The Expanding Footprint of Rapid Arctic Change

Arctic land ice is melting, sea ice is decreasing, and permafrost is thawing. Changes in these Arctic elements are interconnected, and most interactions accelerate the rate of change. The changes affect infrastructure, economics, and cultures of people inside and outside of the Arctic, including in...

Full description

Bibliographic Details
Main Authors: Moon, Twila A., Overeem, Irina, Druckenmiller, Matt, Holland, Marika, Huntington, Henry, Kling, George, Lovecraft, Amy Lauren, Miller, Gifford, Scambos, Ted, Schädel, Christina, Schuur, Edward A. G., Trochim, Erin, Wiese, Francis, Williams, Dee, Wong, Gifford
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2019
Subjects:
Ice
Online Access:http://hdl.handle.net/2027.42/149352
https://doi.org/10.1029/2018EF001088
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/149352
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic permafrost
land ice
coastal
climate
Arctic
sea ice
Geological Sciences
Science
spellingShingle permafrost
land ice
coastal
climate
Arctic
sea ice
Geological Sciences
Science
Moon, Twila A.
Overeem, Irina
Druckenmiller, Matt
Holland, Marika
Huntington, Henry
Kling, George
Lovecraft, Amy Lauren
Miller, Gifford
Scambos, Ted
Schädel, Christina
Schuur, Edward A. G.
Trochim, Erin
Wiese, Francis
Williams, Dee
Wong, Gifford
The Expanding Footprint of Rapid Arctic Change
topic_facet permafrost
land ice
coastal
climate
Arctic
sea ice
Geological Sciences
Science
description Arctic land ice is melting, sea ice is decreasing, and permafrost is thawing. Changes in these Arctic elements are interconnected, and most interactions accelerate the rate of change. The changes affect infrastructure, economics, and cultures of people inside and outside of the Arctic, including in temperate and tropical regions, through sea level rise, worsening storm and hurricane impacts, and enhanced warming. Coastal communities worldwide are already experiencing more regular flooding, drinking water contamination, and coastal erosion. We describe and summarize the nature of change for Arctic permafrost, land ice, and sea ice, and its influences on lower latitudes, particularly the United States. We emphasize that impacts will worsen in the future unless individuals, businesses, communities, and policy makers proactively engage in mitigation and adaptation activities to reduce the effects of Arctic changes and safeguard people and society.Key PointsRapid changes in the Arctic physical environment have substantial impacts in low and midlatitudesLoss of sea ice, land ice, and permafrost is accelerating, and these losses are further exacerbating climate changeEffects of Arctic change include rising sea level, increased coastal erosion, greater storm impacts, and ocean and atmospheric warming Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/149352/1/eft2525.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/149352/2/eft2525_am.pdf
format Article in Journal/Newspaper
author Moon, Twila A.
Overeem, Irina
Druckenmiller, Matt
Holland, Marika
Huntington, Henry
Kling, George
Lovecraft, Amy Lauren
Miller, Gifford
Scambos, Ted
Schädel, Christina
Schuur, Edward A. G.
Trochim, Erin
Wiese, Francis
Williams, Dee
Wong, Gifford
author_facet Moon, Twila A.
Overeem, Irina
Druckenmiller, Matt
Holland, Marika
Huntington, Henry
Kling, George
Lovecraft, Amy Lauren
Miller, Gifford
Scambos, Ted
Schädel, Christina
Schuur, Edward A. G.
Trochim, Erin
Wiese, Francis
Williams, Dee
Wong, Gifford
author_sort Moon, Twila A.
title The Expanding Footprint of Rapid Arctic Change
title_short The Expanding Footprint of Rapid Arctic Change
title_full The Expanding Footprint of Rapid Arctic Change
title_fullStr The Expanding Footprint of Rapid Arctic Change
title_full_unstemmed The Expanding Footprint of Rapid Arctic Change
title_sort expanding footprint of rapid arctic change
publisher Wiley Periodicals, Inc.
publishDate 2019
url http://hdl.handle.net/2027.42/149352
https://doi.org/10.1029/2018EF001088
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
Ice
permafrost
Sea ice
The Cryosphere
genre_facet Arctic
Arctic
Ice
permafrost
Sea ice
The Cryosphere
op_relation Moon, Twila A.; Overeem, Irina; Druckenmiller, Matt; Holland, Marika; Huntington, Henry; Kling, George; Lovecraft, Amy Lauren; Miller, Gifford; Scambos, Ted; Schädel, Christina
Schuur, Edward A. G.; Trochim, Erin; Wiese, Francis; Williams, Dee; Wong, Gifford (2019). "The Expanding Footprint of Rapid Arctic Change." Earth’s Future 7(3): 212-218.
2328-4277
http://hdl.handle.net/2027.42/149352
doi:10.1029/2018EF001088
Earth’s Future
Pithan, F., & Mauritsen, T. ( 2014 ). Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7, 181 – 184. https://doi.org/10.1038/ngeo2071
Jonkman, S. N., Hillen, M. M., Nicholls, R. J., Kanning, W., & van Ledden, M. ( 2013 ). Costs of adapting coastal defences to sea‐level rise— New estimates and their implications. Journal of Coastal Research, 29 ( 5 ), 1212 – 1226.
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E., Funder, S., Larsen, N. K., Bamber, J. L., Colgan, W., van den Broeke, M., Siggaard‐Andersen, M. L., Nuth, C., Schomacker, A., Andresen, C. S., Willerslev, E., & Kjær, K. H. ( 2015 ). Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 528 ( 7582 ), 396 – 400. https://doi.org/10.1038/nature16183
Larour, E., Ivins, E. R., & Adhikari, S. ( 2017 ). Should coastal planners have concern over where land ice is melting? Science Advances, 3 ( 11 ), e1700537. https://doi.org/10.1126/sciadv.1700537
Lawrence, D. M., Slater, A. G., Tomas, R. A., Holland, M. M., & Deser, C. ( 2008 ). Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophysical Research Letters, 35, L11506. https://doi.org/10.1029/2008GL033985
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., Laan‐Luijkx, I. T., van der Werf, G. R., van der Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S., & Zheng, B. ( 2018 ). Global carbon budget 2018. Earth System Science Data, 10, 2141 – 2194. https://doi.org/10.1111/j.1469‐8137.2006.01713.x
Limber, P. W., Barnard, P. L., Vitousek, S., & Erikson, L. H. ( 2018 ). A model ensemble for projecting multidecadal coastal cliff retreat during the 21st century. Journal of Geophysical Research: Earth Surface, 123, 1566 – 1589. https://doi.org/10.1029/2017JF004401
Lin, N., Emanuel, K., Oppenheimer, M., & Vanmarcke, E. ( 2012 ). Physically based assessment of hurricane surge threat under climate change. Nature Climate Change, 2, 462 – 467. https://doi.org/10.1038/NCLIMATE1389
Lindsay, R., & Schweiger, A. ( 2015 ). Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9, 269 – 283. https://doi.org/10.5194/tc‐9‐269‐2015
Manabe, S., & Stouffer, R. J. ( 1980 ). Sensitivity of a global climate model to an increase of CO 2 concentration in the atmosphere. Journal of Geophysical Research, 85 ( C10 ), 5529 – 5554. https://doi.org/10.1029/JC085iC10p05529
Mann, M. E., Rahmstorf, S., Kornhuber, K., Steinman, B. A., Miller, S. K., Petri, S., & Coumou, D. ( 2018 ). Quasi‐resonant amplification, Arctic de‐amplification, and projected changes in persistent extreme warm‐season weather events, GC11B‐03, presented at 2018 AGU Fall Meeting, Washington, DC, 10–14 Dec.
McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G., Moore, J. C., Romanovsky, V. E., Schädel, C., Schaefer, K., Schuur, E. A. G., & Zhuang, Q. ( 2018 ). The dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Science, 115, 3882 – 3887. https://doi.org/10.1073/pnas.1719903115
Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P., Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., Bothner, A., Nicolsky, D. J., & Marchenko, S. S. ( 2017 ). Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proceedings of the National Academy of Sciences, 114 ( 2 ), E122 – E131. https://doi.org/10.1073/pnas.1611056113
Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. ( 2015 ). Future coastal population growth and exposure to sea‐level rise and coastal flooding—A global assessment. PLoS ONE, 10 ( 3 ), e0118571. https://doi.org/10.1371/journal.pone.0118571
Nurse, L. A., McLean, R. F., Agard, J., Briguglio, L. P., Duvat‐Magnan, V., Pelesikoti, N., Tompkins, E., & Webb, A. ( 2014 ). Small islands. In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1613 – 1654 ). Cambridge, UK and New York: Cambridge University Press.
Overeem, I., & Syvitski, J. P. M. ( 2010 ). Shifting discharge peaks in Arctic rivers, 1977–2007. Geografiska Annaler. Series A, Physical Geography, 92 ( 2 ), 285 – 296.
Pendleton, S. L., Miller, G. H., Lifton, N., Lehman, S. J., Southon, J., Crump, S. E., & Anderson, R. S. ( 2019 ). Rapidly receding Arctic Canada glaciers revealing landscapes continuously ice‐covered for more than 40,000 years. Nature Communications, 10 ( 445 ). https://doi.org/10.1038/s41467‐019‐08307‐w
Rahmstorf, S., & Coumou, D. ( 2011 ). Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 108. https://doi.org/10.1073/pnas.1101766108
RGI Consortium ( 2017 ). Randolph Glacier Inventory—A dataset of global glacier outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA, Digital Media. https://doi.org/10.7265/N5‐RGI‐60
Roe, G. H., Baker, M. B., & Herla, F. ( 2016 ). Centennial glacier retreat as categorical evidence of regional climate change. Nature Geoscience, 10 ( 2 ), 95 – 99. https://doi.org/10.1038/ngeo2863
Romanovsky, V., Smith, S. L., Isaksen, K., Shiklomanov, N., Streletskiy, D., Kholodov, A., Christiansen, H., Drozdov, D. S., Malkova, G. V., & Marchenko, S. ( 2018 ). Terrestrial permafrost [in “State of the Climate in 2017”]. Bulletin of the American Meteorological Society, 99, S161 – S165.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., & Zimov, S. A. ( 2008 ). Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701 – 714.
Schuur, E. A. G., McGuire, A. D., Romanovsky, V., Schädel, C., & Mack, M. C. ( 2018 ). Chapter 11: Arctic and boreal carbon. In N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, et al. (Eds.), Second State of the Carbon Cycle Report (SOCCR2): A sustained assessment report (pp. 428 – 468 ). Washington, DC: U.S. Global Change Research Program. https://doi.org/10.7930/SOCCR2.2018.Ch11
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. ( 2015 ). Climate change and the permafrost carbon feedback. Nature, 520 ( 7546 ), 171 – 179. https://doi.org/10.1038/nature14338
Screen, J. A., & Simmonds, I. ( 2014 ). Amplified mid‐latitude planetary waves favor particular regional weather extremes. Nature Climate Change, 4. https://doi.org/10.1038/nclimate2271
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sorensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., & Zwally, H. J. ( 2012 ). A reconciled estimate of ice‐sheet mass balance. Science, 338 ( 6111 ), 1183 – 1189. https://doi.org/10.1126/science.1228102
Solomon, S., plattner, G.‐K., Knutti, R., & Friedlingstein, P. ( 2009 ). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 6 ), 1704 – 1709. https://doi.org/10.1073/pnas.0812721106
Strauss, B., Tebaldi, C., Kulp, S., Cutter, S., Emrich, C., Rizza, D., & Yawitz, D. ( 2014 ). “ Florida and the surging sea: A vulnerability assessment with projections for sea level rise and coastal flood risk.” Climate Central Research Report (pp. 1–58).
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G., Knoblauch, C., Romanovsky, V., Schädel, C., von Deimling, T. S., Schuur, E. A. G., Shmelev, D., Ulrich, M., & Veremeeva, A. ( 2017 ). Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth‐Science Reviews. https://doi.org/10.1016/j.earscirev.2017.07.007
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., & Meier, W. N. ( 2012 ). Trends in Arctic sea ice extent from CMIP5, CMIP3, and observations. Geophysical Research Letters, 39, L16502. https://doi.org/10.1029/2012GL052676
Stroeve, J. C., Mioduszewski, J. R., Rennermalm, A., Boisvert, L. N., Tedesco, M., & Robinson, D. ( 2017 ). Investigating the local‐scale influence of sea ice on Greenland surface melt. The Cryosphere, 11 ( 5 ), 2363 – 2381. https://doi.org/10.5194/tc‐11‐2363‐2017
Swain, D. L., Horton, D. E., Singh, D., & Diffenbaugh, N. S. ( 2016 ). Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Science Advances, 2. https://doi.org/10.1126/sciadv.1501344
Sweet, W. V., Zervas, C., Gill, S., & Park, J. C. ( 2013 ). Hurricane Sandy inundation probabilities today and tomorrow. Bulletin of the American Meteorological Society, S17 – S20.
UNISDR (United Nations Office for Disaster Risk Reduction) ( 2017 ). EM‐DAT database. Retrieved from https://www.unisdr.org/we/inform/disaster‐statistics, (accessed July 7, 2018).
Wdowinski, S., Bray, R., Kirtman, B. P., & Wu, Z. ( 2016 ). Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean and Coastal Management, 126. https://doi.org/10.1016/j.ocecoaman.2016.03.002
Wong, P. P., Losada, I. J., Gattuso, J.‐P., Hinkel, J., Khattabi, A., McInnes, K. L., Saito, Y., & Sallenger, A. ( 2014 ). Coastal systems and low‐lying areas. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 361 – 409 ). Cambridge, UK and New York: Cambridge University Press.
AMAP ( 2017 ). Snow, water, ice and permafrost in the Arctic (SWIPA) (2017) (Vol. 14, p. 269 ). Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP).
Barlow, P. M., & Reichard, E. G. ( 2010 ). Saltwater intrusion in coastal regions of North American. Hydrogeology Journal, 18 ( 247 ). https://doi.org/10.1007/s10040‐009‐0514‐3
Barnhart, K. R., Miller, C. R., Overeem, I., & Kay, J. E. ( 2015 ). Mapping the future expansion of Arctic open water. Nature Climate Change, 36, 280 – 285. https://doi.org/10.1038/nclimate2848
Barnhart, K. R., Overeem, I., & Anderson, R. S. ( 2014 ). The effect of changing sea ice on the physical vulnerability of Arctic coasts. The Cryosphere, 8 ( 5 ), 1777 – 1799.
Box, J. E., Colgan, W. T., Wouters, B., Burgess, D. O., O’Neel, S., Thomson, L. I., & Mernild, S. H. ( 2018 ). Global sea‐level contribution from Arctic land ice: 1971–2017. Environmental Research Letters, 13 ( 12 ), 125012. https://doi.org/10.1088/1748‐9326/aaf2ed
Brown, J., Ferrians, O. J., Heginbottom, J. A., & Melnikov, E. S. ( 1998 ). Circum‐Arctic map of permafrost and ground‐ice conditions. Scale: 1:10,000.000. Circum‐Pacific map series. CP‐45. Washington, DC: United States Geological Survey.
Burke, E. J., Chadburn, S. E., Huntingford, C., & Jones, C. D. ( 2018 ). CO 2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. Environmental Research Letters, 13, 024024.
Carr, J. R., Bell, H., Killick, R., & Holt, T. ( 2017 ). Exceptional retreat of Novaya Zemlya’s marine‐terminating outlet glaciers between 2000 and 2013. The Cryosphere, 11 ( 5 ), 2149 – 2174. https://doi.org/10.5194/tc‐11‐2149‐2017
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2018EF00108810.7265/N5‐RGI‐6010.5194/tc‐6‐221‐201210.1038/s41558‐018‐0127‐8
_version_ 1774713569338720256
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/149352 2023-08-20T04:03:09+02:00 The Expanding Footprint of Rapid Arctic Change Moon, Twila A. Overeem, Irina Druckenmiller, Matt Holland, Marika Huntington, Henry Kling, George Lovecraft, Amy Lauren Miller, Gifford Scambos, Ted Schädel, Christina Schuur, Edward A. G. Trochim, Erin Wiese, Francis Williams, Dee Wong, Gifford 2019-03 application/pdf http://hdl.handle.net/2027.42/149352 https://doi.org/10.1029/2018EF001088 unknown Wiley Periodicals, Inc. Arctic Monitoring and Assessment Programme (AMAP) Moon, Twila A.; Overeem, Irina; Druckenmiller, Matt; Holland, Marika; Huntington, Henry; Kling, George; Lovecraft, Amy Lauren; Miller, Gifford; Scambos, Ted; Schädel, Christina Schuur, Edward A. G.; Trochim, Erin; Wiese, Francis; Williams, Dee; Wong, Gifford (2019). "The Expanding Footprint of Rapid Arctic Change." Earth’s Future 7(3): 212-218. 2328-4277 http://hdl.handle.net/2027.42/149352 doi:10.1029/2018EF001088 Earth’s Future Pithan, F., & Mauritsen, T. ( 2014 ). Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7, 181 – 184. https://doi.org/10.1038/ngeo2071 Jonkman, S. N., Hillen, M. M., Nicholls, R. J., Kanning, W., & van Ledden, M. ( 2013 ). Costs of adapting coastal defences to sea‐level rise— New estimates and their implications. Journal of Coastal Research, 29 ( 5 ), 1212 – 1226. Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E., Funder, S., Larsen, N. K., Bamber, J. L., Colgan, W., van den Broeke, M., Siggaard‐Andersen, M. L., Nuth, C., Schomacker, A., Andresen, C. S., Willerslev, E., & Kjær, K. H. ( 2015 ). Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 528 ( 7582 ), 396 – 400. https://doi.org/10.1038/nature16183 Larour, E., Ivins, E. R., & Adhikari, S. ( 2017 ). Should coastal planners have concern over where land ice is melting? Science Advances, 3 ( 11 ), e1700537. https://doi.org/10.1126/sciadv.1700537 Lawrence, D. M., Slater, A. G., Tomas, R. A., Holland, M. M., & Deser, C. ( 2008 ). Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophysical Research Letters, 35, L11506. https://doi.org/10.1029/2008GL033985 Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Landschützer, P., Lefèvre, N., Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rödenbeck, C., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., Laan‐Luijkx, I. T., van der Werf, G. R., van der Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S., & Zheng, B. ( 2018 ). Global carbon budget 2018. Earth System Science Data, 10, 2141 – 2194. https://doi.org/10.1111/j.1469‐8137.2006.01713.x Limber, P. W., Barnard, P. L., Vitousek, S., & Erikson, L. H. ( 2018 ). A model ensemble for projecting multidecadal coastal cliff retreat during the 21st century. Journal of Geophysical Research: Earth Surface, 123, 1566 – 1589. https://doi.org/10.1029/2017JF004401 Lin, N., Emanuel, K., Oppenheimer, M., & Vanmarcke, E. ( 2012 ). Physically based assessment of hurricane surge threat under climate change. Nature Climate Change, 2, 462 – 467. https://doi.org/10.1038/NCLIMATE1389 Lindsay, R., & Schweiger, A. ( 2015 ). Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9, 269 – 283. https://doi.org/10.5194/tc‐9‐269‐2015 Manabe, S., & Stouffer, R. J. ( 1980 ). Sensitivity of a global climate model to an increase of CO 2 concentration in the atmosphere. Journal of Geophysical Research, 85 ( C10 ), 5529 – 5554. https://doi.org/10.1029/JC085iC10p05529 Mann, M. E., Rahmstorf, S., Kornhuber, K., Steinman, B. A., Miller, S. K., Petri, S., & Coumou, D. ( 2018 ). Quasi‐resonant amplification, Arctic de‐amplification, and projected changes in persistent extreme warm‐season weather events, GC11B‐03, presented at 2018 AGU Fall Meeting, Washington, DC, 10–14 Dec. McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G., Moore, J. C., Romanovsky, V. E., Schädel, C., Schaefer, K., Schuur, E. A. G., & Zhuang, Q. ( 2018 ). The dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Science, 115, 3882 – 3887. https://doi.org/10.1073/pnas.1719903115 Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P., Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., Bothner, A., Nicolsky, D. J., & Marchenko, S. S. ( 2017 ). Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proceedings of the National Academy of Sciences, 114 ( 2 ), E122 – E131. https://doi.org/10.1073/pnas.1611056113 Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. ( 2015 ). Future coastal population growth and exposure to sea‐level rise and coastal flooding—A global assessment. PLoS ONE, 10 ( 3 ), e0118571. https://doi.org/10.1371/journal.pone.0118571 Nurse, L. A., McLean, R. F., Agard, J., Briguglio, L. P., Duvat‐Magnan, V., Pelesikoti, N., Tompkins, E., & Webb, A. ( 2014 ). Small islands. In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1613 – 1654 ). Cambridge, UK and New York: Cambridge University Press. Overeem, I., & Syvitski, J. P. M. ( 2010 ). Shifting discharge peaks in Arctic rivers, 1977–2007. Geografiska Annaler. Series A, Physical Geography, 92 ( 2 ), 285 – 296. Pendleton, S. L., Miller, G. H., Lifton, N., Lehman, S. J., Southon, J., Crump, S. E., & Anderson, R. S. ( 2019 ). Rapidly receding Arctic Canada glaciers revealing landscapes continuously ice‐covered for more than 40,000 years. Nature Communications, 10 ( 445 ). https://doi.org/10.1038/s41467‐019‐08307‐w Rahmstorf, S., & Coumou, D. ( 2011 ). Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 108. https://doi.org/10.1073/pnas.1101766108 RGI Consortium ( 2017 ). Randolph Glacier Inventory—A dataset of global glacier outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA, Digital Media. https://doi.org/10.7265/N5‐RGI‐60 Roe, G. H., Baker, M. B., & Herla, F. ( 2016 ). Centennial glacier retreat as categorical evidence of regional climate change. Nature Geoscience, 10 ( 2 ), 95 – 99. https://doi.org/10.1038/ngeo2863 Romanovsky, V., Smith, S. L., Isaksen, K., Shiklomanov, N., Streletskiy, D., Kholodov, A., Christiansen, H., Drozdov, D. S., Malkova, G. V., & Marchenko, S. ( 2018 ). Terrestrial permafrost [in “State of the Climate in 2017”]. Bulletin of the American Meteorological Society, 99, S161 – S165. Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., & Zimov, S. A. ( 2008 ). Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701 – 714. Schuur, E. A. G., McGuire, A. D., Romanovsky, V., Schädel, C., & Mack, M. C. ( 2018 ). Chapter 11: Arctic and boreal carbon. In N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, et al. (Eds.), Second State of the Carbon Cycle Report (SOCCR2): A sustained assessment report (pp. 428 – 468 ). Washington, DC: U.S. Global Change Research Program. https://doi.org/10.7930/SOCCR2.2018.Ch11 Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. ( 2015 ). Climate change and the permafrost carbon feedback. Nature, 520 ( 7546 ), 171 – 179. https://doi.org/10.1038/nature14338 Screen, J. A., & Simmonds, I. ( 2014 ). Amplified mid‐latitude planetary waves favor particular regional weather extremes. Nature Climate Change, 4. https://doi.org/10.1038/nclimate2271 Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sorensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., & Zwally, H. J. ( 2012 ). A reconciled estimate of ice‐sheet mass balance. Science, 338 ( 6111 ), 1183 – 1189. https://doi.org/10.1126/science.1228102 Solomon, S., plattner, G.‐K., Knutti, R., & Friedlingstein, P. ( 2009 ). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 6 ), 1704 – 1709. https://doi.org/10.1073/pnas.0812721106 Strauss, B., Tebaldi, C., Kulp, S., Cutter, S., Emrich, C., Rizza, D., & Yawitz, D. ( 2014 ). “ Florida and the surging sea: A vulnerability assessment with projections for sea level rise and coastal flood risk.” Climate Central Research Report (pp. 1–58). Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G., Knoblauch, C., Romanovsky, V., Schädel, C., von Deimling, T. S., Schuur, E. A. G., Shmelev, D., Ulrich, M., & Veremeeva, A. ( 2017 ). Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth‐Science Reviews. https://doi.org/10.1016/j.earscirev.2017.07.007 Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., & Meier, W. N. ( 2012 ). Trends in Arctic sea ice extent from CMIP5, CMIP3, and observations. Geophysical Research Letters, 39, L16502. https://doi.org/10.1029/2012GL052676 Stroeve, J. C., Mioduszewski, J. R., Rennermalm, A., Boisvert, L. N., Tedesco, M., & Robinson, D. ( 2017 ). Investigating the local‐scale influence of sea ice on Greenland surface melt. The Cryosphere, 11 ( 5 ), 2363 – 2381. https://doi.org/10.5194/tc‐11‐2363‐2017 Swain, D. L., Horton, D. E., Singh, D., & Diffenbaugh, N. S. ( 2016 ). Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Science Advances, 2. https://doi.org/10.1126/sciadv.1501344 Sweet, W. V., Zervas, C., Gill, S., & Park, J. C. ( 2013 ). Hurricane Sandy inundation probabilities today and tomorrow. Bulletin of the American Meteorological Society, S17 – S20. UNISDR (United Nations Office for Disaster Risk Reduction) ( 2017 ). EM‐DAT database. Retrieved from https://www.unisdr.org/we/inform/disaster‐statistics, (accessed July 7, 2018). Wdowinski, S., Bray, R., Kirtman, B. P., & Wu, Z. ( 2016 ). Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean and Coastal Management, 126. https://doi.org/10.1016/j.ocecoaman.2016.03.002 Wong, P. P., Losada, I. J., Gattuso, J.‐P., Hinkel, J., Khattabi, A., McInnes, K. L., Saito, Y., & Sallenger, A. ( 2014 ). Coastal systems and low‐lying areas. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 361 – 409 ). Cambridge, UK and New York: Cambridge University Press. AMAP ( 2017 ). Snow, water, ice and permafrost in the Arctic (SWIPA) (2017) (Vol. 14, p. 269 ). Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP). Barlow, P. M., & Reichard, E. G. ( 2010 ). Saltwater intrusion in coastal regions of North American. Hydrogeology Journal, 18 ( 247 ). https://doi.org/10.1007/s10040‐009‐0514‐3 Barnhart, K. R., Miller, C. R., Overeem, I., & Kay, J. E. ( 2015 ). Mapping the future expansion of Arctic open water. Nature Climate Change, 36, 280 – 285. https://doi.org/10.1038/nclimate2848 Barnhart, K. R., Overeem, I., & Anderson, R. S. ( 2014 ). The effect of changing sea ice on the physical vulnerability of Arctic coasts. The Cryosphere, 8 ( 5 ), 1777 – 1799. Box, J. E., Colgan, W. T., Wouters, B., Burgess, D. O., O’Neel, S., Thomson, L. I., & Mernild, S. H. ( 2018 ). Global sea‐level contribution from Arctic land ice: 1971–2017. Environmental Research Letters, 13 ( 12 ), 125012. https://doi.org/10.1088/1748‐9326/aaf2ed Brown, J., Ferrians, O. J., Heginbottom, J. A., & Melnikov, E. S. ( 1998 ). Circum‐Arctic map of permafrost and ground‐ice conditions. Scale: 1:10,000.000. Circum‐Pacific map series. CP‐45. Washington, DC: United States Geological Survey. Burke, E. J., Chadburn, S. E., Huntingford, C., & Jones, C. D. ( 2018 ). CO 2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. Environmental Research Letters, 13, 024024. Carr, J. R., Bell, H., Killick, R., & Holt, T. ( 2017 ). Exceptional retreat of Novaya Zemlya’s marine‐terminating outlet glaciers between 2000 and 2013. The Cryosphere, 11 ( 5 ), 2149 – 2174. https://doi.org/10.5194/tc‐11‐2149‐2017 IndexNoFollow permafrost land ice coastal climate Arctic sea ice Geological Sciences Science Article 2019 ftumdeepblue https://doi.org/10.1029/2018EF00108810.7265/N5‐RGI‐6010.5194/tc‐6‐221‐201210.1038/s41558‐018‐0127‐8 2023-07-31T20:33:21Z Arctic land ice is melting, sea ice is decreasing, and permafrost is thawing. Changes in these Arctic elements are interconnected, and most interactions accelerate the rate of change. The changes affect infrastructure, economics, and cultures of people inside and outside of the Arctic, including in temperate and tropical regions, through sea level rise, worsening storm and hurricane impacts, and enhanced warming. Coastal communities worldwide are already experiencing more regular flooding, drinking water contamination, and coastal erosion. We describe and summarize the nature of change for Arctic permafrost, land ice, and sea ice, and its influences on lower latitudes, particularly the United States. We emphasize that impacts will worsen in the future unless individuals, businesses, communities, and policy makers proactively engage in mitigation and adaptation activities to reduce the effects of Arctic changes and safeguard people and society.Key PointsRapid changes in the Arctic physical environment have substantial impacts in low and midlatitudesLoss of sea ice, land ice, and permafrost is accelerating, and these losses are further exacerbating climate changeEffects of Arctic change include rising sea level, increased coastal erosion, greater storm impacts, and ocean and atmospheric warming Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/149352/1/eft2525.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/149352/2/eft2525_am.pdf Article in Journal/Newspaper Arctic Arctic Ice permafrost Sea ice The Cryosphere University of Michigan: Deep Blue Arctic