Global Modeling of Secondary Organic Aerosol With Organic Nucleation

Organic nucleation has been identified as an important way to form secondary organic aerosol (SOA) and change the number concentration of aerosol and thus its climate effect. A global atmospheric chemistry model is developed to include a comprehensive organic nucleation scheme that includes heteromo...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Zhu, Jialei, Penner, Joyce E.
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 2019
Subjects:
Online Access:http://hdl.handle.net/2027.42/151313
https://doi.org/10.1029/2019JD030414
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151313
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic atmospheric modelling
organic nucleation
Secondary organic aerosol
Atmospheric and Oceanic Sciences
Science
spellingShingle atmospheric modelling
organic nucleation
Secondary organic aerosol
Atmospheric and Oceanic Sciences
Science
Zhu, Jialei
Penner, Joyce E.
Global Modeling of Secondary Organic Aerosol With Organic Nucleation
topic_facet atmospheric modelling
organic nucleation
Secondary organic aerosol
Atmospheric and Oceanic Sciences
Science
description Organic nucleation has been identified as an important way to form secondary organic aerosol (SOA) and change the number concentration of aerosol and thus its climate effect. A global atmospheric chemistry model is developed to include a comprehensive organic nucleation scheme that includes heteromolecular nucleation of sulfuric acid and organics, neutral pure organic nucleation, and ion‐induced pure organic nucleation. Our model simulation shows reasonable agreement with the seasonal as well as spatial pattern of organic carbon concentration in America, while it fails to predict the seasonal pattern of organic carbon in Europe due to the lack of sharp increases in primary organic aerosol emissions in the winter. Including organic nucleation decreases the bias of the annual average particle number concentration at 54% of the available observation sites and increases the temporal correlation coefficients at 58% of the sites. Ion‐induced pure organic nucleation contributes the most to the total organic nucleation rate, which peaks around 400 hPa in the tropics. Heteromolecular nucleation of sulfuric acid and organics dominates the total organic nucleation rate in the summer and mostly occurs in the lower troposphere. The number concentration of particles formed from organic nucleation (newSOA) in the nucleation and Aitken modes is highest in the tropics, while accumulation mode newSOA is highest in the Northern Hemisphere due to growth as a result of the condensation of sulfate. Three sensitivity experiments suggest that more studies are needed to investigate the formation mechanism of newSOA, so that a more accurate simulation of the spatial and size distribution of newSOA can be developed.Key PointsA new version of the CESM/IMPACT atmospheric model is developed to include three organic nucleation schemesIncluding organic nucleation improves the model’s ability to simulate aerosol number concentrationIon‐induced pure organic nucleation is the largest contributor to the global new organic particle formation Peer ...
format Article in Journal/Newspaper
author Zhu, Jialei
Penner, Joyce E.
author_facet Zhu, Jialei
Penner, Joyce E.
author_sort Zhu, Jialei
title Global Modeling of Secondary Organic Aerosol With Organic Nucleation
title_short Global Modeling of Secondary Organic Aerosol With Organic Nucleation
title_full Global Modeling of Secondary Organic Aerosol With Organic Nucleation
title_fullStr Global Modeling of Secondary Organic Aerosol With Organic Nucleation
title_full_unstemmed Global Modeling of Secondary Organic Aerosol With Organic Nucleation
title_sort global modeling of secondary organic aerosol with organic nucleation
publisher Elsevier
publishDate 2019
url http://hdl.handle.net/2027.42/151313
https://doi.org/10.1029/2019JD030414
long_lat ENVELOPE(-44.516,-44.516,-60.733,-60.733)
geographic Aitken
geographic_facet Aitken
genre Arctic
genre_facet Arctic
op_relation Zhu, Jialei; Penner, Joyce E. (2019). "Global Modeling of Secondary Organic Aerosol With Organic Nucleation." Journal of Geophysical Research: Atmospheres 124(14): 8260-8286.
2169-897X
2169-8996
http://hdl.handle.net/2027.42/151313
doi:10.1029/2019JD030414
Journal of Geophysical Research: Atmospheres
Shrivastava, M., Lane, T. E., Donahue, N. M., Pandis, S. N., & Robinson, A. L. ( 2008 ). Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. Journal of Geophysical Research, 113, D18301. https://doi.org/10.1029/2007JD009735
Sihto, S. L., Kulmala, M., Kerminen, V. M., Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen, H., Arnold, F., Janson, R., Boy, M., Laaksonen, A., & Lehtinen, K. E. J. ( 2006 ). Atmospheric sulphuric acid and aerosol formation: Implications from atmospheric measurements for nucleation and early growth mechanisms. Atmospheric Chemistry and Physics, 6 ( 12 ), 4079 – 4091. https://doi.org/10.5194/acp‐6‐4079‐2006
Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S., Ogren, J. A., Andrews, E., Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N., Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O’Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M., Talbot, R., & Sun, J. ( 2010 ). Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmospheric Chemistry and Physics, 10 ( 10 ), 4775 – 4793. https://doi.org/10.5194/acp‐10‐4775‐2010
Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., & Seinfeld, J. H. ( 2007 ). Effect of acidity on secondary organic aerosol formation from isoprene. Environmental Science & Technology, 41 ( 15 ), 5363 – 5369. https://doi.org/10.1021/es0704176
Szidat, S., Prevot, A. S. H., Sandradewi, J., Alfarra, M. R., Synal, H. A., Wacker, L., & Baltensperger, U. ( 2007 ). Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophysical Research Letters, 34, L05820. https://doi.org/10.1029/2006GL028325
Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y., Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., Kirkevåg, A., Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J. J., Müller, J. F., Myhre, G., Myriokefalitakis, S., Ng, N. L., O'Donnell, D., Penner, J. E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., & Zhang, X. ( 2014 ). The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 14 ( 19 ), 10845 – 10895. https://doi.org/10.5194/acp‐14‐10845‐2014
Turpin, B. J., & Lim, H. J. ( 2001 ). Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology, 35 ( 1 ), 602 – 610. https://doi.org/10.1080/02786820119445
Usoskin, I. G., & Kovaltsov, G. A. ( 2006 ). Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. Journal of Geophysical Research, 111, D21206. https://doi.org/10.1029/2006JD007150
Wang, J., Krejci, R., Giangrande, S., Kuang, C., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Comstock, J., Ditas, F., Lavric, J., Manninen, H. E., Mei, F., Moran‐Zuloaga, D., Pöhlker, C., Pöhlker, M. L., Saturno, J., Schmid, B., Souza, R. A. F., Springston, S. R., Tomlinson, J. M., Toto, T., Walter, D., Wimmer, D., Smith, J. N., Kulmala, M., Machado, L. A. T., Artaxo, P., Andreae, M. O., Petäjä, T., & Martin, S. T. ( 2016 ). Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature, 539 ( 7629 ), 416 – 419. https://doi.org/10.1038/nature19819
Wang, M., & Penner, J. E. ( 2009 ). Aerosol indirect forcing in a global model with particle nucleation. Atmospheric Chemistry and Physics, 9 ( 1 ), 239 – 260. https://doi.org/10.5194/acp‐9‐239‐2009
Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J., & Jefferson, A. ( 1997 ). Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. Journal of Geophysical Research, 102 ( D4 ), 4375 – 4385. https://doi.org/10.1029/96JD03656
Yasmeen, F., Vermeylen, R., Szmigielski, R., Iinuma, Y., Boge, O., Herrmann, H., Maenhaut, W., & Claeys, M. ( 2010 ). Terpenylic acid and related compounds: Precursors for dimers in secondary organic aerosol from the ozonolysis of alpha‐ and beta‐pinene. Atmospheric Chemistry and Physics, 10 ( 19 ), 9383 – 9392. https://doi.org/10.5194/acp‐10‐9383‐2010
Yu, F., Wang, Z., Luo, G., & Turco, R. ( 2008 ). Ion‐mediated nucleation as an important global source of tropospheric aerosols. Atmospheric Chemistry and Physics, 8 ( 9 ), 2537 – 2554. https://doi.org/10.5194/acp‐8‐2537‐2008
Yu, F. Q. ( 2010 ). Ion‐mediated nucleation in the atmosphere: Key controlling parameters, implications, and look‐up table. Journal of Geophysical Research, 115, D03206. https://doi.org/10.1029/2009JD012630
Yu, H., Ortega, J., Smith, J. N., Guenther, A. B., Kanawade, V. P., You, Y., Liu, Y., Hosman, K., Karl, T., Seco, R., Geron, C., Pallardy, S. G., Gu, L., Mikkilä, J., & Lee, S. H. ( 2014 ). New particle formation and growth in an isoprene‐dominated Ozark Forest: From sub‐5 nm to CCN‐active sizes. Aerosol Science and Technology, 48 ( 12 ), 1285 – 1298. https://doi.org/10.1080/02786826.2014.984801
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., & Worsnop, D. R. ( 2007 ). Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 34, L13801. https://doi.org/10.1029/2007GL029979
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R., & Sun, Y. L. ( 2011 ). Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: A review. Analytical and Bioanalytical Chemistry, 401 ( 10 ), 3045 – 3067. https://doi.org/10.1007/s00216‐011‐5355‐y
Zhang, X., McVay, R. C., Huang, D. D., Dalleska, N. F., Aumont, B., Flagan, R. C., & Seinfeld, J. H. ( 2015 ). Formation and evolution of molecular products in alpha‐pinene secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 46 ), 14168 – 14173. https://doi.org/10.1073/pnas.1517742112
Zhao, D. F., Schmitt, S. H., Wang, M., Acir, I.‐H., Tillmann, R., Tan, Z., Novelli, A., Fuchs, H., Pullinen, I., Wegener, R., Rohrer, F., Wildt, J., Kiendler‐Scharr, A., Wahner, A., & Mentel, T. F. ( 2018 ). Effects of NO x and SO 2 on the secondary organic aerosol formation from photooxidation of alpha‐pinene and limonene. Atmospheric Chemistry and Physics, 18 ( 3 ), 1611 – 1628. https://doi.org/10.5194/acp‐18‐1611‐2018
Zhou, C., & Penner, J. E. ( 2014 ). Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative? Journal of Geophysical Research: Atmospheres, 119, 11,303 – 11,320. https://doi.org/10.1002/2014JD021914
Ziemann, P. J. ( 2002 ). Evidence for low‐volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O‐3 with cyclohexene and homologous compounds. The Journal of Physical Chemistry. A, 106 ( 17 ), 4390 – 4402. https://doi.org/10.1021/jp012925m
Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias‐Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran‐Zuloaga, D., Nelson, B. W., Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C. U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M., de Souza, R. A. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F., Wolff, S., & Yáñez‐Serrano, A. M. ( 2015 ). The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 15 ( 18 ), 10723 – 10776. https://doi.org/10.5194/acp‐15‐10723‐2015
Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., Costa, A., Dollner, M., Fütterer, D., Järvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Krämer, M., Krisna, T., Machado, L. A. T., Mertes, S., Minikin, A., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., Sauer, D., Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., Weinzierl, B., Wendisch, M., & Ziereis, H. ( 2018 ). Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmospheric Chemistry and Physics, 18 ( 2 ), 921 – 961. https://doi.org/10.5194/acp‐18‐921‐2018
Apsokardu, M. J., & Johnston, M. V. ( 2018 ). Nanoparticle growth by particle‐phase chemistry. Atmospheric Chemistry and Physics, 18 ( 3 ), 1895 – 1907. https://doi.org/10.5194/acp‐18‐1895‐2018
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., & Klimont, Z. ( 2004 ). A technology‐based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 109, D14203. https://doi.org/10.1029/2003JD003697
Boy, M., Karl, T., Turnipseed, A., Mauldin, R. L., Kosciuch, E., Greenberg, J., Rathbone, J., Smith, J., Held, A., Barsanti, K., Wehner, B., Bauer, S., Wiedensohler, A., Bonn, B., Kulmala, M., & Guenther, A. ( 2008 ). New particle formation in the Front Range of the Colorado Rocky Mountains. Atmospheric Chemistry and Physics, 8 ( 6 ), 1577 – 1590. https://doi.org/10.5194/acp‐8‐1577‐2008
Burkart, J., Hodshire, A. L., Mungall, E. L., Pierce, J. R., Collins, D. B., Ladino, L. A., Lee, A. K. Y., Irish, V., Wentzell, J. J. B., Liggio, J., Papakyriakou, T., Murphy, J., & Abbatt, J. ( 2017 ). Organic condensation and particle growth to CCN sizes in the summertime marine arctic is driven by materials more semivolatile than at continental sites. Geophysical Research Letters, 44, 10,725 – 710,734. https://doi.org/10.1002/2017GL075671
Bzdek, B. R., & Johnston, M. V. ( 2010 ). New particle formation and growth in the troposphere. Analytical Chemistry, 82 ( 19 ), 7871 – 7878. https://doi.org/10.1021/ac100856j
Chen, M., Titcombe, M., Jiang, J., Jen, C., Kuang, C., Fischer, M. L., Eisele, F. L., Siepmann, J. I., Hanson, D. R., Zhao, J., & McMurry, P. H. ( 2012 ). Acid‐base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 46 ), 18713 – 18718. https://doi.org/10.1073/pnas.1210285109
Chen, Q., Fu, T. M., Hu, J. L., Ying, Q., & Zhang, L. ( 2017 ). Modelling secondary organic aerosols in China. National Science Review, 4 ( 6 ), 806 – 809. https://doi.org/10.1093/nsr/nwx143
Claeys, M., Iinuma, Y., Szmigielski, R., Surratt, J. D., Blockhuys, F., van Alsenoy, C., Böge, O., Sierau, B., Gómez‐González, Y., Vermeylen, R., van der Veken, P., Shahgholi, M., Chan, A. W. H., Herrmann, H., Seinfeld, J. H., & Maenhaut, W. ( 2009 ). Terpenylic acid and related compounds from the oxidation of alpha‐pinene: Implications for new particle formation and growth above forests. Environmental Science & Technology, 43 ( 18 ), 6976 – 6982. https://doi.org/10.1021/es9007596
Dunne, E. M., Gordon, H., Kurten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J., Kirkby, J., Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov, V., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A., Reddington, C. L. S., Riccobono, F., Richards, N. A. D., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M., Sipila, M., Smith, J. N., Stozkhov, Y., Tome, A., Trostl, J., Wagner, P. E., Wimmer, D., Winkler, P. M., Worsnop, D. R., & Carslaw, K. S. ( 2016 ). Global atmospheric particle formation from CERN CLOUD measurements. Science, 354 ( 6316 ), 1119 – 1124. https://doi.org/10.1126/science.aaf2649
Ehn, M., Kleist, E., Junninen, H., Petäjä, T., Lönn, G., Schobesberger, S., Dal Maso, M., Trimborn, A., Kulmala, M., Worsnop, D. R., Wahner, A., Wildt, J., & Mentel, T. F. ( 2012 ). Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmospheric Chemistry and Physics, 12 ( 11 ), 5113 – 5127. https://doi.org/10.5194/acp‐12‐5113‐2012
Zhu, J., Penner, J. E., Lin, G., Zhou, C., Xu, L., & Zhuang, B. ( 2017 ). Mechanism of SOA formation determines magnitude of radiative effects. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 48 ), 12685 – 12690. https://doi.org/10.1073/pnas.1712273114
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez‐Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt, J., & Mentel, T. F. ( 2014 ). A large source of low‐volatility secondary organic aerosol. Nature, 506 ( 7489 ), 476 – 479. https://doi.org/10.1038/nature13032
Ervens, B., Turpin, B. J., & Weber, R. J. ( 2011 ). Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmospheric Chemistry and Physics, 11 ( 21 ), 11069 – 11102. https://doi.org/10.5194/acp‐11‐11069‐2011
Gaston, C. J., Riedel, T. P., Zhang, Z. F., Gold, A., Surratt, J. D., & Thornton, J. A. ( 2014 ). Reactive uptake of an isoprene‐derived epoxydiol to submicron aerosol particles. Environmental Science & Technology, 48 ( 19 ), 11178 – 11186. https://doi.org/10.1021/es5034266
Gelencser, A., May, B., Simpson, D., Sanchez‐Ochoa, A., Kasper‐Giebl, A., Puxbaum, H., Caseiro, A., Pio, C., & Legrand, M. ( 2007 ). Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal of Geophysical Research, 112, D23S04. https://doi.org/10.1029/2006JD008094
Gilardoni, S., Vignati, E., Cavalli, F., Putaud, J. P., Larsen, B. R., Karl, M., Stenstrom, K., Genberg, J., Henne, S., & Dentener, F. ( 2011 ). Better constraints on sources of carbonaceous aerosols using a combined C‐14 ‐ macro tracer analysis in a European rural background site. Atmospheric Chemistry and Physics, 11 ( 12 ), 5685 – 5700. https://doi.org/10.5194/acp‐11‐5685‐2011
Glasius, M., Bering, M. S., Yee, L. D., de Sá, S. S., Isaacman‐VanWertz, G., Wernis, R. A., Barbosa, H. M. J., Alexander, M. L., Palm, B. B., Hu, W., Campuzano‐Jost, P., Day, D. A., Jimenez, J. L., Shrivastava, M., Martin, S. T., & Goldstein, A. H. ( 2018 ). Organosulfates in aerosols downwind of an urban region in central Amazon. Environmental Science: Processes & Impacts, 20 ( 11 ), 1546 – 1558. https://doi.org/10.1039/c8em00413g
Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Tröstl, J., Nieminen, T., Ortega, I. K., Wagner, R., Dunne, E. M., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J. S., Dias, A., Ehrhart, S., Fischer, L., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Kirkby, J., Krapf, M., Kürten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Monks, S. A., Onnela, A., Peräkylä, O., Piel, F., Petäjä, T., Praplan, A. P., Pringle, K. J., Richards, N. A. D., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sharma, S., Sipilä, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tomé, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Curtius, J., & Carslaw, K. S. ( 2016 ). Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 113 ( 43 ), 12053 – 12058. https://doi.org/10.1073/pnas.1602360113
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. ( 2012 ). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5 ( 6 ), 1471 – 1492. https://doi.org/10.5194/gmd‐5‐1471‐2012
Häkkinen, S. A. K., Äijälä, M., Lehtipalo, K., Junninen, H., Backman, J., Virkkula, A., Nieminen, T., Vestenius, M., Hakola, H., Ehn, M., Worsnop, D. R., Kulmala, M., Petäjä, T., & Riipinen, I. ( 2012 ). Long‐term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland. Atmospheric Chemistry and Physics, 12 ( 22 ), 10771 – 10786. https://doi.org/10.5194/acp‐12‐10771‐2012
Hall, W. A., & Johnston, M. V. ( 2011 ). Oligomer content of alpha‐pinene secondary organic aerosol. Aerosol Science and Technology, 45 ( 1 ), 37 – 45. https://doi.org/10.1080/02786826.2010.517580
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2019JD03041410.1029/2009JD01263010.1021/jp012925m
container_title Journal of Geophysical Research: Atmospheres
container_volume 124
container_issue 14
container_start_page 8260
op_container_end_page 8286
_version_ 1774713619033882624
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/151313 2023-08-20T04:03:13+02:00 Global Modeling of Secondary Organic Aerosol With Organic Nucleation Zhu, Jialei Penner, Joyce E. 2019-07-27 application/pdf http://hdl.handle.net/2027.42/151313 https://doi.org/10.1029/2019JD030414 unknown Elsevier Wiley Periodicals, Inc. Zhu, Jialei; Penner, Joyce E. (2019). "Global Modeling of Secondary Organic Aerosol With Organic Nucleation." Journal of Geophysical Research: Atmospheres 124(14): 8260-8286. 2169-897X 2169-8996 http://hdl.handle.net/2027.42/151313 doi:10.1029/2019JD030414 Journal of Geophysical Research: Atmospheres Shrivastava, M., Lane, T. E., Donahue, N. M., Pandis, S. N., & Robinson, A. L. ( 2008 ). Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. Journal of Geophysical Research, 113, D18301. https://doi.org/10.1029/2007JD009735 Sihto, S. L., Kulmala, M., Kerminen, V. M., Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen, H., Arnold, F., Janson, R., Boy, M., Laaksonen, A., & Lehtinen, K. E. J. ( 2006 ). Atmospheric sulphuric acid and aerosol formation: Implications from atmospheric measurements for nucleation and early growth mechanisms. Atmospheric Chemistry and Physics, 6 ( 12 ), 4079 – 4091. https://doi.org/10.5194/acp‐6‐4079‐2006 Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S., Ogren, J. A., Andrews, E., Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N., Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O’Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M., Talbot, R., & Sun, J. ( 2010 ). Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmospheric Chemistry and Physics, 10 ( 10 ), 4775 – 4793. https://doi.org/10.5194/acp‐10‐4775‐2010 Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., & Seinfeld, J. H. ( 2007 ). Effect of acidity on secondary organic aerosol formation from isoprene. Environmental Science & Technology, 41 ( 15 ), 5363 – 5369. https://doi.org/10.1021/es0704176 Szidat, S., Prevot, A. S. H., Sandradewi, J., Alfarra, M. R., Synal, H. A., Wacker, L., & Baltensperger, U. ( 2007 ). Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophysical Research Letters, 34, L05820. https://doi.org/10.1029/2006GL028325 Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y., Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., Kirkevåg, A., Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J. J., Müller, J. F., Myhre, G., Myriokefalitakis, S., Ng, N. L., O'Donnell, D., Penner, J. E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost, H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., & Zhang, X. ( 2014 ). The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 14 ( 19 ), 10845 – 10895. https://doi.org/10.5194/acp‐14‐10845‐2014 Turpin, B. J., & Lim, H. J. ( 2001 ). Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology, 35 ( 1 ), 602 – 610. https://doi.org/10.1080/02786820119445 Usoskin, I. G., & Kovaltsov, G. A. ( 2006 ). Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. Journal of Geophysical Research, 111, D21206. https://doi.org/10.1029/2006JD007150 Wang, J., Krejci, R., Giangrande, S., Kuang, C., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Comstock, J., Ditas, F., Lavric, J., Manninen, H. E., Mei, F., Moran‐Zuloaga, D., Pöhlker, C., Pöhlker, M. L., Saturno, J., Schmid, B., Souza, R. A. F., Springston, S. R., Tomlinson, J. M., Toto, T., Walter, D., Wimmer, D., Smith, J. N., Kulmala, M., Machado, L. A. T., Artaxo, P., Andreae, M. O., Petäjä, T., & Martin, S. T. ( 2016 ). Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature, 539 ( 7629 ), 416 – 419. https://doi.org/10.1038/nature19819 Wang, M., & Penner, J. E. ( 2009 ). Aerosol indirect forcing in a global model with particle nucleation. Atmospheric Chemistry and Physics, 9 ( 1 ), 239 – 260. https://doi.org/10.5194/acp‐9‐239‐2009 Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J., & Jefferson, A. ( 1997 ). Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. Journal of Geophysical Research, 102 ( D4 ), 4375 – 4385. https://doi.org/10.1029/96JD03656 Yasmeen, F., Vermeylen, R., Szmigielski, R., Iinuma, Y., Boge, O., Herrmann, H., Maenhaut, W., & Claeys, M. ( 2010 ). Terpenylic acid and related compounds: Precursors for dimers in secondary organic aerosol from the ozonolysis of alpha‐ and beta‐pinene. Atmospheric Chemistry and Physics, 10 ( 19 ), 9383 – 9392. https://doi.org/10.5194/acp‐10‐9383‐2010 Yu, F., Wang, Z., Luo, G., & Turco, R. ( 2008 ). Ion‐mediated nucleation as an important global source of tropospheric aerosols. Atmospheric Chemistry and Physics, 8 ( 9 ), 2537 – 2554. https://doi.org/10.5194/acp‐8‐2537‐2008 Yu, F. Q. ( 2010 ). Ion‐mediated nucleation in the atmosphere: Key controlling parameters, implications, and look‐up table. Journal of Geophysical Research, 115, D03206. https://doi.org/10.1029/2009JD012630 Yu, H., Ortega, J., Smith, J. N., Guenther, A. B., Kanawade, V. P., You, Y., Liu, Y., Hosman, K., Karl, T., Seco, R., Geron, C., Pallardy, S. G., Gu, L., Mikkilä, J., & Lee, S. H. ( 2014 ). New particle formation and growth in an isoprene‐dominated Ozark Forest: From sub‐5 nm to CCN‐active sizes. Aerosol Science and Technology, 48 ( 12 ), 1285 – 1298. https://doi.org/10.1080/02786826.2014.984801 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., & Worsnop, D. R. ( 2007 ). Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 34, L13801. https://doi.org/10.1029/2007GL029979 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R., & Sun, Y. L. ( 2011 ). Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: A review. Analytical and Bioanalytical Chemistry, 401 ( 10 ), 3045 – 3067. https://doi.org/10.1007/s00216‐011‐5355‐y Zhang, X., McVay, R. C., Huang, D. D., Dalleska, N. F., Aumont, B., Flagan, R. C., & Seinfeld, J. H. ( 2015 ). Formation and evolution of molecular products in alpha‐pinene secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 46 ), 14168 – 14173. https://doi.org/10.1073/pnas.1517742112 Zhao, D. F., Schmitt, S. H., Wang, M., Acir, I.‐H., Tillmann, R., Tan, Z., Novelli, A., Fuchs, H., Pullinen, I., Wegener, R., Rohrer, F., Wildt, J., Kiendler‐Scharr, A., Wahner, A., & Mentel, T. F. ( 2018 ). Effects of NO x and SO 2 on the secondary organic aerosol formation from photooxidation of alpha‐pinene and limonene. Atmospheric Chemistry and Physics, 18 ( 3 ), 1611 – 1628. https://doi.org/10.5194/acp‐18‐1611‐2018 Zhou, C., & Penner, J. E. ( 2014 ). Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative? Journal of Geophysical Research: Atmospheres, 119, 11,303 – 11,320. https://doi.org/10.1002/2014JD021914 Ziemann, P. J. ( 2002 ). Evidence for low‐volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O‐3 with cyclohexene and homologous compounds. The Journal of Physical Chemistry. A, 106 ( 17 ), 4390 – 4402. https://doi.org/10.1021/jp012925m Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias‐Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran‐Zuloaga, D., Nelson, B. W., Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C. U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M., de Souza, R. A. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F., Wolff, S., & Yáñez‐Serrano, A. M. ( 2015 ). The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 15 ( 18 ), 10723 – 10776. https://doi.org/10.5194/acp‐15‐10723‐2015 Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., Costa, A., Dollner, M., Fütterer, D., Järvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Krämer, M., Krisna, T., Machado, L. A. T., Mertes, S., Minikin, A., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., Sauer, D., Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., Weinzierl, B., Wendisch, M., & Ziereis, H. ( 2018 ). Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmospheric Chemistry and Physics, 18 ( 2 ), 921 – 961. https://doi.org/10.5194/acp‐18‐921‐2018 Apsokardu, M. J., & Johnston, M. V. ( 2018 ). Nanoparticle growth by particle‐phase chemistry. Atmospheric Chemistry and Physics, 18 ( 3 ), 1895 – 1907. https://doi.org/10.5194/acp‐18‐1895‐2018 Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., & Klimont, Z. ( 2004 ). A technology‐based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 109, D14203. https://doi.org/10.1029/2003JD003697 Boy, M., Karl, T., Turnipseed, A., Mauldin, R. L., Kosciuch, E., Greenberg, J., Rathbone, J., Smith, J., Held, A., Barsanti, K., Wehner, B., Bauer, S., Wiedensohler, A., Bonn, B., Kulmala, M., & Guenther, A. ( 2008 ). New particle formation in the Front Range of the Colorado Rocky Mountains. Atmospheric Chemistry and Physics, 8 ( 6 ), 1577 – 1590. https://doi.org/10.5194/acp‐8‐1577‐2008 Burkart, J., Hodshire, A. L., Mungall, E. L., Pierce, J. R., Collins, D. B., Ladino, L. A., Lee, A. K. Y., Irish, V., Wentzell, J. J. B., Liggio, J., Papakyriakou, T., Murphy, J., & Abbatt, J. ( 2017 ). Organic condensation and particle growth to CCN sizes in the summertime marine arctic is driven by materials more semivolatile than at continental sites. Geophysical Research Letters, 44, 10,725 – 710,734. https://doi.org/10.1002/2017GL075671 Bzdek, B. R., & Johnston, M. V. ( 2010 ). New particle formation and growth in the troposphere. Analytical Chemistry, 82 ( 19 ), 7871 – 7878. https://doi.org/10.1021/ac100856j Chen, M., Titcombe, M., Jiang, J., Jen, C., Kuang, C., Fischer, M. L., Eisele, F. L., Siepmann, J. I., Hanson, D. R., Zhao, J., & McMurry, P. H. ( 2012 ). Acid‐base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. Proceedings of the National Academy of Sciences of the United States of America, 109 ( 46 ), 18713 – 18718. https://doi.org/10.1073/pnas.1210285109 Chen, Q., Fu, T. M., Hu, J. L., Ying, Q., & Zhang, L. ( 2017 ). Modelling secondary organic aerosols in China. National Science Review, 4 ( 6 ), 806 – 809. https://doi.org/10.1093/nsr/nwx143 Claeys, M., Iinuma, Y., Szmigielski, R., Surratt, J. D., Blockhuys, F., van Alsenoy, C., Böge, O., Sierau, B., Gómez‐González, Y., Vermeylen, R., van der Veken, P., Shahgholi, M., Chan, A. W. H., Herrmann, H., Seinfeld, J. H., & Maenhaut, W. ( 2009 ). Terpenylic acid and related compounds from the oxidation of alpha‐pinene: Implications for new particle formation and growth above forests. Environmental Science & Technology, 43 ( 18 ), 6976 – 6982. https://doi.org/10.1021/es9007596 Dunne, E. M., Gordon, H., Kurten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J., Kirkby, J., Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov, V., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A., Reddington, C. L. S., Riccobono, F., Richards, N. A. D., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M., Sipila, M., Smith, J. N., Stozkhov, Y., Tome, A., Trostl, J., Wagner, P. E., Wimmer, D., Winkler, P. M., Worsnop, D. R., & Carslaw, K. S. ( 2016 ). Global atmospheric particle formation from CERN CLOUD measurements. Science, 354 ( 6316 ), 1119 – 1124. https://doi.org/10.1126/science.aaf2649 Ehn, M., Kleist, E., Junninen, H., Petäjä, T., Lönn, G., Schobesberger, S., Dal Maso, M., Trimborn, A., Kulmala, M., Worsnop, D. R., Wahner, A., Wildt, J., & Mentel, T. F. ( 2012 ). Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmospheric Chemistry and Physics, 12 ( 11 ), 5113 – 5127. https://doi.org/10.5194/acp‐12‐5113‐2012 Zhu, J., Penner, J. E., Lin, G., Zhou, C., Xu, L., & Zhuang, B. ( 2017 ). Mechanism of SOA formation determines magnitude of radiative effects. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 48 ), 12685 – 12690. https://doi.org/10.1073/pnas.1712273114 Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez‐Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt, J., & Mentel, T. F. ( 2014 ). A large source of low‐volatility secondary organic aerosol. Nature, 506 ( 7489 ), 476 – 479. https://doi.org/10.1038/nature13032 Ervens, B., Turpin, B. J., & Weber, R. J. ( 2011 ). Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmospheric Chemistry and Physics, 11 ( 21 ), 11069 – 11102. https://doi.org/10.5194/acp‐11‐11069‐2011 Gaston, C. J., Riedel, T. P., Zhang, Z. F., Gold, A., Surratt, J. D., & Thornton, J. A. ( 2014 ). Reactive uptake of an isoprene‐derived epoxydiol to submicron aerosol particles. Environmental Science & Technology, 48 ( 19 ), 11178 – 11186. https://doi.org/10.1021/es5034266 Gelencser, A., May, B., Simpson, D., Sanchez‐Ochoa, A., Kasper‐Giebl, A., Puxbaum, H., Caseiro, A., Pio, C., & Legrand, M. ( 2007 ). Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal of Geophysical Research, 112, D23S04. https://doi.org/10.1029/2006JD008094 Gilardoni, S., Vignati, E., Cavalli, F., Putaud, J. P., Larsen, B. R., Karl, M., Stenstrom, K., Genberg, J., Henne, S., & Dentener, F. ( 2011 ). Better constraints on sources of carbonaceous aerosols using a combined C‐14 ‐ macro tracer analysis in a European rural background site. Atmospheric Chemistry and Physics, 11 ( 12 ), 5685 – 5700. https://doi.org/10.5194/acp‐11‐5685‐2011 Glasius, M., Bering, M. S., Yee, L. D., de Sá, S. S., Isaacman‐VanWertz, G., Wernis, R. A., Barbosa, H. M. J., Alexander, M. L., Palm, B. B., Hu, W., Campuzano‐Jost, P., Day, D. A., Jimenez, J. L., Shrivastava, M., Martin, S. T., & Goldstein, A. H. ( 2018 ). Organosulfates in aerosols downwind of an urban region in central Amazon. Environmental Science: Processes & Impacts, 20 ( 11 ), 1546 – 1558. https://doi.org/10.1039/c8em00413g Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Tröstl, J., Nieminen, T., Ortega, I. K., Wagner, R., Dunne, E. M., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J. S., Dias, A., Ehrhart, S., Fischer, L., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Kirkby, J., Krapf, M., Kürten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Monks, S. A., Onnela, A., Peräkylä, O., Piel, F., Petäjä, T., Praplan, A. P., Pringle, K. J., Richards, N. A. D., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sharma, S., Sipilä, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tomé, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Curtius, J., & Carslaw, K. S. ( 2016 ). Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 113 ( 43 ), 12053 – 12058. https://doi.org/10.1073/pnas.1602360113 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. ( 2012 ). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5 ( 6 ), 1471 – 1492. https://doi.org/10.5194/gmd‐5‐1471‐2012 Häkkinen, S. A. K., Äijälä, M., Lehtipalo, K., Junninen, H., Backman, J., Virkkula, A., Nieminen, T., Vestenius, M., Hakola, H., Ehn, M., Worsnop, D. R., Kulmala, M., Petäjä, T., & Riipinen, I. ( 2012 ). Long‐term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland. Atmospheric Chemistry and Physics, 12 ( 22 ), 10771 – 10786. https://doi.org/10.5194/acp‐12‐10771‐2012 Hall, W. A., & Johnston, M. V. ( 2011 ). Oligomer content of alpha‐pinene secondary organic aerosol. Aerosol Science and Technology, 45 ( 1 ), 37 – 45. https://doi.org/10.1080/02786826.2010.517580 IndexNoFollow atmospheric modelling organic nucleation Secondary organic aerosol Atmospheric and Oceanic Sciences Science Article 2019 ftumdeepblue https://doi.org/10.1029/2019JD03041410.1029/2009JD01263010.1021/jp012925m 2023-07-31T20:58:02Z Organic nucleation has been identified as an important way to form secondary organic aerosol (SOA) and change the number concentration of aerosol and thus its climate effect. A global atmospheric chemistry model is developed to include a comprehensive organic nucleation scheme that includes heteromolecular nucleation of sulfuric acid and organics, neutral pure organic nucleation, and ion‐induced pure organic nucleation. Our model simulation shows reasonable agreement with the seasonal as well as spatial pattern of organic carbon concentration in America, while it fails to predict the seasonal pattern of organic carbon in Europe due to the lack of sharp increases in primary organic aerosol emissions in the winter. Including organic nucleation decreases the bias of the annual average particle number concentration at 54% of the available observation sites and increases the temporal correlation coefficients at 58% of the sites. Ion‐induced pure organic nucleation contributes the most to the total organic nucleation rate, which peaks around 400 hPa in the tropics. Heteromolecular nucleation of sulfuric acid and organics dominates the total organic nucleation rate in the summer and mostly occurs in the lower troposphere. The number concentration of particles formed from organic nucleation (newSOA) in the nucleation and Aitken modes is highest in the tropics, while accumulation mode newSOA is highest in the Northern Hemisphere due to growth as a result of the condensation of sulfate. Three sensitivity experiments suggest that more studies are needed to investigate the formation mechanism of newSOA, so that a more accurate simulation of the spatial and size distribution of newSOA can be developed.Key PointsA new version of the CESM/IMPACT atmospheric model is developed to include three organic nucleation schemesIncluding organic nucleation improves the model’s ability to simulate aerosol number concentrationIon‐induced pure organic nucleation is the largest contributor to the global new organic particle formation Peer ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Aitken ENVELOPE(-44.516,-44.516,-60.733,-60.733) Journal of Geophysical Research: Atmospheres 124 14 8260 8286