Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial
Changes in the composition of dust trapped in ice provide evidence of past atmospheric circulation and earth surface conditions. Investigations of dust provenance in Antarctic ice during glacial and interglacial periods indicate that South America is the primary dust source during both climate regim...
Published in: | Geophysical Research Letters |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
American Geophysical Union
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/2027.42/148354 https://doi.org/10.1029/2018GL081887 |
id |
ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/148354 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
University of Michigan: Deep Blue |
op_collection_id |
ftumdeepblue |
language |
unknown |
topic |
last interglacial period climate transitions radiogenic isotopes mineral dust ice cores Geological Sciences Science |
spellingShingle |
last interglacial period climate transitions radiogenic isotopes mineral dust ice cores Geological Sciences Science Aarons, S. M. Aciego, S. M. McConnell, J. R. Delmonte, B. Baccolo, G. Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial |
topic_facet |
last interglacial period climate transitions radiogenic isotopes mineral dust ice cores Geological Sciences Science |
description |
Changes in the composition of dust trapped in ice provide evidence of past atmospheric circulation and earth surface conditions. Investigations of dust provenance in Antarctic ice during glacial and interglacial periods indicate that South America is the primary dust source during both climate regimes. Here, we present results from a new ice core dust archive extracted from the Taylor Glacier in coastal East Antarctica during the deglacial transition from Marine Isotope Stage 6 to 5e. Radiogenic strontium and neodymium isotopes indicate that last interglacial dust is young and volcanic, in contrast to the observed preindustrial and Holocene (Marine Isotope Stage 1) dust composition. The dust composition differences from the last interglacial and current interglacial period at the site require a profound difference in atmospheric transport and environmental conditions. We consider several potential causes for enhanced transport of volcanic material to the site, including increased availability of volcanic material and large‐scale atmospheric circulation changes.Plain Language SummaryFluctuations in the isotopic composition of dust particles transported atmospherically and trapped in East Antarctic ice during glacial and interglacial periods provide glimpses into past earth surface conditions and atmospheric dynamics through time. Here we present new ice core records of dust from the Taylor Glacier (Antarctica), extending back to the transition into the last interglacial period (~130,000 years ago). Dust deposited at this site during the last interglacial period has a significantly more volcanic dust composition compared to the current interglacial dust, caused by a pronounced wind direction change and/or increased subaerial exposure of volcanic material. The distinct dust compositions during two separate interglacial periods suggest significant differences in conditions at the dust source areas and atmospheric dynamics to this peripheral Antarctic site.Key PointsLast interglacial dust composition in Taylor ... |
format |
Article in Journal/Newspaper |
author |
Aarons, S. M. Aciego, S. M. McConnell, J. R. Delmonte, B. Baccolo, G. |
author_facet |
Aarons, S. M. Aciego, S. M. McConnell, J. R. Delmonte, B. Baccolo, G. |
author_sort |
Aarons, S. M. |
title |
Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial |
title_short |
Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial |
title_full |
Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial |
title_fullStr |
Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial |
title_full_unstemmed |
Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial |
title_sort |
dust transport to the taylor glacier, antarctica, during the last interglacial |
publisher |
American Geophysical Union |
publishDate |
2019 |
url |
https://hdl.handle.net/2027.42/148354 https://doi.org/10.1029/2018GL081887 |
long_lat |
ENVELOPE(162.167,162.167,-77.733,-77.733) |
geographic |
Antarctic East Antarctica Taylor Glacier |
geographic_facet |
Antarctic East Antarctica Taylor Glacier |
genre |
Antarc* Antarctic Antarctic Science Antarctica Antarctica Journal East Antarctica ice core Taylor Glacier |
genre_facet |
Antarc* Antarctic Antarctic Science Antarctica Antarctica Journal East Antarctica ice core Taylor Glacier |
op_relation |
Aarons, S. M.; Aciego, S. M.; McConnell, J. R.; Delmonte, B.; Baccolo, G. (2019). "Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial." Geophysical Research Letters 46(4): 2261-2270. 0094-8276 1944-8007 https://hdl.handle.net/2027.42/148354 doi:10.1029/2018GL081887 Geophysical Research Letters Nyland, R. E., Panter, K. S., Rocchi, S., Di Vincenzo, G., Del Carlo, P., Tiepolo, M., Field, B., & Gorsevski, P. ( 2013 ). Volcanic activity and its link to glaciation cycles: Single‐grain age and geochemistry of Early to Middle Miocene volcanic glass from ANDRILL AND‐2A core. Journal of Volcanology and Geothermal Research, 250, 106 – 128. https://doi.org/10.1016/j.jvolgeores.2012.11.008 Panter, K. S., Blusztajn, J., Hart, S., & Kyle, P. ( 1997 ). Late Cretaceous‐Neogene basalts from Chatham Island: Implicatinos for HIMU mantle beneath continental borderlands of the southwest Pacific. In 7th Annual V.M. Goldschmidt Conference (p. 156). Panter, K. S., Hart, S. R., Kyle, P., Blusztanjn, J., & Wilch, T. ( 2000 ). Geochemistry of Late Cenozoic basalts from the Crary Mountains: Characterization of mantle sources in Marie Byrd Land, Antarctica. Chemical Geology, 165 ( 3‐4 ), 215 – 241. https://doi.org/10.1016/S0009‐2541(99)00171‐0 Panter, K. S., Kyle, P. R., & Smellie, J. L. ( 1997 ). Petrogenesis of a phonolite‐trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica. Journal of Petrology, 38, 1225 – 1253. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin, L., Ritz, C., Saltzman, E., & Stievenard, M. ( 1999 ). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399 ( 6735 ), 429 – 436. https://doi.org/10.1038/20859 Petrenko, V. V., Severinghaus, J. P., Schaefer, H., Smith, A. M., Kuhl, T., Baggenstos, D., Hua, Q., Brook, E. J., Rose, P., Kulin, R., Bauska, T., Harth, C., Buizert, C., Orsi, A., Emanuele, G., Lee, J. E., Brailsford, G., Keeling, R., & Weiss, R. F. ( 2016 ). Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates. Geochimica et Cosmochimica Acta, 177, 62 – 77. https://doi.org/10.1016/hj.gca.2016.01.004 Scarchilli, C. ( 2007 ). Precipitation and sublimation impact on snow accumulation over Antarctica. Siena, Italy: University of Siena. Schaefer, H., Whiticar, M. J., Brook, E. J., Petrenko, V. V., Ferretti, D. F., & Severinghaus, J. P. ( 2006 ). Ice record of delta13C for atmospheric CH4 across the Younger Dryas‐Preboreal transition. Science, 313 ( 5790 ), 1109 – 1112. https://doi.org/10.1126/science.1126562 Scherer, R. P., Aldahan, A., Tulaczyk, S., Possnert, G., Engelhardt, H., & Kamb, B. ( 1998 ). Pleistocene collapse of the West Antarctic ice sheet. Science, 281 ( 5373 ), 82 – 85. https://doi.org/10.1126/science.281.5373.82 Sigvaldason, G. ( 2002 ). Volcanic and tectonic processes coinciding with glaciation and crustal rebound: An early Holocene rhyolitic eruption in the Dyngjufjöll volcanic centre and the formation of the Askja caldera, north Iceland. Bulletin of Volcanology, 64 ( 3‐4 ), 192 – 205. https://doi.org/10.1007/s00445‐002‐0204‐7 Sims, K. W. W., Blichert‐Toft, J., Kyle, P. R., Pichat, S., Gauthier, P.‐J., Blusztajn, J., Kelly, P., Ball, L., & Layne, G. ( 2008 ). A Sr, Nd, Hf, and Pb isotope perspective on the genesis and long‐term evolution of alkaline magmas from Erebus volcano, Antarctica. Journal of Volcanology and Geothermal Research, 177, 606 – 618. Singh, H. K. A., Bitz, C. M., & Frierson, D. M. W. ( 2016 ). The global climate response to lowering surface orography of Antarctica and the importance of atmosphere‐ocean coupling. American Meteorological Society, 29 ( 11 ), 4137 – 4153. https://doi.org/10.1175/JCLI‐D‐15‐0442.1 Sinisalo, A., & Moore, J. C. ( 2010 ). Antarctic blue ice areas‐towards extracting palaeoclimate information. Antarctic Science, 22 ( 2 ), 99 – 115. https://doi.org/10.1017/S0954102009990691 Slater, L., McKenzie, D., & G. K. ( 1998 ). Deglaciation effects on mantle melting under Iceland: Results from the northern volcanic zone. Earth and Planetary Science Letters, 265, 559 – 570. Steig, E. J., Huybers, K., Singh, H. A., Steiger, N. J., Ding, Q., Frierson, D. M. W., Popp, T., & White, J. W. C. ( 2015 ). Influence of West Antarctic ice sheet collapse on Antarctic surface climate. Geophysical Research Letters, 42, 4862 – 4868. https://doi.org/10.1002/2015GL063861 Steig, E. J., Morse, D. L., Waddington, E. D., Stuiver, M., Grootes, P. M., Mayewski, P., Twickler, M. S., & Whitlow, S. ( 2000 ). Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geographical Annals, 82A ( 2–3 ), 213 – 235. Stirling, C. H., Esat, T. M., Lambeck, K., & McCulloch, M. T. ( 1998 ). Timing and duration of the last interglacial: Evidence for a restricted interval of widespread coral reef growth. Earth and Planetary Science Letters, 160 ( 3–4 ), 745 – 762. https://doi.org/10.1016/S0012‐821X(98)00125‐3 Stump, E., & Fitzgerald, P. G. ( 1992 ). Episodic uplift of the Transantarctic Mountains. Geology, 20 ( 2 ), 161 – 164. https://doi.org/10.1130/0091‐7613(1992)020<0161:EUOTTM>2.3.CO;2 Vallelonga, P., Gabrielli, P., Balliana, E., Wegner, A., Delmonte, B., Turetta, C., Burton, G., Vanhaecke, F., Rosman, K. J. R., Hong, S., Boutron, C. F., Cescon, P., & Barbante, C. ( 2010 ). Lead isotopic compositions in the EPICA dome C ice core and southern hemisphere potential source areas. Quaternary Science Reviews, 29 ( 1–2 ), 247 – 255. https://doi.org/10.1016/j.quascirev.2009.06.019 White, B., Curran, H. A., & Wilson, M. A. ( 1998 ). Bahamian coral reefs yield evidence of a brief sea‐level lowstand during the last interglacial. Carbonates and Evaporites, 13 ( 10 ). White, W. M. ( 2013 ). Geochemistry. Chichester, UK: Wiley‐Blackwell. Winton, V. H. L., Dunbar, G. B., Atkins, C. B., Bertler, N. A. N., Delmonte, B., Andersson, P. S., Bowie, A., & Edwards, R. ( 2016 ). The origin of lithogenic sediment in the south‐western Ross Sea and implications for iron fertilization. Antarctic Science, 28 ( 4 ), 250 – 260. https://doi.org/10.1017/S095410201600002X Winton, V. H. L., Dunbar, G. B., Bertler, N. A. N., Millet, M. A., Delmonte, B., Atkins, C. B., Chewings, J. M., & Andersson, P. ( 2014 ). The contribution of aeolian sand and dust to iron fertilization of phytoplankton blooms in southwestern Ross Sea, Antarctica. Global Biogeochemical Cycles, 28, 423 – 436. https://doi.org/10.1002/2013GB004574 Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Röthlisberger, R., de Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard‐Andersen, M. L., Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli, P., & Gaspari, V. ( 2006 ). Southern Ocean sea‐ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 440 ( 7083 ), 491 – 496. https://doi.org/10.1038/nature04614 Yuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J. A., An, Z., & Cai, Y. ( 2004 ). Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 304 ( 5670 ), 575 – 578. https://doi.org/10.1126/science/1091220 Zielinski, G., Mayewski, P., Meeker, L., Whitlow, S., & Twickler, M. ( 1996 ). 110,000‐yr record of explosive volcanism from the GISP 2 (Greenland) ice core. Quaternary Research, 45 ( 2 ), 109 – 118. https://doi.org/10.1006/qres.1996.0013 Aarons, S. M., Aciego, S. M., Arendt, C. A., Blakowski, M. A., Steigmeyer, A., Gabrielli, P., Sierra‐Hernández, M. R., Beaudon, E., Delmonte, B., Baccolo, G., May, N. W., & Pratt, K. A. ( 2017 ). Dust composition changes from Taylor Glacier (East Antarctica) during the last glacial‐interglacial transition: A multi‐proxy approach. Quaternary Science Reviews, 162, 60 – 71. https://doi.org/10.1016/j.quascirev.2017.03.011 Aarons, S. M., Aciego, S. M., Gabrielli, P., Delmonte, B., Koornneef, J. M., Wegner, A., & Blakowski, M. A. ( 2016 ). The impact of glacier retreat from the Ross Sea on local climate: Characterization of mineral dust in the Taylor Dome ice core, East Antarctica. Earth and Planetary Science Letters, 444, 34 – 44. https://doi.org/10.1016/j.epsl.2016.03.035 Aciego, S. M., Cuffey, K. M., Kavanaugh, J. L., Morse, D. L., & Severinghaus, J. P. ( 2007 ). Pleistocene ice and paleo‐strain rates at Taylor Glacier, Antarctica. Quaternary Research, 68, 303 – 313. Albani, S., Delmonte, B., Maggi, V., Baroni, C., Petit, J. R., Stenni, B., Mazzola, C., & Frezzotti, M. ( 2012 ). Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica): Implications for atmospheric variations from regional to hemispheric scales. Climate of the Past, 8 ( 2 ), 741 – 750. https://doi.org/10.5194/cp‐8‐741‐2012 Albani, S., Mahowald, N. M., Delmonte, B., Maggi, V., & Winckler, G. ( 2012 ). Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates. Climate Dynamics, 38 ( 9–10 ), 1731 – 1755. https://doi.org/10.1007/s00382‐011‐1139‐5 Andersen, K. K., Azuma, N., Barnola, J.‐M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl‐Jensen, D., Fischer, H., Flückiger, J., Fritzsche, D., Fujii, Y., Goto‐Azuma, K., Grønvold, K., Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson‐Delmotte, V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard‐Andersen, M.‐L., Steffensen, J. P., Stocker, T., Sveinbjörnsdóttir, A. E., Svensson, A., Takata, M., Tison, J.‐L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., & White, J. W. C. ( 2004 ). High‐resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431 ( 7005 ), 147 – 151. https://doi.org/10.1038/nature02805 Baggenstos, D., Bauska, T. K., Severinghaus, J. P., Lee, J. E., Schaefer, H., Buizert, C., Brook, E. J., Shackleton, S., & Petrenko, V. V. ( 2017 ). Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Climate of the Past, 1 – 26. https://doi.org/10.5194/cp‐2017‐25 Baggenstos, D., Severinghaus, J. P., Mulvaney, R., McConnell, J. R., Sigl, M., Maselli, O., Petit, J. R., Grente, B., & Steig, E. ( 2018 ). A horizontal ice core from Taylor Glacier, its implications for Antarctic climate history, and an improved Taylor Dome ice core time scale. Paleoceanography and Paleoclimatology, 33, 778 – 794. https://doi.org/10.1029/2017PA003297 Basile, I., Grousset, F. E., Revel, M., Petit, J. R., Biscaye, P. E., & Barkov, N. I. ( 1997 ). Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth and Planetary Science Letters, 146 ( 3–4 ), 573 – 589. https://doi.org/10.1016/s0012‐821x(96)00255‐5 Behrendt, J. C., LeMasurier, W. E., Cooper, A. K., Tessensohn, F., Trehu, A., & Damaske, D. ( 1991 ). Geophysical studies of the West Antarctic Rift System. Tectonics, 10 ( 6 ), 1257 – 1273. https://doi.org/10.1029/91TC00868 Bender, M. L., Floch, G., Chappellaz, J., Suwa, M., Barnola, J. M., Blunier, T., Dreyfus, G., Jouzel, J., & Parrenin, F. ( 2006 ). Gas age‐ice age differences and the chronology of the Vostok ice core, 0‐100 ka. Journal of Geophysical Research, 111, D21115. https://doi.org/10.1029/2005JD006488 Bintanja, R. ( 1999 ). On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Reviews of Geophysics, 37 ( 3 ), 337 – 359. https://doi.org/10.1029/1999RG900007 Blakowski, M. A., Aciego, S. M., Delmonte, B., Baroni, C., Salvatore, M. C., & Sims, K. W. W. ( 2016 ). Sr‐Nd‐Hf isotope characterization of dust source areas in Victoria Land and the McMurdo Sound sector of Antarctica. Quaternary Science Reviews, 141, 26 – 37. https://doi.org/10.1016/j.quascirev.2016.03.023 Blunier, T., Schwander, J., Chappellaz, J., Parrenin, F., & Barnola, J. M. ( 2004 ). What was the surface temperature in central Antarctica during the last glacial maximum? Earth and Planetary Science Letters, 218 ( 3‐4 ), 379 – 388. https://doi.org/10.1016/S0012‐821X(03)00672‐1 Buizert, C., Baggenstos, D., Jiang, W., Purtschert, R., Petrenko, V. V., Lu, Z. T., Muller, P., Kuhl, T., Lee, J., Severinghaus, J. P., & Brook, E. J. ( 2014 ). Radiometric Kr‐81 dating identifies 120,000‐year‐old ice at Taylor Glacier, Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 19 ), 6876 – 6881. https://doi.org/10.1073/pnas.1320329111 Chen, J. H., Curran, H. A., White, B., & Wasserberg, G. J. ( 1991 ). Precise chronology of the last interglacial period: 234 U‐ 230 Th data from fossil coral reefs in the Bahamas. Geological Society of America Bulletin, 103 ( 1 ), 82 – 97. https://doi.org/10.1130/0016‐7606(1991)103<0082:PCOTLI>2.3.CO;2 Cuffey, K. M., & Marshall, S. J. ( 2000 ). Substantial contribution to sea‐level rise during the last interglacial from the Greenland ice sheet. Nature, 404 ( 6778 ), 591 – 594. https://doi.org/10.1038/35007053 Grousset, F. E., Biscaye, P. E., Revel, M., Petit, J.‐R., Pye, K., Joussaume, S., & Jouzel, J. ( 1992 ). Antarctic (Dome C) ice‐core dust at 18 k.y. B.P.: Isotopic constraints on origins. Earth and Planetary Science Letters, 111 ( 1 ), 175 – 182. https://doi.org/10.1016/0012‐821X(92)90177‐W |
op_rights |
IndexNoFollow |
op_doi |
https://doi.org/10.1029/2018GL08188710.1007/s00445‐002‐0204‐710.1029/1999RG90000710.1029/JB086iB11p1047010.1038/nature0530110.1038/364203a010.1038/271321a0 |
container_title |
Geophysical Research Letters |
container_volume |
46 |
container_issue |
4 |
container_start_page |
2261 |
op_container_end_page |
2270 |
_version_ |
1774725004382961664 |
spelling |
ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/148354 2023-08-20T04:01:47+02:00 Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial Aarons, S. M. Aciego, S. M. McConnell, J. R. Delmonte, B. Baccolo, G. 2019-02-28 application/pdf https://hdl.handle.net/2027.42/148354 https://doi.org/10.1029/2018GL081887 unknown American Geophysical Union Wiley Periodicals, Inc. Aarons, S. M.; Aciego, S. M.; McConnell, J. R.; Delmonte, B.; Baccolo, G. (2019). "Dust Transport to the Taylor Glacier, Antarctica, During the Last Interglacial." Geophysical Research Letters 46(4): 2261-2270. 0094-8276 1944-8007 https://hdl.handle.net/2027.42/148354 doi:10.1029/2018GL081887 Geophysical Research Letters Nyland, R. E., Panter, K. S., Rocchi, S., Di Vincenzo, G., Del Carlo, P., Tiepolo, M., Field, B., & Gorsevski, P. ( 2013 ). Volcanic activity and its link to glaciation cycles: Single‐grain age and geochemistry of Early to Middle Miocene volcanic glass from ANDRILL AND‐2A core. Journal of Volcanology and Geothermal Research, 250, 106 – 128. https://doi.org/10.1016/j.jvolgeores.2012.11.008 Panter, K. S., Blusztajn, J., Hart, S., & Kyle, P. ( 1997 ). Late Cretaceous‐Neogene basalts from Chatham Island: Implicatinos for HIMU mantle beneath continental borderlands of the southwest Pacific. In 7th Annual V.M. Goldschmidt Conference (p. 156). Panter, K. S., Hart, S. R., Kyle, P., Blusztanjn, J., & Wilch, T. ( 2000 ). Geochemistry of Late Cenozoic basalts from the Crary Mountains: Characterization of mantle sources in Marie Byrd Land, Antarctica. Chemical Geology, 165 ( 3‐4 ), 215 – 241. https://doi.org/10.1016/S0009‐2541(99)00171‐0 Panter, K. S., Kyle, P. R., & Smellie, J. L. ( 1997 ). Petrogenesis of a phonolite‐trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica. Journal of Petrology, 38, 1225 – 1253. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin, L., Ritz, C., Saltzman, E., & Stievenard, M. ( 1999 ). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399 ( 6735 ), 429 – 436. https://doi.org/10.1038/20859 Petrenko, V. V., Severinghaus, J. P., Schaefer, H., Smith, A. M., Kuhl, T., Baggenstos, D., Hua, Q., Brook, E. J., Rose, P., Kulin, R., Bauska, T., Harth, C., Buizert, C., Orsi, A., Emanuele, G., Lee, J. E., Brailsford, G., Keeling, R., & Weiss, R. F. ( 2016 ). Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates. Geochimica et Cosmochimica Acta, 177, 62 – 77. https://doi.org/10.1016/hj.gca.2016.01.004 Scarchilli, C. ( 2007 ). Precipitation and sublimation impact on snow accumulation over Antarctica. Siena, Italy: University of Siena. Schaefer, H., Whiticar, M. J., Brook, E. J., Petrenko, V. V., Ferretti, D. F., & Severinghaus, J. P. ( 2006 ). Ice record of delta13C for atmospheric CH4 across the Younger Dryas‐Preboreal transition. Science, 313 ( 5790 ), 1109 – 1112. https://doi.org/10.1126/science.1126562 Scherer, R. P., Aldahan, A., Tulaczyk, S., Possnert, G., Engelhardt, H., & Kamb, B. ( 1998 ). Pleistocene collapse of the West Antarctic ice sheet. Science, 281 ( 5373 ), 82 – 85. https://doi.org/10.1126/science.281.5373.82 Sigvaldason, G. ( 2002 ). Volcanic and tectonic processes coinciding with glaciation and crustal rebound: An early Holocene rhyolitic eruption in the Dyngjufjöll volcanic centre and the formation of the Askja caldera, north Iceland. Bulletin of Volcanology, 64 ( 3‐4 ), 192 – 205. https://doi.org/10.1007/s00445‐002‐0204‐7 Sims, K. W. W., Blichert‐Toft, J., Kyle, P. R., Pichat, S., Gauthier, P.‐J., Blusztajn, J., Kelly, P., Ball, L., & Layne, G. ( 2008 ). A Sr, Nd, Hf, and Pb isotope perspective on the genesis and long‐term evolution of alkaline magmas from Erebus volcano, Antarctica. Journal of Volcanology and Geothermal Research, 177, 606 – 618. Singh, H. K. A., Bitz, C. M., & Frierson, D. M. W. ( 2016 ). The global climate response to lowering surface orography of Antarctica and the importance of atmosphere‐ocean coupling. American Meteorological Society, 29 ( 11 ), 4137 – 4153. https://doi.org/10.1175/JCLI‐D‐15‐0442.1 Sinisalo, A., & Moore, J. C. ( 2010 ). Antarctic blue ice areas‐towards extracting palaeoclimate information. Antarctic Science, 22 ( 2 ), 99 – 115. https://doi.org/10.1017/S0954102009990691 Slater, L., McKenzie, D., & G. K. ( 1998 ). Deglaciation effects on mantle melting under Iceland: Results from the northern volcanic zone. Earth and Planetary Science Letters, 265, 559 – 570. Steig, E. J., Huybers, K., Singh, H. A., Steiger, N. J., Ding, Q., Frierson, D. M. W., Popp, T., & White, J. W. C. ( 2015 ). Influence of West Antarctic ice sheet collapse on Antarctic surface climate. Geophysical Research Letters, 42, 4862 – 4868. https://doi.org/10.1002/2015GL063861 Steig, E. J., Morse, D. L., Waddington, E. D., Stuiver, M., Grootes, P. M., Mayewski, P., Twickler, M. S., & Whitlow, S. ( 2000 ). Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geographical Annals, 82A ( 2–3 ), 213 – 235. Stirling, C. H., Esat, T. M., Lambeck, K., & McCulloch, M. T. ( 1998 ). Timing and duration of the last interglacial: Evidence for a restricted interval of widespread coral reef growth. Earth and Planetary Science Letters, 160 ( 3–4 ), 745 – 762. https://doi.org/10.1016/S0012‐821X(98)00125‐3 Stump, E., & Fitzgerald, P. G. ( 1992 ). Episodic uplift of the Transantarctic Mountains. Geology, 20 ( 2 ), 161 – 164. https://doi.org/10.1130/0091‐7613(1992)020<0161:EUOTTM>2.3.CO;2 Vallelonga, P., Gabrielli, P., Balliana, E., Wegner, A., Delmonte, B., Turetta, C., Burton, G., Vanhaecke, F., Rosman, K. J. R., Hong, S., Boutron, C. F., Cescon, P., & Barbante, C. ( 2010 ). Lead isotopic compositions in the EPICA dome C ice core and southern hemisphere potential source areas. Quaternary Science Reviews, 29 ( 1–2 ), 247 – 255. https://doi.org/10.1016/j.quascirev.2009.06.019 White, B., Curran, H. A., & Wilson, M. A. ( 1998 ). Bahamian coral reefs yield evidence of a brief sea‐level lowstand during the last interglacial. Carbonates and Evaporites, 13 ( 10 ). White, W. M. ( 2013 ). Geochemistry. Chichester, UK: Wiley‐Blackwell. Winton, V. H. L., Dunbar, G. B., Atkins, C. B., Bertler, N. A. N., Delmonte, B., Andersson, P. S., Bowie, A., & Edwards, R. ( 2016 ). The origin of lithogenic sediment in the south‐western Ross Sea and implications for iron fertilization. Antarctic Science, 28 ( 4 ), 250 – 260. https://doi.org/10.1017/S095410201600002X Winton, V. H. L., Dunbar, G. B., Bertler, N. A. N., Millet, M. A., Delmonte, B., Atkins, C. B., Chewings, J. M., & Andersson, P. ( 2014 ). The contribution of aeolian sand and dust to iron fertilization of phytoplankton blooms in southwestern Ross Sea, Antarctica. Global Biogeochemical Cycles, 28, 423 – 436. https://doi.org/10.1002/2013GB004574 Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Röthlisberger, R., de Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard‐Andersen, M. L., Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli, P., & Gaspari, V. ( 2006 ). Southern Ocean sea‐ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 440 ( 7083 ), 491 – 496. https://doi.org/10.1038/nature04614 Yuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J. A., An, Z., & Cai, Y. ( 2004 ). Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 304 ( 5670 ), 575 – 578. https://doi.org/10.1126/science/1091220 Zielinski, G., Mayewski, P., Meeker, L., Whitlow, S., & Twickler, M. ( 1996 ). 110,000‐yr record of explosive volcanism from the GISP 2 (Greenland) ice core. Quaternary Research, 45 ( 2 ), 109 – 118. https://doi.org/10.1006/qres.1996.0013 Aarons, S. M., Aciego, S. M., Arendt, C. A., Blakowski, M. A., Steigmeyer, A., Gabrielli, P., Sierra‐Hernández, M. R., Beaudon, E., Delmonte, B., Baccolo, G., May, N. W., & Pratt, K. A. ( 2017 ). Dust composition changes from Taylor Glacier (East Antarctica) during the last glacial‐interglacial transition: A multi‐proxy approach. Quaternary Science Reviews, 162, 60 – 71. https://doi.org/10.1016/j.quascirev.2017.03.011 Aarons, S. M., Aciego, S. M., Gabrielli, P., Delmonte, B., Koornneef, J. M., Wegner, A., & Blakowski, M. A. ( 2016 ). The impact of glacier retreat from the Ross Sea on local climate: Characterization of mineral dust in the Taylor Dome ice core, East Antarctica. Earth and Planetary Science Letters, 444, 34 – 44. https://doi.org/10.1016/j.epsl.2016.03.035 Aciego, S. M., Cuffey, K. M., Kavanaugh, J. L., Morse, D. L., & Severinghaus, J. P. ( 2007 ). Pleistocene ice and paleo‐strain rates at Taylor Glacier, Antarctica. Quaternary Research, 68, 303 – 313. Albani, S., Delmonte, B., Maggi, V., Baroni, C., Petit, J. R., Stenni, B., Mazzola, C., & Frezzotti, M. ( 2012 ). Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica): Implications for atmospheric variations from regional to hemispheric scales. Climate of the Past, 8 ( 2 ), 741 – 750. https://doi.org/10.5194/cp‐8‐741‐2012 Albani, S., Mahowald, N. M., Delmonte, B., Maggi, V., & Winckler, G. ( 2012 ). Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates. Climate Dynamics, 38 ( 9–10 ), 1731 – 1755. https://doi.org/10.1007/s00382‐011‐1139‐5 Andersen, K. K., Azuma, N., Barnola, J.‐M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl‐Jensen, D., Fischer, H., Flückiger, J., Fritzsche, D., Fujii, Y., Goto‐Azuma, K., Grønvold, K., Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson‐Delmotte, V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard‐Andersen, M.‐L., Steffensen, J. P., Stocker, T., Sveinbjörnsdóttir, A. E., Svensson, A., Takata, M., Tison, J.‐L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., & White, J. W. C. ( 2004 ). High‐resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431 ( 7005 ), 147 – 151. https://doi.org/10.1038/nature02805 Baggenstos, D., Bauska, T. K., Severinghaus, J. P., Lee, J. E., Schaefer, H., Buizert, C., Brook, E. J., Shackleton, S., & Petrenko, V. V. ( 2017 ). Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Climate of the Past, 1 – 26. https://doi.org/10.5194/cp‐2017‐25 Baggenstos, D., Severinghaus, J. P., Mulvaney, R., McConnell, J. R., Sigl, M., Maselli, O., Petit, J. R., Grente, B., & Steig, E. ( 2018 ). A horizontal ice core from Taylor Glacier, its implications for Antarctic climate history, and an improved Taylor Dome ice core time scale. Paleoceanography and Paleoclimatology, 33, 778 – 794. https://doi.org/10.1029/2017PA003297 Basile, I., Grousset, F. E., Revel, M., Petit, J. R., Biscaye, P. E., & Barkov, N. I. ( 1997 ). Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth and Planetary Science Letters, 146 ( 3–4 ), 573 – 589. https://doi.org/10.1016/s0012‐821x(96)00255‐5 Behrendt, J. C., LeMasurier, W. E., Cooper, A. K., Tessensohn, F., Trehu, A., & Damaske, D. ( 1991 ). Geophysical studies of the West Antarctic Rift System. Tectonics, 10 ( 6 ), 1257 – 1273. https://doi.org/10.1029/91TC00868 Bender, M. L., Floch, G., Chappellaz, J., Suwa, M., Barnola, J. M., Blunier, T., Dreyfus, G., Jouzel, J., & Parrenin, F. ( 2006 ). Gas age‐ice age differences and the chronology of the Vostok ice core, 0‐100 ka. Journal of Geophysical Research, 111, D21115. https://doi.org/10.1029/2005JD006488 Bintanja, R. ( 1999 ). On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Reviews of Geophysics, 37 ( 3 ), 337 – 359. https://doi.org/10.1029/1999RG900007 Blakowski, M. A., Aciego, S. M., Delmonte, B., Baroni, C., Salvatore, M. C., & Sims, K. W. W. ( 2016 ). Sr‐Nd‐Hf isotope characterization of dust source areas in Victoria Land and the McMurdo Sound sector of Antarctica. Quaternary Science Reviews, 141, 26 – 37. https://doi.org/10.1016/j.quascirev.2016.03.023 Blunier, T., Schwander, J., Chappellaz, J., Parrenin, F., & Barnola, J. M. ( 2004 ). What was the surface temperature in central Antarctica during the last glacial maximum? Earth and Planetary Science Letters, 218 ( 3‐4 ), 379 – 388. https://doi.org/10.1016/S0012‐821X(03)00672‐1 Buizert, C., Baggenstos, D., Jiang, W., Purtschert, R., Petrenko, V. V., Lu, Z. T., Muller, P., Kuhl, T., Lee, J., Severinghaus, J. P., & Brook, E. J. ( 2014 ). Radiometric Kr‐81 dating identifies 120,000‐year‐old ice at Taylor Glacier, Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 19 ), 6876 – 6881. https://doi.org/10.1073/pnas.1320329111 Chen, J. H., Curran, H. A., White, B., & Wasserberg, G. J. ( 1991 ). Precise chronology of the last interglacial period: 234 U‐ 230 Th data from fossil coral reefs in the Bahamas. Geological Society of America Bulletin, 103 ( 1 ), 82 – 97. https://doi.org/10.1130/0016‐7606(1991)103<0082:PCOTLI>2.3.CO;2 Cuffey, K. M., & Marshall, S. J. ( 2000 ). Substantial contribution to sea‐level rise during the last interglacial from the Greenland ice sheet. Nature, 404 ( 6778 ), 591 – 594. https://doi.org/10.1038/35007053 Grousset, F. E., Biscaye, P. E., Revel, M., Petit, J.‐R., Pye, K., Joussaume, S., & Jouzel, J. ( 1992 ). Antarctic (Dome C) ice‐core dust at 18 k.y. B.P.: Isotopic constraints on origins. Earth and Planetary Science Letters, 111 ( 1 ), 175 – 182. https://doi.org/10.1016/0012‐821X(92)90177‐W IndexNoFollow last interglacial period climate transitions radiogenic isotopes mineral dust ice cores Geological Sciences Science Article 2019 ftumdeepblue https://doi.org/10.1029/2018GL08188710.1007/s00445‐002‐0204‐710.1029/1999RG90000710.1029/JB086iB11p1047010.1038/nature0530110.1038/364203a010.1038/271321a0 2023-07-31T20:30:08Z Changes in the composition of dust trapped in ice provide evidence of past atmospheric circulation and earth surface conditions. Investigations of dust provenance in Antarctic ice during glacial and interglacial periods indicate that South America is the primary dust source during both climate regimes. Here, we present results from a new ice core dust archive extracted from the Taylor Glacier in coastal East Antarctica during the deglacial transition from Marine Isotope Stage 6 to 5e. Radiogenic strontium and neodymium isotopes indicate that last interglacial dust is young and volcanic, in contrast to the observed preindustrial and Holocene (Marine Isotope Stage 1) dust composition. The dust composition differences from the last interglacial and current interglacial period at the site require a profound difference in atmospheric transport and environmental conditions. We consider several potential causes for enhanced transport of volcanic material to the site, including increased availability of volcanic material and large‐scale atmospheric circulation changes.Plain Language SummaryFluctuations in the isotopic composition of dust particles transported atmospherically and trapped in East Antarctic ice during glacial and interglacial periods provide glimpses into past earth surface conditions and atmospheric dynamics through time. Here we present new ice core records of dust from the Taylor Glacier (Antarctica), extending back to the transition into the last interglacial period (~130,000 years ago). Dust deposited at this site during the last interglacial period has a significantly more volcanic dust composition compared to the current interglacial dust, caused by a pronounced wind direction change and/or increased subaerial exposure of volcanic material. The distinct dust compositions during two separate interglacial periods suggest significant differences in conditions at the dust source areas and atmospheric dynamics to this peripheral Antarctic site.Key PointsLast interglacial dust composition in Taylor ... Article in Journal/Newspaper Antarc* Antarctic Antarctic Science Antarctica Antarctica Journal East Antarctica ice core Taylor Glacier University of Michigan: Deep Blue Antarctic East Antarctica Taylor Glacier ENVELOPE(162.167,162.167,-77.733,-77.733) Geophysical Research Letters 46 4 2261 2270 |