The Spectral Dimension of Arctic Outgoing Longwave Radiation and Greenhouse Efficiency Trends From 2003 to 2016

Fourteen years of spectral fluxes derived from collocated Atmospheric Infrared Sounder (AIRS) and Clouds and the Earth’s Radiant Energy System (CERES) observations are used in conjunction with AIRS retrievals to examine the trends of zonal mean spectral outgoing longwave radiation (OLR) and greenhou...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Peterson, Colten A., Chen, Xiuhong, Yue, Qing, Huang, Xianglei
Format: Article in Journal/Newspaper
Language:unknown
Published: Harvard University Press 2019
Subjects:
Online Access:http://hdl.handle.net/2027.42/151304
https://doi.org/10.1029/2019JD030428
Description
Summary:Fourteen years of spectral fluxes derived from collocated Atmospheric Infrared Sounder (AIRS) and Clouds and the Earth’s Radiant Energy System (CERES) observations are used in conjunction with AIRS retrievals to examine the trends of zonal mean spectral outgoing longwave radiation (OLR) and greenhouse efficiency (GHE) in the Arctic. AIRS retrieved profiles are fed into a radiative transfer model to generate synthetic clear‐sky spectral OLR. Trends are derived from the simulated clear‐sky spectral OLR and GHE and then compared with their counterparts derived from collocated observations. Spectral trends in different seasons are distinctively different. March and September exhibit positive trends in spectral OLR over the far‐IR dirty window and mid‐IR window region for most of the Arctic. In contrast, spectral OLR trends in July are negative over the far‐IR dirty window and can be positive or negative in the mid‐IR window depending on the latitude. Sensitivity studies reveal that surface temperature contributes much more than atmospheric temperature and humidity to the spectral OLR and GHE trends, while the contributions from the latter two are also discernible over many spectral regions (e.g., trends in the far‐IR dirty window in March). The largest increase of spectral GHE is seen north of 80°N in March across the water vapor v2 band and far‐IR. When the secular fractional change of spectral OLR is less than that of surface spectral emission, an increase of spectral GHE can be expected. Spectral trend analyses reveal more information than broadband trend analyses alone.Key PointsObserved Arctic zonal mean trends of spectral flux and greenhouse efficiency are studied for the first timeSpectral trends are seasonally dependent and reveal more information than broadband trendsChanges in surface temperature contribute the most to overall spectral trends, but changes due to air temperature and humidity trends are discernible Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/151304/1/jgrd55648_am.pdf ...