The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska

Elastic deformation of the solid Earth in response to ice mass loss offers a promising constraint on the density of glacial material lost. Further, the elastic response to modern deglaciation is important to constrain for studies of glacial isostatic adjustment to determine the mantle’s structure an...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth
Main Authors: Durkin, William, Kachuck, Samuel, Pritchard, Matthew
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2019
Subjects:
Online Access:https://hdl.handle.net/2027.42/148245
https://doi.org/10.1029/2018JB016399
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/148245
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic ice mass balance
Southeast Alaska
inelasticity
crustal elastic structure
glacial isostatic adjustment
Geological Sciences
Science
spellingShingle ice mass balance
Southeast Alaska
inelasticity
crustal elastic structure
glacial isostatic adjustment
Geological Sciences
Science
Durkin, William
Kachuck, Samuel
Pritchard, Matthew
The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska
topic_facet ice mass balance
Southeast Alaska
inelasticity
crustal elastic structure
glacial isostatic adjustment
Geological Sciences
Science
description Elastic deformation of the solid Earth in response to ice mass loss offers a promising constraint on the density of glacial material lost. Further, the elastic response to modern deglaciation is important to constrain for studies of glacial isostatic adjustment to determine the mantle’s structure and rheology. Models of this elastic uplift are commonly based on the 1‐D, seismically derived global average Preliminary Reference Earth Model and typically neglect uncertainties that can arise from regional differences in elastic structure from that of the global average, lateral heterogeneities within the region, and inelastic behavior of the crust. We quantify these uncertainties using an ensemble of 1‐D local elastic structure models and empirical relations for the effects of inelasticity in the upper ∼10 km of the crust. In Southeast Alaska, modeling elastic uplift rates with local elastic structures results in up to a 20–40% difference from those modeled with the Preliminary Reference Earth Model. Although these differences are limited to regions near to ice‐covered areas, they are comparable to the differences in uplift rates expected from the loss of firn versus loss of ice. Far from ice‐covered areas, where most of the region’s GPS observations were made, these differences become insignificant and do not affect previous glacial isostatic adjustment studies in the region. The methods presented here are based on the globally available LITHO1.0 seismic model and open source software, and the approach of using an ensemble of 1‐D elastic structures can be easily adapted to other regions around the world.Key PointsElastic uplift rate uncertainty quantified using local 1‐D models has implications for glaciological studies constrained by elastic upliftIn Southeast Alaska, these uncertainties are insignificant past 1 km distance from glaciated areas and do not affect previous studies of GIAThe inelastic behavior of the upper 10 km of the crust is a significant source of uncertainty in near‐field elastic deformation ...
format Article in Journal/Newspaper
author Durkin, William
Kachuck, Samuel
Pritchard, Matthew
author_facet Durkin, William
Kachuck, Samuel
Pritchard, Matthew
author_sort Durkin, William
title The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska
title_short The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska
title_full The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska
title_fullStr The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska
title_full_unstemmed The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska
title_sort importance of the inelastic and elastic structures of the crust in constraining glacial density, mass change, and isostatic adjustment from geodetic observations in southeast alaska
publisher Wiley Periodicals, Inc.
publishDate 2019
url https://hdl.handle.net/2027.42/148245
https://doi.org/10.1029/2018JB016399
genre Journal of Glaciology
The Cryosphere
Alaska
ice covered areas
genre_facet Journal of Glaciology
The Cryosphere
Alaska
ice covered areas
op_relation Durkin, William; Kachuck, Samuel; Pritchard, Matthew (2019). "The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska." Journal of Geophysical Research: Solid Earth 124(1): 1106-1119.
2169-9313
2169-9356
https://hdl.handle.net/2027.42/148245
doi:10.1029/2018JB016399
Journal of Geophysical Research: Solid Earth
Nuimura, T., Fujita, K., Yamaguchi, S., & Sharma, R. R. ( 2012 ). Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992‐2008. Journal of Glaciology, 58 ( 210 ), 648 – 656.
Nield, G. A., Whitehouse, P. L., King, M. A., & Clarke, P. J. ( 2016 ). Glacial isostatic adjustment in response to changing Late Holocene behaviour of ice streams on the Siple Coast, West Antarctica. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 205 ( 1 ), 1 – 21.
Nielsen, K., Khan, S. A., Spada, G., Wahr, J., Bevis, M., Liu, L., & van Dam, T. ( 2013 ). Vertical and horizontal surface displacements near jakobshavn isbræ driven by melt‐induced and dynamic ice loss. Journal of Geophysical Research: Solid Earth, 118, 1837 – 1844. https://doi.org/10.1002/jgrb.50145
Noh, M. J., & Howat, I. M. ( 2015 ). Automated stereo‐photogrammetric DEM generation at high latitudes: Surface Extraction with TIN‐based Search‐space Minimization (SETSM) validation and demonstration over glaciated regions. GIScience and Remote Sensing, 52 ( 2 ), 198 – 217. https://doi.org/10.1080/15481603.2015.1008621
Pan, E., Chen, J. Y., Bevis, M., Bordoni, A., Barletta, V. R., & Molavi Tabrizi, A ( 2015 ). An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self‐gravitating earth. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 203 ( 3 ), 2150 – 2181.
Pasyanos, M. E., Masters, T. G., Laske, G., & Ma, Z. ( 2014 ). LITHO1.0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 119, 2153 – 2173. https://doi.org/10.1002/2013JB010626
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.‐O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Molg, N., Paul, F., Radic, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., & Randolph, C. ( 2014 ). The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60 ( 221 ), 537 – 552.
Ramage, J. M., Isacks, B. L., & Miller, M. M. ( 2000 ). Radar glacier zones in Southeast Alaska, U.S.A.: Field and satellite observations. Journal of Glaciology, 46 ( 153 ), 287 – 296.
Sato, T., Larsen, C. F., Miura, S., Ohta, Y., Fujimoto, H., Sun, W., Motyka, R. J., & Freymueller, J. T. ( 2011 ). Reevaluation of the viscoelastic and elastic responses to the past and present‐day ice changes in Southeast Alaska. Tectonophysics, 511 ( 3‐4 ), 79 – 88.
Sauber, J. M., & Molnia, B. F. ( 2004 ). Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska. Global and Planetary Change, 42 ( 1–4 ), 279 – 293.
Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti, S., & Dokka, R. K. ( 2007 ). Observation of glacial isostatic adjustment in “stable” 700 North America with GPS. Geophysical Research Letters, 34, L02306. https://doi.org/10.1029/2006GL027081
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg‐Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.‐W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M., Dutt Vishwakarma, B., Wiese, D., & Wouters, B. ( 2018 ). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558 ( 7709 ), 219 – 222. https://doi.org/10.1038/s41586-018-0179-y
Smith, L. C., Forster, R. R., Isacks, B. L., & Hall, D. K. ( 1997 ). Seasonal climatic forcing of alpine glaciers revealed with orbital synthetic aperture radar. Journal of Glaciology, 43 ( 145 ), 480 – 488.
Spaans, K., Hreinsdóttir, S., Hooper, A., & Ó feigsson, B. G. ( 2015 ). Crustal movements due to Iceland’s shrinking ice caps mimic magma inflow signal at Katla volcano. Scientific Reports, 5, 10285. https://doi.org/10.1038/srep10285
Steffen, H., & Wu, P. ( 2011 ). Glacial isostatic adjustment in fennoscandiaa review of data and modeling. Journal of Geodynamics, 52 ( 3–4 ), 169 – 204.
Tesauro, M., Audet, P., Kaban, M. K, Bürgmann, R., & Cloetingh, S. ( 2012 ). The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches. Geochemistry, Geophysics, Geosystems, 13, Q09001. https://doi.org/10.1029/2012GC004162
Tutuncu, A. N., Podio, A. L., Gregory, A. R., & Sharma, M. M. ( 1998 ). Nonlinear viscoelastic behavior of sedimentary rocks, part I: Effect of frequency and strain amplitude. Geophysics, 63 ( 1 ), 184 – 194.
Wahr, J., Khan, S. A., Dam, T., Liu, L., Angelen, J. H., Broeke, M. R., & Meertens, C. M. ( 2013 ). The use of GPS horizontals for loading studies, with applications to Northern California and Southeast Greenland. Journal of Geophysical Research: Solid Earth, 118, 1795 – 1806. https://doi.org/10.1002/jgrb.50104
Wang, D., & Kaääb, A. ( 2015 ). Modeling glacier elevation change from DEM time series. Remote Sensing, 7 ( 8 ), 10117 – 10142. https://doi.org/10.3390/rs70810117
Willis, M. J., Melkonian, A. K., Pritchard, M. E., & Rivera, A. ( 2012 ). Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophysical research letters, 39, L17501. https://doi.org/10.1029/2012GL053136
Wong, T.‐F., & Baud, P. ( 2012 ). The brittle‐ductile transition in porous rock: A review. Journal of Structural Geology, 44, 25 – 53.
Yale, D. P., & Swami, V. ( 2017 ). Conversion of dynamic mechanical property calculations to static values for geomechanical modeling. American Rock Mechanics Association, 17 – 0644.
Zhao, W., Amelung, F., Dixon, T. H., Wdowinski, S., & Malservisi, R. ( 2014 ). A method for estimating ice mass loss from relative InSAR observations: Application to the Vatnajökull ice cap, Iceland. Geochemistry, Geophysics, Geosystems, 15, 108 – 120. https://doi.org/10.1002/2013GC004936
Zhao, W., Amelung, F., Doin, M. P., Dixon, T. H., Wdowinski, S., & Lin, G. ( 2016 ). InSAR observations of lake loading at Yangzhuoyong Lake, Tibet: Constraints on crustal elasticity. Earth and Planetary Science Letters, 449, 240 – 245. https://doi.org/10.1016/j.epsl.2016.05.044
Adhikari, S., Ivins, E. R., & Larour, E. ( 2017 ). Mass transport waves amplified by intense Greenland melt and detected in solid Earth deformation. Geophysical Research Letters, 44, 4965 – 4975. https://doi.org/10.1002/2017GL073478
Ameen, M. S., Smart, B. G. D., Somerville, J. Mc., Hammilton, S., & Naji, N. A. ( 2009 ). Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab‐D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology, 26 ( 4 ), 430 – 444.
Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S., & Valentine, V. B. ( 2002 ). Rapid wastage of Alaska Glaciers and their contribution to rising sea level. Science, 297, 382 – 386.
Asef, M. R., & Najibi, A. R. ( 2013 ). The effect of confining pressure on elastic wave velocities and dynamic to static Young’s modulus ratio. Geophysics, 78 ( 3 ), D135 – D142.
Auriac, A., Spaans, K. H., Sigmundsson, F., Hooper, A., Schmidt, P., & Lund, B. ( 2013 ). Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling. Journal of Geophysical Research: Solid Earth, 118, 1331 – 1344. https://doi.org/10.1002/jgrb.50082
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S. A., Rovira‐Navarro, M., Dalziel, I., Smalley, R. Jr., Kendrick, E., Konfal, S., Caccamise, D. J. II, Aster, R. C., Nyblade, A., & Wiens, D. A. ( 2018 ). Observed rapid bedrock uplift in Amundsen Sea embayment promotes ice‐sheet stability. Science, 360 ( 6395 ), 1335 – 1339.
Berthier, E., Cabot, V., Vincent, C., & Six, D. ( 2016 ). Decadal region‐wide and glacier‐wide mass balances derived from multi‐temporal ASTER satellite digital elevation models. Validation over the Mont‐Blanc Area. Frontiers in Earth Science, 4, 1 – 16. https://doi.org/10.3389/feart.2016.00063
Berthier, E., Larsen, C., Durkin, W. J., Willis, M. J., & Pritchard, M. E. ( 2018 ). Brief communication: Unabated wastage of the Juneau and Stikine icefields (Southeast Alaska) in the early 21st century. The Cryosphere, 12 ( 4 ), 1523 – 1530.
Bevan, S. L., Luckman, A., Khan, S. A., & Murray, T. ( 2015 ). Seasonal dynamic thinning at Helheim Glacier. Earth and Planetary Science Letters, 415, 47 – 53. https://doi.org/10.1016/j.epsl.2015.01.031
Bevis, M., Melini, D., & Spada, G. ( 2016 ). On computing the geoelastic response to a disk load. Geophysical Journal International, 205 ( 3 ), 1804 – 1812.
Brantut, N., Heap, M. J., Meredith, P. G., & Baud, P. ( 2013 ). Time‐dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 52, 17 – 43.
Carcione, J. M., Poletto, F., & Farina, B. ( 2018 ). The burgers/squirt‐flow seismic model of the crust and mantle. Physics of the Earth and Planetary Interiors, 274, 14 – 22.
Cathles, L. M. ( 1975 ). The Viscosity of the Earth’s Mantle. Princeton, NJ: Princeton University Press.
Cheng, C. H., & Johnston, D. H. ( 1981 ). Dynamic and static moduli. Geophysical Research Letters, 8 ( 1 ), 39 – 42.
Compton, K., Bennett, R. A., & Hreinsdóttir, S. ( 2015 ). Climate‐driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy. Geophysical Research Letters, 42, 743 – 750. https://doi.org/10.1002/2014GL062446
Compton, K., Bennett, R. A., Hreinsdóttir, S., van Dam, T., Bordoni, A., Barletta, V., & Spada, G. ( 2017 ). Short‐term variations of Icelandic ice cap mass inferred from cGPS coordinate time series. Geochemistry, Geophysics, Geosystems, 18, 2099 – 2119. https://doi.org/10.1002/2017GC006831
Dehecq, A., Millan, R., Berthier, E., Gourmelen, N., Trouvé, E., & Vionnet, V. ( 2016 ). Elevation changes inferred from TanDEM‐X data over the Mont‐Blanc area: Impact of the X‐band interferometric bias. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 ( 8 ), 3870 – 3882.
Dill, R., Klemann, V., Martinec, Z., & Tesauro, M. ( 2015 ). Applying local Green’s functions to study the influence of the crustal structure on hydrological loading displacements. Journal of Geodynamics, 88, 14 – 22.
Doin, M. P., Twardzik, C., Ducret, G., Lasserre, C., Guillaso, S., & Jianbao, S. ( 2015 ). InSAR measurement of the deformation around Siling Co Lake: Inferences on the lower crust viscosity in central Tibet. Journal of Geophysical Research: Solid Earth, 120, 5290 – 5310. https://doi.org/10.1002/2014JB011768
Drouin, V., Heki, K., Sigmundsson, F., Hreinsdóttir, S., & Ófeigsson, B. G. ( 2016 ). Constraints on seasonal load variations and regional rigidity from continuous GPS measurements in Iceland, 1997‐2014. Geophysical Journal International, 205 ( 3 ), 1843 – 1858.
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2018JB016399
container_title Journal of Geophysical Research: Solid Earth
container_volume 124
container_issue 1
container_start_page 1106
op_container_end_page 1119
_version_ 1774719422406066176
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/148245 2023-08-20T04:07:38+02:00 The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska Durkin, William Kachuck, Samuel Pritchard, Matthew 2019-01 application/pdf https://hdl.handle.net/2027.42/148245 https://doi.org/10.1029/2018JB016399 unknown Wiley Periodicals, Inc. Princeton University Press Durkin, William; Kachuck, Samuel; Pritchard, Matthew (2019). "The Importance of the Inelastic and Elastic Structures of the Crust in Constraining Glacial Density, Mass Change, and Isostatic Adjustment From Geodetic Observations in Southeast Alaska." Journal of Geophysical Research: Solid Earth 124(1): 1106-1119. 2169-9313 2169-9356 https://hdl.handle.net/2027.42/148245 doi:10.1029/2018JB016399 Journal of Geophysical Research: Solid Earth Nuimura, T., Fujita, K., Yamaguchi, S., & Sharma, R. R. ( 2012 ). Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992‐2008. Journal of Glaciology, 58 ( 210 ), 648 – 656. Nield, G. A., Whitehouse, P. L., King, M. A., & Clarke, P. J. ( 2016 ). Glacial isostatic adjustment in response to changing Late Holocene behaviour of ice streams on the Siple Coast, West Antarctica. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 205 ( 1 ), 1 – 21. Nielsen, K., Khan, S. A., Spada, G., Wahr, J., Bevis, M., Liu, L., & van Dam, T. ( 2013 ). Vertical and horizontal surface displacements near jakobshavn isbræ driven by melt‐induced and dynamic ice loss. Journal of Geophysical Research: Solid Earth, 118, 1837 – 1844. https://doi.org/10.1002/jgrb.50145 Noh, M. J., & Howat, I. M. ( 2015 ). Automated stereo‐photogrammetric DEM generation at high latitudes: Surface Extraction with TIN‐based Search‐space Minimization (SETSM) validation and demonstration over glaciated regions. GIScience and Remote Sensing, 52 ( 2 ), 198 – 217. https://doi.org/10.1080/15481603.2015.1008621 Pan, E., Chen, J. Y., Bevis, M., Bordoni, A., Barletta, V. R., & Molavi Tabrizi, A ( 2015 ). An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self‐gravitating earth. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 203 ( 3 ), 2150 – 2181. Pasyanos, M. E., Masters, T. G., Laske, G., & Ma, Z. ( 2014 ). LITHO1.0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 119, 2153 – 2173. https://doi.org/10.1002/2013JB010626 Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.‐O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Molg, N., Paul, F., Radic, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., & Randolph, C. ( 2014 ). The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60 ( 221 ), 537 – 552. Ramage, J. M., Isacks, B. L., & Miller, M. M. ( 2000 ). Radar glacier zones in Southeast Alaska, U.S.A.: Field and satellite observations. Journal of Glaciology, 46 ( 153 ), 287 – 296. Sato, T., Larsen, C. F., Miura, S., Ohta, Y., Fujimoto, H., Sun, W., Motyka, R. J., & Freymueller, J. T. ( 2011 ). Reevaluation of the viscoelastic and elastic responses to the past and present‐day ice changes in Southeast Alaska. Tectonophysics, 511 ( 3‐4 ), 79 – 88. Sauber, J. M., & Molnia, B. F. ( 2004 ). Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska. Global and Planetary Change, 42 ( 1–4 ), 279 – 293. Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti, S., & Dokka, R. K. ( 2007 ). Observation of glacial isostatic adjustment in “stable” 700 North America with GPS. Geophysical Research Letters, 34, L02306. https://doi.org/10.1029/2006GL027081 Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg‐Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.‐W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M., Dutt Vishwakarma, B., Wiese, D., & Wouters, B. ( 2018 ). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558 ( 7709 ), 219 – 222. https://doi.org/10.1038/s41586-018-0179-y Smith, L. C., Forster, R. R., Isacks, B. L., & Hall, D. K. ( 1997 ). Seasonal climatic forcing of alpine glaciers revealed with orbital synthetic aperture radar. Journal of Glaciology, 43 ( 145 ), 480 – 488. Spaans, K., Hreinsdóttir, S., Hooper, A., & Ó feigsson, B. G. ( 2015 ). Crustal movements due to Iceland’s shrinking ice caps mimic magma inflow signal at Katla volcano. Scientific Reports, 5, 10285. https://doi.org/10.1038/srep10285 Steffen, H., & Wu, P. ( 2011 ). Glacial isostatic adjustment in fennoscandiaa review of data and modeling. Journal of Geodynamics, 52 ( 3–4 ), 169 – 204. Tesauro, M., Audet, P., Kaban, M. K, Bürgmann, R., & Cloetingh, S. ( 2012 ). The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches. Geochemistry, Geophysics, Geosystems, 13, Q09001. https://doi.org/10.1029/2012GC004162 Tutuncu, A. N., Podio, A. L., Gregory, A. R., & Sharma, M. M. ( 1998 ). Nonlinear viscoelastic behavior of sedimentary rocks, part I: Effect of frequency and strain amplitude. Geophysics, 63 ( 1 ), 184 – 194. Wahr, J., Khan, S. A., Dam, T., Liu, L., Angelen, J. H., Broeke, M. R., & Meertens, C. M. ( 2013 ). The use of GPS horizontals for loading studies, with applications to Northern California and Southeast Greenland. Journal of Geophysical Research: Solid Earth, 118, 1795 – 1806. https://doi.org/10.1002/jgrb.50104 Wang, D., & Kaääb, A. ( 2015 ). Modeling glacier elevation change from DEM time series. Remote Sensing, 7 ( 8 ), 10117 – 10142. https://doi.org/10.3390/rs70810117 Willis, M. J., Melkonian, A. K., Pritchard, M. E., & Rivera, A. ( 2012 ). Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophysical research letters, 39, L17501. https://doi.org/10.1029/2012GL053136 Wong, T.‐F., & Baud, P. ( 2012 ). The brittle‐ductile transition in porous rock: A review. Journal of Structural Geology, 44, 25 – 53. Yale, D. P., & Swami, V. ( 2017 ). Conversion of dynamic mechanical property calculations to static values for geomechanical modeling. American Rock Mechanics Association, 17 – 0644. Zhao, W., Amelung, F., Dixon, T. H., Wdowinski, S., & Malservisi, R. ( 2014 ). A method for estimating ice mass loss from relative InSAR observations: Application to the Vatnajökull ice cap, Iceland. Geochemistry, Geophysics, Geosystems, 15, 108 – 120. https://doi.org/10.1002/2013GC004936 Zhao, W., Amelung, F., Doin, M. P., Dixon, T. H., Wdowinski, S., & Lin, G. ( 2016 ). InSAR observations of lake loading at Yangzhuoyong Lake, Tibet: Constraints on crustal elasticity. Earth and Planetary Science Letters, 449, 240 – 245. https://doi.org/10.1016/j.epsl.2016.05.044 Adhikari, S., Ivins, E. R., & Larour, E. ( 2017 ). Mass transport waves amplified by intense Greenland melt and detected in solid Earth deformation. Geophysical Research Letters, 44, 4965 – 4975. https://doi.org/10.1002/2017GL073478 Ameen, M. S., Smart, B. G. D., Somerville, J. Mc., Hammilton, S., & Naji, N. A. ( 2009 ). Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab‐D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology, 26 ( 4 ), 430 – 444. Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S., & Valentine, V. B. ( 2002 ). Rapid wastage of Alaska Glaciers and their contribution to rising sea level. Science, 297, 382 – 386. Asef, M. R., & Najibi, A. R. ( 2013 ). The effect of confining pressure on elastic wave velocities and dynamic to static Young’s modulus ratio. Geophysics, 78 ( 3 ), D135 – D142. Auriac, A., Spaans, K. H., Sigmundsson, F., Hooper, A., Schmidt, P., & Lund, B. ( 2013 ). Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling. Journal of Geophysical Research: Solid Earth, 118, 1331 – 1344. https://doi.org/10.1002/jgrb.50082 Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S. A., Rovira‐Navarro, M., Dalziel, I., Smalley, R. Jr., Kendrick, E., Konfal, S., Caccamise, D. J. II, Aster, R. C., Nyblade, A., & Wiens, D. A. ( 2018 ). Observed rapid bedrock uplift in Amundsen Sea embayment promotes ice‐sheet stability. Science, 360 ( 6395 ), 1335 – 1339. Berthier, E., Cabot, V., Vincent, C., & Six, D. ( 2016 ). Decadal region‐wide and glacier‐wide mass balances derived from multi‐temporal ASTER satellite digital elevation models. Validation over the Mont‐Blanc Area. Frontiers in Earth Science, 4, 1 – 16. https://doi.org/10.3389/feart.2016.00063 Berthier, E., Larsen, C., Durkin, W. J., Willis, M. J., & Pritchard, M. E. ( 2018 ). Brief communication: Unabated wastage of the Juneau and Stikine icefields (Southeast Alaska) in the early 21st century. The Cryosphere, 12 ( 4 ), 1523 – 1530. Bevan, S. L., Luckman, A., Khan, S. A., & Murray, T. ( 2015 ). Seasonal dynamic thinning at Helheim Glacier. Earth and Planetary Science Letters, 415, 47 – 53. https://doi.org/10.1016/j.epsl.2015.01.031 Bevis, M., Melini, D., & Spada, G. ( 2016 ). On computing the geoelastic response to a disk load. Geophysical Journal International, 205 ( 3 ), 1804 – 1812. Brantut, N., Heap, M. J., Meredith, P. G., & Baud, P. ( 2013 ). Time‐dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 52, 17 – 43. Carcione, J. M., Poletto, F., & Farina, B. ( 2018 ). The burgers/squirt‐flow seismic model of the crust and mantle. Physics of the Earth and Planetary Interiors, 274, 14 – 22. Cathles, L. M. ( 1975 ). The Viscosity of the Earth’s Mantle. Princeton, NJ: Princeton University Press. Cheng, C. H., & Johnston, D. H. ( 1981 ). Dynamic and static moduli. Geophysical Research Letters, 8 ( 1 ), 39 – 42. Compton, K., Bennett, R. A., & Hreinsdóttir, S. ( 2015 ). Climate‐driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy. Geophysical Research Letters, 42, 743 – 750. https://doi.org/10.1002/2014GL062446 Compton, K., Bennett, R. A., Hreinsdóttir, S., van Dam, T., Bordoni, A., Barletta, V., & Spada, G. ( 2017 ). Short‐term variations of Icelandic ice cap mass inferred from cGPS coordinate time series. Geochemistry, Geophysics, Geosystems, 18, 2099 – 2119. https://doi.org/10.1002/2017GC006831 Dehecq, A., Millan, R., Berthier, E., Gourmelen, N., Trouvé, E., & Vionnet, V. ( 2016 ). Elevation changes inferred from TanDEM‐X data over the Mont‐Blanc area: Impact of the X‐band interferometric bias. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 ( 8 ), 3870 – 3882. Dill, R., Klemann, V., Martinec, Z., & Tesauro, M. ( 2015 ). Applying local Green’s functions to study the influence of the crustal structure on hydrological loading displacements. Journal of Geodynamics, 88, 14 – 22. Doin, M. P., Twardzik, C., Ducret, G., Lasserre, C., Guillaso, S., & Jianbao, S. ( 2015 ). InSAR measurement of the deformation around Siling Co Lake: Inferences on the lower crust viscosity in central Tibet. Journal of Geophysical Research: Solid Earth, 120, 5290 – 5310. https://doi.org/10.1002/2014JB011768 Drouin, V., Heki, K., Sigmundsson, F., Hreinsdóttir, S., & Ófeigsson, B. G. ( 2016 ). Constraints on seasonal load variations and regional rigidity from continuous GPS measurements in Iceland, 1997‐2014. Geophysical Journal International, 205 ( 3 ), 1843 – 1858. IndexNoFollow ice mass balance Southeast Alaska inelasticity crustal elastic structure glacial isostatic adjustment Geological Sciences Science Article 2019 ftumdeepblue https://doi.org/10.1029/2018JB016399 2023-07-31T21:16:45Z Elastic deformation of the solid Earth in response to ice mass loss offers a promising constraint on the density of glacial material lost. Further, the elastic response to modern deglaciation is important to constrain for studies of glacial isostatic adjustment to determine the mantle’s structure and rheology. Models of this elastic uplift are commonly based on the 1‐D, seismically derived global average Preliminary Reference Earth Model and typically neglect uncertainties that can arise from regional differences in elastic structure from that of the global average, lateral heterogeneities within the region, and inelastic behavior of the crust. We quantify these uncertainties using an ensemble of 1‐D local elastic structure models and empirical relations for the effects of inelasticity in the upper ∼10 km of the crust. In Southeast Alaska, modeling elastic uplift rates with local elastic structures results in up to a 20–40% difference from those modeled with the Preliminary Reference Earth Model. Although these differences are limited to regions near to ice‐covered areas, they are comparable to the differences in uplift rates expected from the loss of firn versus loss of ice. Far from ice‐covered areas, where most of the region’s GPS observations were made, these differences become insignificant and do not affect previous glacial isostatic adjustment studies in the region. The methods presented here are based on the globally available LITHO1.0 seismic model and open source software, and the approach of using an ensemble of 1‐D elastic structures can be easily adapted to other regions around the world.Key PointsElastic uplift rate uncertainty quantified using local 1‐D models has implications for glaciological studies constrained by elastic upliftIn Southeast Alaska, these uncertainties are insignificant past 1 km distance from glaciated areas and do not affect previous studies of GIAThe inelastic behavior of the upper 10 km of the crust is a significant source of uncertainty in near‐field elastic deformation ... Article in Journal/Newspaper Journal of Glaciology The Cryosphere Alaska ice covered areas University of Michigan: Deep Blue Journal of Geophysical Research: Solid Earth 124 1 1106 1119