The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient

Animal populations vary in response to a combination of density‐dependent and density‐independent forces, which interact to drive their population dynamics. Understanding how abiotic forces mediate the form and strength of density‐dependent processes remains a central goal of ecology, and is of incr...

Full description

Bibliographic Details
Published in:Revista de Teledetección
Main Authors: Hunter, Mark D., Kozlov, Mikhail V.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2019
Subjects:
Online Access:https://hdl.handle.net/2027.42/149304
https://doi.org/10.1111/1365-2656.12930
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/149304
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic population cycles
population dynamics
climate warming
density dependence
emission decline
insect–plant relationships
Kola Peninsula
pollution
Ecology and Evolutionary Biology
Science
spellingShingle population cycles
population dynamics
climate warming
density dependence
emission decline
insect–plant relationships
Kola Peninsula
pollution
Ecology and Evolutionary Biology
Science
Hunter, Mark D.
Kozlov, Mikhail V.
The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient
topic_facet population cycles
population dynamics
climate warming
density dependence
emission decline
insect–plant relationships
Kola Peninsula
pollution
Ecology and Evolutionary Biology
Science
description Animal populations vary in response to a combination of density‐dependent and density‐independent forces, which interact to drive their population dynamics. Understanding how abiotic forces mediate the form and strength of density‐dependent processes remains a central goal of ecology, and is of increasing urgency in a rapidly changing world.Here, we report for the first time that industrial pollution determines the relative strength of rapid and delayed density dependence operating on an animal population. We explored the impacts of pollution and climate on the population dynamics of an eruptive leafmining moth, Phyllonorycter strigulatella, around a coal‐fired power plant near Apatity, north‐western Russia. Populations were monitored at 14 sites over 26 years.The relative strengths of rapid and delayed density dependence varied with distance from the power plant. Specifically, the strength of rapid density dependence increased while the strength of delayed density dependence decreased with increasing distance from the pollution source. Paralleling the increasing strength of rapid density dependence, we observed declines in the densities of P. strigulatella, increases in predation pressure from birds and ants, and declines in an unknown source of mortality (perhaps plant antibiosis) with increasing distance from the power plant.In contrast to the associations with pollution, associations between climate change and leafminer population densities were negligible.Our results may help to explain the outbreaks of insect herbivores that are frequently observed in polluted environments. We show that they can result from the weakening of rapid (stabilizing) density dependence relative to the effects of destabilizing delayed density dependence. Moreover, our results may explain some of the variation reported in published studies of animal populations in polluted habitats. Variable results may emerge in part because of the location of the study sites on different parts of pollution gradients. Finally, in a rapidly ...
format Article in Journal/Newspaper
author Hunter, Mark D.
Kozlov, Mikhail V.
author_facet Hunter, Mark D.
Kozlov, Mikhail V.
author_sort Hunter, Mark D.
title The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient
title_short The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient
title_full The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient
title_fullStr The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient
title_full_unstemmed The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient
title_sort relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient
publisher Wiley Periodicals, Inc.
publishDate 2019
url https://hdl.handle.net/2027.42/149304
https://doi.org/10.1111/1365-2656.12930
long_lat ENVELOPE(33.403,33.403,67.564,67.564)
geographic Apatity
Kola Peninsula
geographic_facet Apatity
Kola Peninsula
genre kola peninsula
North-Western Russia
genre_facet kola peninsula
North-Western Russia
op_relation Hunter, Mark D.; Kozlov, Mikhail V. (2019). "The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient." Journal of Animal Ecology 88(5): 665-676.
0021-8790
1365-2656
https://hdl.handle.net/2027.42/149304
doi:10.1111/1365-2656.12930
Journal of Animal Ecology
Perrins, C. M. ( 1979 ). British tits. London, UK: Collins.
Nicholson, A. J., & Bailey, V. A. ( 1935 ). The balance of animal populations. Part I. Proceedings of the Zoological Society of London, 105, 551 – 598. https://doi.org/10.1111/j.1096-3642.1935.tb01680.x
O’Connor, M. I. ( 2009 ). Warming strengthens an herbivore‐plant interaction. Ecology, 90, 388 – 398. https://doi.org/10.1890/08-0034.1
Parmesan, C., & Yohe, G. ( 2003 ). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37 – 42. https://doi.org/10.1038/nature01286
Price, P. W., & Hunter, M. D. ( 2005 ). Long‐term population dynamics of a sawfly show strong bottom‐up effects. Journal of Animal Ecology, 74, 917 – 925. https://doi.org/10.1111/j.1365-2656.2005.00989.x
Price, P. W., & Hunter, M. D. ( 2015 ). Population dynamics of an insect herbivore over 32 years are driven by precipitation and host‐plant effects: Testing model predictions. Environmental Entomology, 44, 463 – 473. https://doi.org/10.1093/ee/nvv039
Radhouani, H., Poeta, P., Gonçalves, A., Pacheco, R., Sargo, R., & Igrejas, G. ( 2012 ). Wild birds as biological indicators of environmental pollution: Antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards ( Buteo buteo ). Journal of Medical Microbiology, 61, 837 – 843. https://doi.org/10.1099/jmm.0.038364-0
Redfern, M., & Hunter, M. D. ( 2005 ). Time tells: Long‐term patterns in the population dynamics of the yew gall midge, Taxomyia taxi (Cecidomyiidae), over 35 years. Ecological Entomology, 30, 86 – 95. https://doi.org/10.1111/j.0307-6946.2005.00658.x
Riemer, J., & Whittaker, J. B. ( 1989 ). Air pollution and insect herbivores: Observed interactions and possible mechanisms. In E. A. Bernays (Ed.), Insect‐plant interactions (pp. 73 – 105 ). Boca Raton, FL: CRC.
Royama, T. ( 1992 ). Analytical population dynamics. New York, NY: Springer. https://doi.org/10.1007/978-94-011-2916-9
SAS Institute ( 2009 ). SAS user’s guide. Cary, NY: SAS Institute.
Selikhovkin, A. V. ( 1988 ). Impact of industrial aerial pollution on herbivorous insects. In E. P. Narchuk (ed.), Lectures on 39th annual meeting in memory of N.A. Cholodkovsky (pp. 3 – 42 ). Leningrad, Russia: Nauka (in Russian).
Sorvari, J., & Eeva, T. ( 2010 ). Pollution diminishes intra‐specific aggressiveness between wood ant colonies. Science of the Total Environment, 408, 3189 – 3192. https://doi.org/10.1016/j.scitotenv.2010.04.008
Stenseth, N. C., Chan, K.‐S., Tong, H., Boonstra, R., Boutin, S., Krebs, C. J., … Hurrell, J. W. ( 1999 ). Common dynamic structure of Canada lynx populations within three climatic regions. Science, 285, 1071 – 1073. https://doi.org/10.1126/science.285.5430.1071
Stenseth, N. C., Viljugrein, H., Saitoh, T., Hansen, T. F., Kittilsen, M. O., Bolviken, E., & Glockner, F. ( 2003 ). Seasonality, density dependence, and population cycles in Hokkaido voles. Proceedings of the National Academy of Sciences of the United States of America, 100, 11478 – 11483. https://doi.org/10.1073/pnas.1935306100
Sun, T., & Zhou, Q. ( 2002 ). Retrospect and prospect of pollution ecology. The Journal of Applied Ecology, 13, 221 – 223.
Turchin, P. ( 1990 ). Rarity of density dependence or population regulation with lags? Nature, 344, 660 – 663. https://doi.org/10.1038/344660a0
Turchin, P., & Hanski, I. ( 1997 ). An empirically based model for latitudinal gradient in vole population dynamics. The American Naturalist, 149, 842 – 874. https://doi.org/10.1086/286027
Valtonen, A., Leinonen, R., Pöyry, J., Roininen, H., Tuomela, J., & Ayres, M. P. ( 2014 ). Is climate warming more consequential towards poles? The phenology of Lepidoptera in Finland. Global Change Biology, 20, 16 – 27. https://doi.org/10.1111/gcb.12372
Varley, G. C., Gradwell, G. R., & Hassell, M. P. ( 1973 ). Insect population ecology: An analytical approach. Oxford, UK: Blackwell Scientific Publications.
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., … Bairlein, F. ( 2002 ). Ecological responses to recent climate change. Nature, 416, 389 – 395. https://doi.org/10.1038/416389a
Williams, D. W., & Liebhold, A. M. ( 1995 ). Detection of delayed density dependence: Effects of autocorrelation in an exogenous factor. Ecology, 76, 1005 – 1008. https://doi.org/10.2307/1939363
Wulff, F. V., Rahm, L. A., & Larsson, P. ( 2001 ). A systems analysis of the Baltic Sea. Berlin, Germany: Springer‐Verlag. https://doi.org/10.1007/978-3-662-04453-7
Zvereva, E. L., Hunter, M. D., Zverev, V., & Kozlov, M. V. ( 2016 ). Factors affecting population dynamics of leaf beetles in a subarctic region: The interplay between climate warming and pollution decline. Science of the Total Environment, 566–567, 1277 – 1288.
Zvereva, E. L., & Kozlov, M. V. ( 2010 ). Responses of terrestrial arthropods to air pollution: A meta‐analysis. Environmental Science and Pollution Research, 17, 297 – 311. https://doi.org/10.1007/s11356-009-0138-0
Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., & Staples, D. F. ( 2006 ). Estimating density dependence, process noise, and observation error. Ecological Monographs, 76, 323 – 341. https://doi.org/10.1890/0012-9615(2006)76[323:EDDPNA]2.0.CO;2
Dennis, B., & Taper, M. L. ( 1994 ). Density dependence in time series observations of natural populations: Estimation and testing. Ecological Monographs, 64, 205 – 224. https://doi.org/10.2307/2937041
Drouhot, S., Raoul, F., Crini, N., Tougard, C., Prudent, A.‐S., Druart, C., … Scheifler, R. ( 2014 ). Responses of wild small mammals to arsenic pollution at a partially remediated mining site in Southern France. Science of the Total Environment, 470–471, 1012 – 1022. https://doi.org/10.1016/j.scitotenv.2013.10.053
Alstad, D. N., Edmunds, G. F., & Weinstein, L. H. ( 1982 ). Effects of air pollutants on insect populations. Annual Review of Entomology, 27, 369 – 384. https://doi.org/10.1146/annurev.en.27.010182.002101
Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S., & Harvell, C. D. ( 2013 ). Climate change and infectious diseases: From evidence to a predictive framework. Science, 341, 514 – 519. https://doi.org/10.1126/science.1239401
Andrewartha, H. G., & Birch, C. ( 1954 ). The distribution and abundance of animals. Chicago, IL: Chicago University Press.
Ayres, M. P., & Lombardero, M. J. ( 2000 ). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 262, 263 – 286. https://doi.org/10.1016/S0048-9697(00)00528-3
Baltensweiler, W. ( 1985 ). Waldsterben: Forest pests and air pollution. Journal of Applied Entomology, 99, 77 – 85.
Batty, L. C., & Hallberg, K. B. ( 2010 ). (Eds) Ecology of industrial pollution. In: Ecological reviews, Cambridge, UK: Cambridge University Press.
Berryman, A. A. ( 1981 ). Population systems: A general introduction. New York, NY: Plenum. https://doi.org/10.1007/978-1-4899-7325-2
Berryman, A. A. ( 1991 ). Vague notions of density‐dependence. Oikos, 62, 252 – 254. https://doi.org/10.2307/3545271
Berryman, A. A., Stenseth, N. C., & Isaev, A. S. ( 1987 ). Natural regulation of herbivorous forest insect populations. Oecologia, 71, 174 – 184. https://doi.org/10.1007/BF00377282
Bjornstad, O. N., Ims, R. A., & Lambin, X. ( 1999 ). Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends in Ecology and Evolution, 14, 427 – 432. https://doi.org/10.1016/S0169-5347(99)01677-8
Bjornstad, O. N., Stenseth, N. C., & Saitoh, T. ( 1999 ). Synchrony and scaling in dynamics of voles and mice in northern Japan. Ecology, 80, 622 – 637. https://doi.org/10.2307/176640
Bloomfield, P. ( 2000 ). Fourier analysis of time series. An introduction, 2nd edn. New York, NY: John Wiley and Sons, Inc. https://doi.org/10.1002/0471722235
Bonisoli‐Alquati, A., Ostermiller, S., Beasley, D. A. E., Welch, S. M., Møller, A. P., & Mousseau, T. A. ( 2018 ). Faster development covaries with higher DNA damage in grasshoppers ( Chorthippus albomarginatus ) from Chernobyl. Physiological and Biochemical Zoology, 91, 776 – 787. https://doi.org/10.1086/696005
Box, G., & Jenkins, G. ( 1970 ). Time series analysis: Forecasting and control. San Francisco, CA: Holden‐Day.
Butler, C. D., & Trumble, J. T. ( 2008 ). Effects of pollutants on bottom‐up and top‐down processes in insect–plant interactions. Environmental Pollution, 156, 665 – 10. https://doi.org/10.1016/j.envpol.2007.12.026
Coleman, D. C., Crossley, D. A., & Hendrix, P. F. ( 2004 ). Fundamentals of soil ecology. Amsterdam, Netherlands: Elsevier Academic Press.
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/1365-2656.1293010.1890/08-0034.110.1007/978-94-011-2916-910.1126/science.285.5430.107110.1038/416389a10.1016/j.scitotenv.2013.10.05310.1007/978-1-4899-7325-210.2307/354527110.1002/047172223510.1016/j.envpol.2009.09.02710.1016/j.ejs
container_title Revista de Teledetección
container_issue 53
container_start_page 1
_version_ 1774719686786678784
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/149304 2023-08-20T04:07:48+02:00 The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient Hunter, Mark D. Kozlov, Mikhail V. 2019-05 application/pdf https://hdl.handle.net/2027.42/149304 https://doi.org/10.1111/1365-2656.12930 unknown Wiley Periodicals, Inc. Chicago University Press Hunter, Mark D.; Kozlov, Mikhail V. (2019). "The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient." Journal of Animal Ecology 88(5): 665-676. 0021-8790 1365-2656 https://hdl.handle.net/2027.42/149304 doi:10.1111/1365-2656.12930 Journal of Animal Ecology Perrins, C. M. ( 1979 ). British tits. London, UK: Collins. Nicholson, A. J., & Bailey, V. A. ( 1935 ). The balance of animal populations. Part I. Proceedings of the Zoological Society of London, 105, 551 – 598. https://doi.org/10.1111/j.1096-3642.1935.tb01680.x O’Connor, M. I. ( 2009 ). Warming strengthens an herbivore‐plant interaction. Ecology, 90, 388 – 398. https://doi.org/10.1890/08-0034.1 Parmesan, C., & Yohe, G. ( 2003 ). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37 – 42. https://doi.org/10.1038/nature01286 Price, P. W., & Hunter, M. D. ( 2005 ). Long‐term population dynamics of a sawfly show strong bottom‐up effects. Journal of Animal Ecology, 74, 917 – 925. https://doi.org/10.1111/j.1365-2656.2005.00989.x Price, P. W., & Hunter, M. D. ( 2015 ). Population dynamics of an insect herbivore over 32 years are driven by precipitation and host‐plant effects: Testing model predictions. Environmental Entomology, 44, 463 – 473. https://doi.org/10.1093/ee/nvv039 Radhouani, H., Poeta, P., Gonçalves, A., Pacheco, R., Sargo, R., & Igrejas, G. ( 2012 ). Wild birds as biological indicators of environmental pollution: Antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards ( Buteo buteo ). Journal of Medical Microbiology, 61, 837 – 843. https://doi.org/10.1099/jmm.0.038364-0 Redfern, M., & Hunter, M. D. ( 2005 ). Time tells: Long‐term patterns in the population dynamics of the yew gall midge, Taxomyia taxi (Cecidomyiidae), over 35 years. Ecological Entomology, 30, 86 – 95. https://doi.org/10.1111/j.0307-6946.2005.00658.x Riemer, J., & Whittaker, J. B. ( 1989 ). Air pollution and insect herbivores: Observed interactions and possible mechanisms. In E. A. Bernays (Ed.), Insect‐plant interactions (pp. 73 – 105 ). Boca Raton, FL: CRC. Royama, T. ( 1992 ). Analytical population dynamics. New York, NY: Springer. https://doi.org/10.1007/978-94-011-2916-9 SAS Institute ( 2009 ). SAS user’s guide. Cary, NY: SAS Institute. Selikhovkin, A. V. ( 1988 ). Impact of industrial aerial pollution on herbivorous insects. In E. P. Narchuk (ed.), Lectures on 39th annual meeting in memory of N.A. Cholodkovsky (pp. 3 – 42 ). Leningrad, Russia: Nauka (in Russian). Sorvari, J., & Eeva, T. ( 2010 ). Pollution diminishes intra‐specific aggressiveness between wood ant colonies. Science of the Total Environment, 408, 3189 – 3192. https://doi.org/10.1016/j.scitotenv.2010.04.008 Stenseth, N. C., Chan, K.‐S., Tong, H., Boonstra, R., Boutin, S., Krebs, C. J., … Hurrell, J. W. ( 1999 ). Common dynamic structure of Canada lynx populations within three climatic regions. Science, 285, 1071 – 1073. https://doi.org/10.1126/science.285.5430.1071 Stenseth, N. C., Viljugrein, H., Saitoh, T., Hansen, T. F., Kittilsen, M. O., Bolviken, E., & Glockner, F. ( 2003 ). Seasonality, density dependence, and population cycles in Hokkaido voles. Proceedings of the National Academy of Sciences of the United States of America, 100, 11478 – 11483. https://doi.org/10.1073/pnas.1935306100 Sun, T., & Zhou, Q. ( 2002 ). Retrospect and prospect of pollution ecology. The Journal of Applied Ecology, 13, 221 – 223. Turchin, P. ( 1990 ). Rarity of density dependence or population regulation with lags? Nature, 344, 660 – 663. https://doi.org/10.1038/344660a0 Turchin, P., & Hanski, I. ( 1997 ). An empirically based model for latitudinal gradient in vole population dynamics. The American Naturalist, 149, 842 – 874. https://doi.org/10.1086/286027 Valtonen, A., Leinonen, R., Pöyry, J., Roininen, H., Tuomela, J., & Ayres, M. P. ( 2014 ). Is climate warming more consequential towards poles? The phenology of Lepidoptera in Finland. Global Change Biology, 20, 16 – 27. https://doi.org/10.1111/gcb.12372 Varley, G. C., Gradwell, G. R., & Hassell, M. P. ( 1973 ). Insect population ecology: An analytical approach. Oxford, UK: Blackwell Scientific Publications. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., … Bairlein, F. ( 2002 ). Ecological responses to recent climate change. Nature, 416, 389 – 395. https://doi.org/10.1038/416389a Williams, D. W., & Liebhold, A. M. ( 1995 ). Detection of delayed density dependence: Effects of autocorrelation in an exogenous factor. Ecology, 76, 1005 – 1008. https://doi.org/10.2307/1939363 Wulff, F. V., Rahm, L. A., & Larsson, P. ( 2001 ). A systems analysis of the Baltic Sea. Berlin, Germany: Springer‐Verlag. https://doi.org/10.1007/978-3-662-04453-7 Zvereva, E. L., Hunter, M. D., Zverev, V., & Kozlov, M. V. ( 2016 ). Factors affecting population dynamics of leaf beetles in a subarctic region: The interplay between climate warming and pollution decline. Science of the Total Environment, 566–567, 1277 – 1288. Zvereva, E. L., & Kozlov, M. V. ( 2010 ). Responses of terrestrial arthropods to air pollution: A meta‐analysis. Environmental Science and Pollution Research, 17, 297 – 311. https://doi.org/10.1007/s11356-009-0138-0 Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., & Staples, D. F. ( 2006 ). Estimating density dependence, process noise, and observation error. Ecological Monographs, 76, 323 – 341. https://doi.org/10.1890/0012-9615(2006)76[323:EDDPNA]2.0.CO;2 Dennis, B., & Taper, M. L. ( 1994 ). Density dependence in time series observations of natural populations: Estimation and testing. Ecological Monographs, 64, 205 – 224. https://doi.org/10.2307/2937041 Drouhot, S., Raoul, F., Crini, N., Tougard, C., Prudent, A.‐S., Druart, C., … Scheifler, R. ( 2014 ). Responses of wild small mammals to arsenic pollution at a partially remediated mining site in Southern France. Science of the Total Environment, 470–471, 1012 – 1022. https://doi.org/10.1016/j.scitotenv.2013.10.053 Alstad, D. N., Edmunds, G. F., & Weinstein, L. H. ( 1982 ). Effects of air pollutants on insect populations. Annual Review of Entomology, 27, 369 – 384. https://doi.org/10.1146/annurev.en.27.010182.002101 Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S., & Harvell, C. D. ( 2013 ). Climate change and infectious diseases: From evidence to a predictive framework. Science, 341, 514 – 519. https://doi.org/10.1126/science.1239401 Andrewartha, H. G., & Birch, C. ( 1954 ). The distribution and abundance of animals. Chicago, IL: Chicago University Press. Ayres, M. P., & Lombardero, M. J. ( 2000 ). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 262, 263 – 286. https://doi.org/10.1016/S0048-9697(00)00528-3 Baltensweiler, W. ( 1985 ). Waldsterben: Forest pests and air pollution. Journal of Applied Entomology, 99, 77 – 85. Batty, L. C., & Hallberg, K. B. ( 2010 ). (Eds) Ecology of industrial pollution. In: Ecological reviews, Cambridge, UK: Cambridge University Press. Berryman, A. A. ( 1981 ). Population systems: A general introduction. New York, NY: Plenum. https://doi.org/10.1007/978-1-4899-7325-2 Berryman, A. A. ( 1991 ). Vague notions of density‐dependence. Oikos, 62, 252 – 254. https://doi.org/10.2307/3545271 Berryman, A. A., Stenseth, N. C., & Isaev, A. S. ( 1987 ). Natural regulation of herbivorous forest insect populations. Oecologia, 71, 174 – 184. https://doi.org/10.1007/BF00377282 Bjornstad, O. N., Ims, R. A., & Lambin, X. ( 1999 ). Spatial population dynamics: Analyzing patterns and processes of population synchrony. Trends in Ecology and Evolution, 14, 427 – 432. https://doi.org/10.1016/S0169-5347(99)01677-8 Bjornstad, O. N., Stenseth, N. C., & Saitoh, T. ( 1999 ). Synchrony and scaling in dynamics of voles and mice in northern Japan. Ecology, 80, 622 – 637. https://doi.org/10.2307/176640 Bloomfield, P. ( 2000 ). Fourier analysis of time series. An introduction, 2nd edn. New York, NY: John Wiley and Sons, Inc. https://doi.org/10.1002/0471722235 Bonisoli‐Alquati, A., Ostermiller, S., Beasley, D. A. E., Welch, S. M., Møller, A. P., & Mousseau, T. A. ( 2018 ). Faster development covaries with higher DNA damage in grasshoppers ( Chorthippus albomarginatus ) from Chernobyl. Physiological and Biochemical Zoology, 91, 776 – 787. https://doi.org/10.1086/696005 Box, G., & Jenkins, G. ( 1970 ). Time series analysis: Forecasting and control. San Francisco, CA: Holden‐Day. Butler, C. D., & Trumble, J. T. ( 2008 ). Effects of pollutants on bottom‐up and top‐down processes in insect–plant interactions. Environmental Pollution, 156, 665 – 10. https://doi.org/10.1016/j.envpol.2007.12.026 Coleman, D. C., Crossley, D. A., & Hendrix, P. F. ( 2004 ). Fundamentals of soil ecology. Amsterdam, Netherlands: Elsevier Academic Press. IndexNoFollow population cycles population dynamics climate warming density dependence emission decline insect–plant relationships Kola Peninsula pollution Ecology and Evolutionary Biology Science Article 2019 ftumdeepblue https://doi.org/10.1111/1365-2656.1293010.1890/08-0034.110.1007/978-94-011-2916-910.1126/science.285.5430.107110.1038/416389a10.1016/j.scitotenv.2013.10.05310.1007/978-1-4899-7325-210.2307/354527110.1002/047172223510.1016/j.envpol.2009.09.02710.1016/j.ejs 2023-07-31T21:07:55Z Animal populations vary in response to a combination of density‐dependent and density‐independent forces, which interact to drive their population dynamics. Understanding how abiotic forces mediate the form and strength of density‐dependent processes remains a central goal of ecology, and is of increasing urgency in a rapidly changing world.Here, we report for the first time that industrial pollution determines the relative strength of rapid and delayed density dependence operating on an animal population. We explored the impacts of pollution and climate on the population dynamics of an eruptive leafmining moth, Phyllonorycter strigulatella, around a coal‐fired power plant near Apatity, north‐western Russia. Populations were monitored at 14 sites over 26 years.The relative strengths of rapid and delayed density dependence varied with distance from the power plant. Specifically, the strength of rapid density dependence increased while the strength of delayed density dependence decreased with increasing distance from the pollution source. Paralleling the increasing strength of rapid density dependence, we observed declines in the densities of P. strigulatella, increases in predation pressure from birds and ants, and declines in an unknown source of mortality (perhaps plant antibiosis) with increasing distance from the power plant.In contrast to the associations with pollution, associations between climate change and leafminer population densities were negligible.Our results may help to explain the outbreaks of insect herbivores that are frequently observed in polluted environments. We show that they can result from the weakening of rapid (stabilizing) density dependence relative to the effects of destabilizing delayed density dependence. Moreover, our results may explain some of the variation reported in published studies of animal populations in polluted habitats. Variable results may emerge in part because of the location of the study sites on different parts of pollution gradients. Finally, in a rapidly ... Article in Journal/Newspaper kola peninsula North-Western Russia University of Michigan: Deep Blue Apatity ENVELOPE(33.403,33.403,67.564,67.564) Kola Peninsula Revista de Teledetección 53 1