export productivity proxy) suggest wind curl upwelling influenced Southern California primary productivity, especially during intervals of weak coastal upwelling. Coherence between δ15Nsed, TOC, and drought indicators supports a local control of δ15Nsed by atmospheric circulation, as persistent northerly winds associated with an intensified North Pacific High pressure cell lead to enhanced coastal upwelling. In the northeast Pacific, δ15Nsed is used as a water mass tracer of denitrification signals transported north from the eastern tropical North Pacific (ETNP) via the California Undercurrent. A 1,200‐year δ15Nsed record from the Pescadero slope, Gulf of California, lies between denitrifying subsurface waters in the ETNP and Southern California. During the Medieval Climate Anomaly, coherence between Pescadero and Santa Barbara Basin δ15Nsed indicates connections between ETNP and Southern California on centennial timescales. Yet an out‐of‐phase relationship occurred when the Aleutian Low was anomalously strong during the Little Ice Age. We suggest intensified nutrient‐rich subarctic water advection might have transported high‐15N nitrate into Southern California when the California Undercurrent and ETNP denitrification weakened.Key PointsWind curl upwelling contributes to Southern California primary productivity, especially during weak coastal upwelling intervalsIntensified ...
format Article in Journal/Newspaper
author Wang, Yi
Hendy, Ingrid L.
Thunell, Robert
author_facet Wang, Yi
Hendy, Ingrid L.
Thunell, Robert
author_sort Wang, Yi
title Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years
title_short Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years
title_full Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years
title_fullStr Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years
title_full_unstemmed Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years
title_sort local and remote forcing of denitrification in the northeast pacific for the last 2,000 years
publisher Advances in Global Change Research. Springer
publishDate 2019
url http://hdl.handle.net/2027.42/151806
https://doi.org/10.1029/2019PA003577
long_lat ENVELOPE(-63.071,-63.071,-70.797,-70.797)
geographic Curl
Pacific
geographic_facet Curl
Pacific
genre aleutian low
Arctic
Subarctic
genre_facet aleutian low
Arctic
Subarctic
op_relation Wang, Yi; Hendy, Ingrid L.; Thunell, Robert (2019). "Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years." Paleoceanography and Paleoclimatology 34(8): 1517-1533.
2572-4517
2572-4525
http://hdl.handle.net/2027.42/151806
doi:10.1029/2019PA003577
Paleoceanography and Paleoclimatology
Pride, C., Thunell, R., Sigman, D., Keigwin, L., Altabet, M., & Tappa, E. ( 1999 ). Nitrogen isotopic variations in the Gulf of California since the Last Deglaciation: Response to global climate change. Paleoceanography, 14 ( 3 ), 397 – 409. https://doi.org/10.1029/1999PA900004
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., & Bonczkowski, J. ( 2009 ). Global multi‐resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10, Q03014. https://doi.org/10.1029/2008GC002332
Rykaczewski, R. R., & Checkley, D. M. Jr. ( 2008 ). Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 6 ), 1965 – 1970. https://doi.org/10.1073/pnas.0711777105
Salvatteci, R., Gutiérrez, D., Field, D., Sifeddine, A., Ortlieb, L., Bouloubassi, I., Boussafir, M., Boucher, H., & Cetin, F. ( 2014 ). The response of the Peruvian Upwelling Ecosystem to centennial‐scale global change during the last two millennia. Climate of the Past, 10 ( 2 ), 715 – 731. https://doi.org/10.5194/cp‐10‐715‐2014
Schimmelmann, A. ( 2011 ). The “coffin lid” effect: Flood layers and turbidites in Santa Barbara Basin affect diagenesis of organic matter in underlying varved sediment. In M. R. Besonen (Ed.), Second Workshop of the PAGES Varves Working Group (pp. 83 – 86 ). Texas, USA: Corpus Christi.
Schimmelmann, A., Lange, C. B., & Berger, W. H. ( 1990 ). Climatically controlled marker layers in Santa Barbara Basin sediments and fine‐scale core‐to‐core correlation. Limnology and Oceanography, 35 ( 1 ), 165 – 173.
Schimmelmann, A., Lange, C. B., Berger, W. H., Simon, A., Burke, S. K., & Dunbar, R. B. ( 1992 ). Extreme climatic conditions recorded in Santa Barbara Basin laminated sediments: the 1835–1840 Macoma event. Marine Geology, 106 ( 3‐4 ), 279 – 299. https://doi.org/10.1016/0025‐3227(92)90134‐4
Schneider, T., Bischoff, T., & Haug, G. H. ( 2014 ). Migrations and dynamics of the intertropical convergence zone. Nature, 513 ( 7516 ), 45 – 53. https://doi.org/10.1038/nature13636
Schubert, C. J., & Calvert, S. E. ( 2001 ). Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep Sea Research, Part I, 48 ( 3 ), 789 – 810. https://doi.org/10.1016/S0967‐0637(00)00069‐8
Sigman, D. M., Karsh, K. L., & Casciotti, K. L. ( 2009a ). Nitrogen isotopes in the ocean, Encyclopedia of Ocean Sciences (Second Edition) (pp. 40 – 54 ). Oxford: Academic Press. https://doi.org/10.1016/B978‐012374473‐9.00632‐9
Sigman, D. M., Karsh, K. L., & Casciotti, K. L. ( 2009b ). Ocean process tracers: nitrogen isotopes in the ocean.
Strub, P. T., & James, C. ( 2003 ). Altimeter estimates of anomalous transports into the northern California Current during 2000–2002. Geophysical Research Letters, 30 ( 15 ), 8025. https://doi.org/10.1029/2003GL017513
Sydeman, W. J., Thompson, S. A., Field, J. C., Peterson, W. T., Tanasichuk, R. W., Freeland, H. J., Bograd, S. J., & Rykaczewski, R. R. ( 2011 ). Does positioning of the North Pacific Current affect downstream ecosystem productivity? Geophysical Research Letters, 38, L12606. https://doi.org/10.1029/2011GL047212
Taylor, A. G., Landry, M. R., Selph, K. E., & Wokuluk, J. J. ( 2015 ). Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 112, 117 – 128. https://doi.org/10.1016/j.dsr2.2014.02.006
Thunell, R., Benitez‐Nelson, C., Varela, R., Astor, Y., & Muller‐Karger, F. ( 2007 ). Particulate organic carbon fluxes along upwelling‐dominated continental margins: Rates and mechanisms. Global Biogeochemical Cycles, 21, GB1022. https://doi.org/10.1029/2006GB002793
Thunell, R. C. ( 1998a ). Particle fluxes in a coastal upwelling zone: sediment trap results from Santa Barbara Basin, California. Deep Sea Research Part II: Topical Studies in Oceanography, 45 ( 8‐9 ), 1863 – 1884. https://doi.org/10.1016/S0967‐0645(98)80020‐9
Thunell, R. C. ( 1998b ). Seasonal and annual variability in particle fluxes in the Gulf of California: A response to climate forcing. Deep Sea Research Part I: Oceanographic Research Papers, 45 ( 12 ), 2059 – 2083. https://doi.org/10.1016/S0967‐0637(98)00053‐3
Thunell, R. C., Sigman, D. M., Muller‐Karger, F., Astor, Y., & Varela, R. ( 2004 ). Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Global Biogeochemical Cycles, 18, GB3001. https://doi.org/10.1029/2003GB002185
Thunell, R. C., Tappa, E. J., & Andersen, D. M. ( 1995 ). Sediment fluxes and varve formation in Santa Barbara Basin, offshore California. Geology, 23 ( 12 ), 1083 – 1086. https://doi.org/10.1130/0091‐7613(1995)023<1083:SFAVFI>2.3.CO;2
Torrence, C., & Compo, G. P. ( 1997 ). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79 ( 1 ), 61 – 78.
Warrick, J. A., & Farnsworth, K. L. ( 2009a ). Dispersal of river sediment in the Southern California Bight. The Geological Society of America Special Papers, 454, 53 – 67.
Warrick, J. A., & Farnsworth, K. L. ( 2009b ). Sources of sediment to the coastal waters of the Southern California Bight. The Geological Society of America Special Papers, 454, 39 – 52.
Xie, S.‐P. ( 1994 ). Oceanic response to the wind forcing associated with the Intertropical Convergence Zone in the Northern Hemisphere. Journal of Geophysical Research, 99 ( C10 ), 20,393. https://doi.org/10.1029/94JC01653
Canfield, D. E., Thamdrup, B., & Hansen, J. W. ( 1993 ). The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57 ( 16 ), 3867 – 3883. https://doi.org/10.1016/0016‐7037(93)90340‐3
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., & Hilkert, A. ( 2002 ). Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74 ( 19 ), 4905 – 4912. https://doi.org/10.1021/ac020113w
Checkley, D. M., & Barth, J. A. ( 2009 ). Patterns and processes in the California Current System. Progress in Oceanography, 83 ( 1‐4 ), 49 – 64. https://doi.org/10.1016/j.pocean.2009.07.028
Agnihotri, R., Altabet, M. A., Herbert, T. D., & Tierney, J. E. ( 2008 ). Subdecadally resolved paleoceanography of the Peru margin during the last two millennia. Geochemistry, Geophysics, Geosystems, 9, Q05013. https://doi.org/10.1029/2007GC001744
Altabet, M. ( 2006a ). Constraints on oceanic N balance/imbalance from sedimentary 15N records. Biogeosciences Discussions, 3 ( 4 ), 1121 – 1155. https://doi.org/10.5194/bgd‐3‐1121‐2006
Altabet, M. A. ( 2006b ). Isotopic tracers of the marine nitrogen cycle: Present and past. The Handbook of Environmental Chemistry, 2N, 251 – 293. https://doi.org/10.1007/698_2_008
Altabet, M. A., & François, R. ( 1994 ). Sedimentary nitrogen isotopic ratio as a recorder for surface nitrate utilization. Global Biogeochemical Cycles, 8 ( 1 ), 103 – 116. https://doi.org/10.1029/93GB03396
Altabet, M. A., Francois, R., Murray, D. W., & Prell, W. L. ( 1995 ). Climate‐related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature, 373 ( 6514 ), 506 – 509. https://doi.org/10.1038/373506a0
Altabet, M. A., Murray, D. W., & Prell, W. L. ( 1999 ). Climatically linked oscillations in Arabian Sea denitrification over the past 1 m.y.: Implications for the marine N cycle. Paleoceanography, 14 ( 6 ), 732 – 743. https://doi.org/10.1029/1999PA900035
Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., & Francois, R. ( 1999 ). The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Research, Part I, 46 ( 4 ), 655 – 679. https://doi.org/10.1016/S0967‐0637(98)00084‐3
Bakun, A., 1973. Coastal upwelling indices, West Coast of North America, 1946‐71, NOAA, Seattle.
Barron, J. A., & Bukry, D. ( 2007 ). Development of the California Current during the past 12,000 yr based on diatoms and silicoflagellates. Palaeogeography, Palaeoclimatology, Palaeoecology, 248 ( 3‐4 ), 313 – 338. https://doi.org/10.1016/j.palaeo.2006.12.009
Barron, J. A., Bukry, D., & Hendy, I. L. ( 2015 ). High‐resolution paleoclimatology of the Santa Barbara Basin during the Medieval Climate Anomaly and early Little Ice Age based on diatom and silicoflagellate assemblages in Kasten core SPR0901‐02KC. Quaternary International, 387, 13 – 22. https://doi.org/10.1016/j.quaint.2014.04.020
Blaauw, M., & Christen, J. A. ( 2011 ). Flexible paleoclimate age‐depth models using an autoregressive gamma process. Bayesian Analysis, 6 ( 3 ), 457 – 474.
Bograd, S. J., & Lynn, R. J. ( 2003 ). Anomalous subarctic influence in the southern California Current during 2002. Geophysical Research Letters, 30 ( 15 ), 8020. https://doi.org/10.1029/2003GL017446
Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, D. A., & Naqvi, S. W. A. ( 1998 ). Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnology and Oceanography, 43 ( 7 ), 1680 – 1689. https://doi.org/10.4319/lo.1998.43.7.1680
Broccoli, A. J., Dahl, K. A., & Stouffer, R. J. ( 2006 ). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters, 33, L01702 n/a‐n/a. https://doi.org/10.1029/2005GL024546
Brown, E. T., Johnson, T. C., Scholz, C. A., Cohen, A. S., & King, J. W. ( 2007 ). Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophysical Research Letters, 34, L20702. https://doi.org/10.1029/2007GL031240
Bruland, K. W., Rue, E. L., & Smith, G. J. ( 2001 ). Iron and macronutrients in California coastal upwelling regimes: Implications for diatom blooms. Limnology and Oceanography, 46 ( 7 ), 1661 – 1674. https://doi.org/10.4319/lo.2001.46.7.1661
Canfield, D. E. ( 1994 ). Factors influencing organic carbon preservation in marine sediments. Chemical Geology, 114 ( 3‐4 ), 315 – 329. https://doi.org/10.1016/0009‐2541(94)90061‐2
Chelton, D.B., 1981. Interannual variability of the California Current—Physical factors.
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2019PA00357710.1016/S0967‐0645(98)80020‐910.1016/S0967‐0637(98)00053‐310.1029/94JC0165310.5194/bgd‐3‐1121‐200610.1007/698_2_00810.1016/0009‐2541(94)90061‐210.1029/JC089iC03p0347310.1038/ngeo179710.1029/2002GL01666310.1016/0079‐6611
container_title Quaternary Research
container_volume 8
container_issue 2
container_start_page 154
op_container_end_page 179
_version_ 1774712932101259264
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151806 2023-08-20T03:59:26+02:00 Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years Wang, Yi Hendy, Ingrid L. Thunell, Robert 2019-08 application/pdf http://hdl.handle.net/2027.42/151806 https://doi.org/10.1029/2019PA003577 unknown Advances in Global Change Research. Springer Wiley Periodicals, Inc. Wang, Yi; Hendy, Ingrid L.; Thunell, Robert (2019). "Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years." Paleoceanography and Paleoclimatology 34(8): 1517-1533. 2572-4517 2572-4525 http://hdl.handle.net/2027.42/151806 doi:10.1029/2019PA003577 Paleoceanography and Paleoclimatology Pride, C., Thunell, R., Sigman, D., Keigwin, L., Altabet, M., & Tappa, E. ( 1999 ). Nitrogen isotopic variations in the Gulf of California since the Last Deglaciation: Response to global climate change. Paleoceanography, 14 ( 3 ), 397 – 409. https://doi.org/10.1029/1999PA900004 Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., & Bonczkowski, J. ( 2009 ). Global multi‐resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10, Q03014. https://doi.org/10.1029/2008GC002332 Rykaczewski, R. R., & Checkley, D. M. Jr. ( 2008 ). Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 6 ), 1965 – 1970. https://doi.org/10.1073/pnas.0711777105 Salvatteci, R., Gutiérrez, D., Field, D., Sifeddine, A., Ortlieb, L., Bouloubassi, I., Boussafir, M., Boucher, H., & Cetin, F. ( 2014 ). The response of the Peruvian Upwelling Ecosystem to centennial‐scale global change during the last two millennia. Climate of the Past, 10 ( 2 ), 715 – 731. https://doi.org/10.5194/cp‐10‐715‐2014 Schimmelmann, A. ( 2011 ). The “coffin lid” effect: Flood layers and turbidites in Santa Barbara Basin affect diagenesis of organic matter in underlying varved sediment. In M. R. Besonen (Ed.), Second Workshop of the PAGES Varves Working Group (pp. 83 – 86 ). Texas, USA: Corpus Christi. Schimmelmann, A., Lange, C. B., & Berger, W. H. ( 1990 ). Climatically controlled marker layers in Santa Barbara Basin sediments and fine‐scale core‐to‐core correlation. Limnology and Oceanography, 35 ( 1 ), 165 – 173. Schimmelmann, A., Lange, C. B., Berger, W. H., Simon, A., Burke, S. K., & Dunbar, R. B. ( 1992 ). Extreme climatic conditions recorded in Santa Barbara Basin laminated sediments: the 1835–1840 Macoma event. Marine Geology, 106 ( 3‐4 ), 279 – 299. https://doi.org/10.1016/0025‐3227(92)90134‐4 Schneider, T., Bischoff, T., & Haug, G. H. ( 2014 ). Migrations and dynamics of the intertropical convergence zone. Nature, 513 ( 7516 ), 45 – 53. https://doi.org/10.1038/nature13636 Schubert, C. J., & Calvert, S. E. ( 2001 ). Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep Sea Research, Part I, 48 ( 3 ), 789 – 810. https://doi.org/10.1016/S0967‐0637(00)00069‐8 Sigman, D. M., Karsh, K. L., & Casciotti, K. L. ( 2009a ). Nitrogen isotopes in the ocean, Encyclopedia of Ocean Sciences (Second Edition) (pp. 40 – 54 ). Oxford: Academic Press. https://doi.org/10.1016/B978‐012374473‐9.00632‐9 Sigman, D. M., Karsh, K. L., & Casciotti, K. L. ( 2009b ). Ocean process tracers: nitrogen isotopes in the ocean. Strub, P. T., & James, C. ( 2003 ). Altimeter estimates of anomalous transports into the northern California Current during 2000–2002. Geophysical Research Letters, 30 ( 15 ), 8025. https://doi.org/10.1029/2003GL017513 Sydeman, W. J., Thompson, S. A., Field, J. C., Peterson, W. T., Tanasichuk, R. W., Freeland, H. J., Bograd, S. J., & Rykaczewski, R. R. ( 2011 ). Does positioning of the North Pacific Current affect downstream ecosystem productivity? Geophysical Research Letters, 38, L12606. https://doi.org/10.1029/2011GL047212 Taylor, A. G., Landry, M. R., Selph, K. E., & Wokuluk, J. J. ( 2015 ). Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 112, 117 – 128. https://doi.org/10.1016/j.dsr2.2014.02.006 Thunell, R., Benitez‐Nelson, C., Varela, R., Astor, Y., & Muller‐Karger, F. ( 2007 ). Particulate organic carbon fluxes along upwelling‐dominated continental margins: Rates and mechanisms. Global Biogeochemical Cycles, 21, GB1022. https://doi.org/10.1029/2006GB002793 Thunell, R. C. ( 1998a ). Particle fluxes in a coastal upwelling zone: sediment trap results from Santa Barbara Basin, California. Deep Sea Research Part II: Topical Studies in Oceanography, 45 ( 8‐9 ), 1863 – 1884. https://doi.org/10.1016/S0967‐0645(98)80020‐9 Thunell, R. C. ( 1998b ). Seasonal and annual variability in particle fluxes in the Gulf of California: A response to climate forcing. Deep Sea Research Part I: Oceanographic Research Papers, 45 ( 12 ), 2059 – 2083. https://doi.org/10.1016/S0967‐0637(98)00053‐3 Thunell, R. C., Sigman, D. M., Muller‐Karger, F., Astor, Y., & Varela, R. ( 2004 ). Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Global Biogeochemical Cycles, 18, GB3001. https://doi.org/10.1029/2003GB002185 Thunell, R. C., Tappa, E. J., & Andersen, D. M. ( 1995 ). Sediment fluxes and varve formation in Santa Barbara Basin, offshore California. Geology, 23 ( 12 ), 1083 – 1086. https://doi.org/10.1130/0091‐7613(1995)023<1083:SFAVFI>2.3.CO;2 Torrence, C., & Compo, G. P. ( 1997 ). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79 ( 1 ), 61 – 78. Warrick, J. A., & Farnsworth, K. L. ( 2009a ). Dispersal of river sediment in the Southern California Bight. The Geological Society of America Special Papers, 454, 53 – 67. Warrick, J. A., & Farnsworth, K. L. ( 2009b ). Sources of sediment to the coastal waters of the Southern California Bight. The Geological Society of America Special Papers, 454, 39 – 52. Xie, S.‐P. ( 1994 ). Oceanic response to the wind forcing associated with the Intertropical Convergence Zone in the Northern Hemisphere. Journal of Geophysical Research, 99 ( C10 ), 20,393. https://doi.org/10.1029/94JC01653 Canfield, D. E., Thamdrup, B., & Hansen, J. W. ( 1993 ). The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57 ( 16 ), 3867 – 3883. https://doi.org/10.1016/0016‐7037(93)90340‐3 Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., & Hilkert, A. ( 2002 ). Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74 ( 19 ), 4905 – 4912. https://doi.org/10.1021/ac020113w Checkley, D. M., & Barth, J. A. ( 2009 ). Patterns and processes in the California Current System. Progress in Oceanography, 83 ( 1‐4 ), 49 – 64. https://doi.org/10.1016/j.pocean.2009.07.028 Agnihotri, R., Altabet, M. A., Herbert, T. D., & Tierney, J. E. ( 2008 ). Subdecadally resolved paleoceanography of the Peru margin during the last two millennia. Geochemistry, Geophysics, Geosystems, 9, Q05013. https://doi.org/10.1029/2007GC001744 Altabet, M. ( 2006a ). Constraints on oceanic N balance/imbalance from sedimentary 15N records. Biogeosciences Discussions, 3 ( 4 ), 1121 – 1155. https://doi.org/10.5194/bgd‐3‐1121‐2006 Altabet, M. A. ( 2006b ). Isotopic tracers of the marine nitrogen cycle: Present and past. The Handbook of Environmental Chemistry, 2N, 251 – 293. https://doi.org/10.1007/698_2_008 Altabet, M. A., & François, R. ( 1994 ). Sedimentary nitrogen isotopic ratio as a recorder for surface nitrate utilization. Global Biogeochemical Cycles, 8 ( 1 ), 103 – 116. https://doi.org/10.1029/93GB03396 Altabet, M. A., Francois, R., Murray, D. W., & Prell, W. L. ( 1995 ). Climate‐related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature, 373 ( 6514 ), 506 – 509. https://doi.org/10.1038/373506a0 Altabet, M. A., Murray, D. W., & Prell, W. L. ( 1999 ). Climatically linked oscillations in Arabian Sea denitrification over the past 1 m.y.: Implications for the marine N cycle. Paleoceanography, 14 ( 6 ), 732 – 743. https://doi.org/10.1029/1999PA900035 Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., & Francois, R. ( 1999 ). The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Research, Part I, 46 ( 4 ), 655 – 679. https://doi.org/10.1016/S0967‐0637(98)00084‐3 Bakun, A., 1973. Coastal upwelling indices, West Coast of North America, 1946‐71, NOAA, Seattle. Barron, J. A., & Bukry, D. ( 2007 ). Development of the California Current during the past 12,000 yr based on diatoms and silicoflagellates. Palaeogeography, Palaeoclimatology, Palaeoecology, 248 ( 3‐4 ), 313 – 338. https://doi.org/10.1016/j.palaeo.2006.12.009 Barron, J. A., Bukry, D., & Hendy, I. L. ( 2015 ). High‐resolution paleoclimatology of the Santa Barbara Basin during the Medieval Climate Anomaly and early Little Ice Age based on diatom and silicoflagellate assemblages in Kasten core SPR0901‐02KC. Quaternary International, 387, 13 – 22. https://doi.org/10.1016/j.quaint.2014.04.020 Blaauw, M., & Christen, J. A. ( 2011 ). Flexible paleoclimate age‐depth models using an autoregressive gamma process. Bayesian Analysis, 6 ( 3 ), 457 – 474. Bograd, S. J., & Lynn, R. J. ( 2003 ). Anomalous subarctic influence in the southern California Current during 2002. Geophysical Research Letters, 30 ( 15 ), 8020. https://doi.org/10.1029/2003GL017446 Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, D. A., & Naqvi, S. W. A. ( 1998 ). Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnology and Oceanography, 43 ( 7 ), 1680 – 1689. https://doi.org/10.4319/lo.1998.43.7.1680 Broccoli, A. J., Dahl, K. A., & Stouffer, R. J. ( 2006 ). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters, 33, L01702 n/a‐n/a. https://doi.org/10.1029/2005GL024546 Brown, E. T., Johnson, T. C., Scholz, C. A., Cohen, A. S., & King, J. W. ( 2007 ). Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophysical Research Letters, 34, L20702. https://doi.org/10.1029/2007GL031240 Bruland, K. W., Rue, E. L., & Smith, G. J. ( 2001 ). Iron and macronutrients in California coastal upwelling regimes: Implications for diatom blooms. Limnology and Oceanography, 46 ( 7 ), 1661 – 1674. https://doi.org/10.4319/lo.2001.46.7.1661 Canfield, D. E. ( 1994 ). Factors influencing organic carbon preservation in marine sediments. Chemical Geology, 114 ( 3‐4 ), 315 – 329. https://doi.org/10.1016/0009‐2541(94)90061‐2 Chelton, D.B., 1981. Interannual variability of the California Current—Physical factors. IndexNoFollow California margin ITCZ upwelling denitrification Geological Sciences Science Article 2019 ftumdeepblue https://doi.org/10.1029/2019PA00357710.1016/S0967‐0645(98)80020‐910.1016/S0967‐0637(98)00053‐310.1029/94JC0165310.5194/bgd‐3‐1121‐200610.1007/698_2_00810.1016/0009‐2541(94)90061‐210.1029/JC089iC03p0347310.1038/ngeo179710.1029/2002GL01666310.1016/0079‐6611 2023-07-31T20:52:13Z Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water column denitrification. When combined with additional productivity proxies, it provides insights into the driving forces behind long‐term changes in water column oxygenation. High‐resolution (~2 years) δ15Nsed and productivity proxy records (total organic carbon [TOC], Si/Ti, and Ca/Ti) from Santa Barbara Basin, California, were generated from a well‐dated Kasten core (SPR0901‐03KC). These records reveal the relationship between Southern California upwelling and oxygenation over the past 2,000 years. Inconsistencies between Si/Ti (coastal upwelling proxy) and TOC (total export productivity proxy) suggest wind curl upwelling influenced Southern California primary productivity, especially during intervals of weak coastal upwelling. Coherence between δ15Nsed, TOC, and drought indicators supports a local control of δ15Nsed by atmospheric circulation, as persistent northerly winds associated with an intensified North Pacific High pressure cell lead to enhanced coastal upwelling. In the northeast Pacific, δ15Nsed is used as a water mass tracer of denitrification signals transported north from the eastern tropical North Pacific (ETNP) via the California Undercurrent. A 1,200‐year δ15Nsed record from the Pescadero slope, Gulf of California, lies between denitrifying subsurface waters in the ETNP and Southern California. During the Medieval Climate Anomaly, coherence between Pescadero and Santa Barbara Basin δ15Nsed indicates connections between ETNP and Southern California on centennial timescales. Yet an out‐of‐phase relationship occurred when the Aleutian Low was anomalously strong during the Little Ice Age. We suggest intensified nutrient‐rich subarctic water advection might have transported high‐15N nitrate into Southern California when the California Undercurrent and ETNP denitrification weakened.Key PointsWind curl upwelling contributes to Southern California primary productivity, especially during weak coastal upwelling intervalsIntensified ... Article in Journal/Newspaper aleutian low Arctic Subarctic University of Michigan: Deep Blue Curl ENVELOPE(-63.071,-63.071,-70.797,-70.797) Pacific Quaternary Research 8 2 154 179