Local Arctic Air Pollution: A Neglected but Serious Problem

Air pollution in the Arctic caused by local emission sources is a challenge that is important but often overlooked. Local Arctic air pollution can be severe and significantly exceed air quality standards, impairing public health and affecting ecosystems. Specifically in the wintertime, pollution can...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Schmale, J., Arnold, S. R., Law, K. S., Thorp, T., Anenberg, S., Simpson, W. R., Mao, J., Pratt, K. A.
Format: Article in Journal/Newspaper
Language:unknown
Published: Arctic Monitoring and Assessment Programme (AMAP), 2015 2018
Subjects:
Online Access:http://hdl.handle.net/2027.42/146562
https://doi.org/10.1029/2018EF000952
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/146562
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic chemistry
scenario
health
air pollution
Arctic
ecosystem impact
Geological Sciences
Science
spellingShingle chemistry
scenario
health
air pollution
Arctic
ecosystem impact
Geological Sciences
Science
Schmale, J.
Arnold, S. R.
Law, K. S.
Thorp, T.
Anenberg, S.
Simpson, W. R.
Mao, J.
Pratt, K. A.
Local Arctic Air Pollution: A Neglected but Serious Problem
topic_facet chemistry
scenario
health
air pollution
Arctic
ecosystem impact
Geological Sciences
Science
description Air pollution in the Arctic caused by local emission sources is a challenge that is important but often overlooked. Local Arctic air pollution can be severe and significantly exceed air quality standards, impairing public health and affecting ecosystems. Specifically in the wintertime, pollution can accumulate under inversion layers. However, neither the contributing emission sources are well identified and quantified nor the relevant atmospheric mechanisms forming pollution are well understood. In the summer, boreal forest fires cause high levels of atmospheric pollution. Despite the often high exposure to air pollution, there are neither specific epidemiological nor toxicological health impact studies in the Arctic. Hence, effects on the local population are difficult to estimate at present. Socioeconomic development of the Arctic is already occurring and expected to be significant in the future. Arctic destination shipping is likely to increase with the development of natural resource extraction, and tourism might expand. Such development will not only lead to growth in the population living in the Arctic but will likely increase emission types and magnitudes. Present‐day inventories show a large spread in the amount and location of emissions representing a significant source of uncertainty in model predictions that often deviate significantly from observations. This is a challenge for modeling studies that aim to assess the impacts of within Arctic air pollution. Prognoses for the future are hence even more difficult, given the additional uncertainty of estimating emissions based on future Arctic economic development scenarios.Key PointsLocal Arctic air pollution is among the most severe world wideArctic meteorological conditions exacerbate air pollution and create unique pollution formation mechanismsFuture economic activities in the Arctic are expected to increase local air pollution Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/146562/1/eft2461_am.pdf ...
format Article in Journal/Newspaper
author Schmale, J.
Arnold, S. R.
Law, K. S.
Thorp, T.
Anenberg, S.
Simpson, W. R.
Mao, J.
Pratt, K. A.
author_facet Schmale, J.
Arnold, S. R.
Law, K. S.
Thorp, T.
Anenberg, S.
Simpson, W. R.
Mao, J.
Pratt, K. A.
author_sort Schmale, J.
title Local Arctic Air Pollution: A Neglected but Serious Problem
title_short Local Arctic Air Pollution: A Neglected but Serious Problem
title_full Local Arctic Air Pollution: A Neglected but Serious Problem
title_fullStr Local Arctic Air Pollution: A Neglected but Serious Problem
title_full_unstemmed Local Arctic Air Pollution: A Neglected but Serious Problem
title_sort local arctic air pollution: a neglected but serious problem
publisher Arctic Monitoring and Assessment Programme (AMAP), 2015
publishDate 2018
url http://hdl.handle.net/2027.42/146562
https://doi.org/10.1029/2018EF000952
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
Circumpolar Health
International Journal of Circumpolar Health
The Cryosphere
genre_facet Arctic
Arctic
Circumpolar Health
International Journal of Circumpolar Health
The Cryosphere
op_relation Schmale, J.; Arnold, S. R.; Law, K. S.; Thorp, T.; Anenberg, S.; Simpson, W. R.; Mao, J.; Pratt, K. A. (2018). "Local Arctic Air Pollution: A Neglected but Serious Problem." Earth’s Future 6(10): 1385-1412.
2328-4277
http://hdl.handle.net/2027.42/146562
doi:10.1029/2018EF000952
Earth’s Future
Rinne, J., Hakola, H., Laurila, T., & Rannik, Ü. ( 2000 ). Canopy scale monoterpene emissions of Pinus sylvestris dominated forests. Atmospheric Environment, 34 ( 7 ), 1099 – 1107. http://www.sciencedirect.com/science/article/pii/S1352231099003350
Tunved, P., Hansson, H.‐C., Kerminen, V.‐M., Ström, J., Maso, M. D., Lihavainen, H., et al. ( 2006 ). High natural aerosol loading over boreal forests. Science, 312 ( 5771 ), 261 – 263. http://science.sciencemag.org/content/sci/312/5771/261.full.pdf
Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. ( 2014 ). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, 11. https://doi.org/10.1038/ngeo2325
Turetsky, M. R., Kane, E. S., Harden, J. W., Ottmar, R. D., Manies, K. L., Hoy, E., & Kasischke, E. S. ( 2010 ). Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 4, 27. https://doi.org/10.1038/ngeo1027
Uttal, T., Starkweather, S., Drummond, J. R., Vihma, T., Makshtas, A. P., Darby, L. S., et al. ( 2016 ). International Arctic systems for observing the atmosphere: An international polar year legacy consortium. Bulletin of the American Meteorological Society, 97 ( 6 ), 1033 – 1056. https://doi.org/10.1175/BAMS‐D‐14‐00145.1
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. ( 2011 ). The representative concentration pathways: An overview. Climatic Change, 109 ( 1 ), 5. https://doi.org/10.1007/s10584‐011‐0148‐z
van Zelm, R., Preiss, P., van Goethem, T., Van Dingenen, R., & Huijbregts, M. ( 2016 ). Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation. Atmospheric Environment, 134, 129 – 137. http://www.sciencedirect.com/science/article/pii/S1352231016302084
Vasileva, A., Moiseenko, K., Skorokhod, A., Belikov, I., Kopeikin, V., & Lavrova, O. ( 2017 ). Emission ratios of trace gases and particles for Siberian forest fires on the basis of mobile ground observations. Atmospheric Chemistry and Physics Discussions, 2017, 1 – 41. http://www.atmos‐chem‐phys‐discuss.net/acp‐2017‐362/
Vedel‐Petersen, I., Schollert, M., Nymand, J., & Rinnan, R. ( 2015 ). Volatile organic compound emission profiles of four common arctic plants. Atmospheric Environment, 120, 117 – 126. http://www.sciencedirect.com/science/article/pii/S1352231015303277
Viana, M., Hammingh, P., Colette, A., Querol, X., Degraeuwe, B., Vlieger, I. d., & van Aardenne, J. ( 2014 ). Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment, 90, 96 – 105. http://www.sciencedirect.com/science/article/pii/S1352231014002313
Vos, T., Allen, C., Arora, M., Barber, R. M., Bhutta, Z. A., Brown, A., et al. ( 2016 ). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388 ( 10053 ), 1545 – 1602. https://doi.org/10.1016/S0140‐6736(16)31678‐6
Waigl, C. F., Stuefer, M., Prakash, A., & Ichoku, C. ( 2017 ). Detecting high and low‐intensity fires in Alaska using VIIRS I‐band data: An improved operational approach for high latitudes. Remote Sensing of Environment, 199, 389 – 400. http://www.sciencedirect.com/science/article/pii/S0034425717303085
Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., et al. ( 2016 ). Persistent sulfate formation from London fog to Chinese haze. Proceedings of the National Academy of Sciences, 113 ( 48 ), 13,630 – 13,635. http://www.pnas.org/content/113/48/13630.abstract
Wang, Y., & Hopke, P. K. ( 2014 ). Is Alaska truly the great escape from air pollution? Long term source apportionment of fine particulate matter in Fairbanks, Alaska. Aerosol and Air Quality Research, 14 ( 7 ), 1875 – 1882. https://doi.org/10.4209/aaqr.2014.03.0047
Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., et al. ( 2014 ). Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. Journal of Geophysical Research: Atmospheres, 119, 10,425 – 410,440. https://doi.org/10.1002/2013JD021426
Ward, T., Trost, B., Conner, J., Flanagan, J., & Jayanty, R. K. M. ( 2012 ). Source apportionment of PM 2.5 in a subarctic Airshed‐Fairbanks, Alaska. Aerosol and Air Quality Research, 12 ( 4 ), 536 – 543. https://doi.org/10.4209/aaqr.2011.11.0208
Ware, D. N., Lewis, J., Hopkins, S., Boyer, B., Montrose, L., Noonan, C. W., et al. ( 2014 ). Household reporting of childhood respiratory health and air pollution in rural Alaska Native communities. International Journal of Circumpolar Health, 73 ( 1 ), 24324. https://doi.org/10.3402/ijch.v73.24324
Warneck, P. ( 1991 ). Chemical reactions in clouds. Fresenius’ Journal of Analytical Chemistry, 340 ( 9 ), 585 – 590. https://doi.org/10.1007/BF00322434
Warneck, P. ( 1999 ). The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds. Physical Chemistry Chemical Physics, 1 ( 24 ), 5471 – 5483. https://doi.org/10.1039/A906558J
Warneke, C., Bahreini, R., Brioude, J., Brock, C. A., de Gouw, J. A., Fahey, D. W., et al. ( 2009 ). Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophysical Research Letters, 36, L02813. https://doi.org/10.1029/2008GL036194. Article. <Go to ISI>://000262982000002
Wild, R. J., Edwards, P. M., Bates, T. S., Cohen, R. C., de Gouw, J. A., Dubé, W. P., et al. ( 2016 ). Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics, 16 ( 2 ), 573 – 583. https://www.atmos‐chem‐phys.net/16/573/2016/
Willet, H. C. ( 1929 ). Fog and haze, their causes, distribution, and forecasting. Monthly Weather Review, 56 ( 11 ), 435 – 459.
Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., Semiletov, I. P., Dudarev, O. V., et al. ( 2017 ). Siberian Arctic black carbon sources constrained by model and observation. Proceedings of the National Academy of Sciences, 114 ( 7 ), E1054 – E1061. http://www.pnas.org/content/114/7/E1054.abstract
Winther, M., Christensen, J. H., Angelidis, I., & Ravn, E. S. ( 2017 ). Emissions from shipping in the Arctic from 2012–2016 and emission projections for 2020, 2030 and 2050. Retrieved from Aarhus, Denmark: http://dce2.au.dk/pub/SR252.pdf
Winther, M., Christensen, J. H., Plejdrup, M. S., Ravn, E. S., Eriksson, Ó. F., & Kristensen, H. O. ( 2014 ). Emission inventories for ships in the arctic based on satellite sampled AIS data. Atmospheric Environment, 91, 1 – 14. http://www.sciencedirect.com/science/article/pii/S1352231014001678
Ye, H. ( 2009 ). The influence of air temperature and atmospheric circulation on winter fog frequency over Northern Eurasia. International Journal of Climatology, 29 ( 5 ), 729 – 734. https://doi.org/10.1002/joc.1741
Yttri, K. E., Lund Myhre, C., Eckhardt, S., Fiebig, M., Dye, C., Hirdman, D., et al. ( 2014 ). Quantifying black carbon from biomass burning by means of levoglucosan – A one‐year time series at the Arctic observatory zeppelin. Atmospheric Chemistry and Physics, 14 ( 12 ), 6427 – 6442. https://www.atmos‐chem‐phys.net/14/6427/2014/
Yue, X., Strada, S., Unger, N., & Wang, A. ( 2017 ). Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America. Atmospheric Chemistry and Physics, 17 ( 22 ), 13,699 – 13,719. https://www.atmos‐chem‐phys.net/17/13699/2017/
Zhou, P., Ganzeveld, L., Taipale, D., Rannik, Ü., Rantala, P., Rissanen, M. P., et al. ( 2017 ). Boreal forest BVOCs exchange: Emissions versus in‐canopy sinks. Atmospheric Chemistry and Physics Discussions, 2017, 1 – 36. https://www.atmos‐chem‐phys‐discuss.net/acp‐2017‐493/
Arctic Council (AC) ( 2017 ). Fairbanks declaration. Retrieved from Fairbanks.
Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., et al. ( 2015 ). Understanding high wintertime ozone pollution events in an oil‐ and natural gas‐producing region of the western US. Atmospheric Chemistry and Physics, 15 ( 1 ), 411 – 429. https://www.atmos‐chem‐phys.net/15/411/2015/
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., et al. ( 2011 ). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11 ( 9 ), 4039 – 4072. http://www.atmos‐chem‐phys.net/11/4039/2011/
Aksoyoglu, S., Baltensperger, U., & Prévôt, A. S. H. ( 2016 ). Contribution of ship emissions to the concentration and deposition of air pollutants in Europe. Atmospheric Chemistry and Physics, 16 ( 4 ), 1895 – 1906. https://www.atmos‐chem‐phys.net/16/1895/2016/
Alaska Native Tumor Registry Consortium ( 2016 ). Alaska native mortality update: 2009–2013. Retrieved from Epidemiology Center: http://anthctoday.org/epicenter/publications/mortality/Alaska‐Native‐Mortality‐Update‐2009‐2013.pdf
Alexander, B., Park, R. J., Jacob, D. J., & Gong, S. ( 2009 ). Transition metal‐catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget. Journal of Geophysical Research, 114, D02309. https://doi.org/10.1029/2008JD010486
Aliabadi, A. A., Staebler, R. M., & Sharma, S. ( 2015 ). Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution. Atmospheric Chemistry and Physics, 15 ( 5 ), 2651 – 2673. http://www.atmos‐chem‐phys.net/15/2651/2015/
Allison, E. H., & Bassett, H. R. ( 2015 ). Climate change in the oceans: Human impacts and responses. Science, 350 ( 6262 ), 778 – 782.
Amann, M., Bertok, I., Borken‐Kleefeld, J., Cofala, J., Heyes, C., Höglund‐Isaksson, L., et al. ( 2011 ). Cost‐effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software, 26 ( 12 ), 1489 – 1501. http://www.sciencedirect.com/science/article/pii/S1364815211001733
Amann, M., Klimont, Z., & Wagner, F. ( 2013 ). Regional and global emissions of air pollutants: Recent trends and future scenarios. Annual Review of Environment and Resources, 38, 31 – 55.
AMAP ( 2006 ). AMAP assessment 2006: Acidifying pollutants, Arctic haze, and acidification in the Arctic. Oslo, Norway.
AMAP ( 2011 ). Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate change and the cryosphere. Oslo, Norway.
AMAP ( 2015a ). AMAP assessment 2015: Black carbon and ozone as Arctic climate forcers (8279710922). Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2015.
AMAP ( 2015b ). AMAP assessment 2015: Human health in the Arctic. Oslo, Norway.
AMAP ( 2015c ). AMAP assessment 2015: Methane as an Arctic climate forcer. Oslo, Norway.
AMAP ( 2015d ). AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP) (vii + 116 pp). Oslo, Norway. Retrieved from https://www.amap.no/documents/doc/amap-assessment-2015-black-carbon-and-ozone-as-arctic-climate-forcers/1299
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2018EF00095210.1175/BAMS‐D‐14‐00145.110.1007/s10584‐011‐0148‐z10.1002/2013JD02142610.3402/ijch.v73.2432410.1007/BF0032243410.1039/A906558J10.1029/2008GL03619410.1002/joc.174110.1038/nature2208610.12952/journal.elementa.00010410.117
container_title Nature Communications
container_volume 13
container_issue 1
_version_ 1774713525168504832
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/146562 2023-08-20T04:03:04+02:00 Local Arctic Air Pollution: A Neglected but Serious Problem Schmale, J. Arnold, S. R. Law, K. S. Thorp, T. Anenberg, S. Simpson, W. R. Mao, J. Pratt, K. A. 2018-10 application/pdf http://hdl.handle.net/2027.42/146562 https://doi.org/10.1029/2018EF000952 unknown Arctic Monitoring and Assessment Programme (AMAP), 2015 Wiley Periodicals, Inc. Schmale, J.; Arnold, S. R.; Law, K. S.; Thorp, T.; Anenberg, S.; Simpson, W. R.; Mao, J.; Pratt, K. A. (2018). "Local Arctic Air Pollution: A Neglected but Serious Problem." Earth’s Future 6(10): 1385-1412. 2328-4277 http://hdl.handle.net/2027.42/146562 doi:10.1029/2018EF000952 Earth’s Future Rinne, J., Hakola, H., Laurila, T., & Rannik, Ü. ( 2000 ). Canopy scale monoterpene emissions of Pinus sylvestris dominated forests. Atmospheric Environment, 34 ( 7 ), 1099 – 1107. http://www.sciencedirect.com/science/article/pii/S1352231099003350 Tunved, P., Hansson, H.‐C., Kerminen, V.‐M., Ström, J., Maso, M. D., Lihavainen, H., et al. ( 2006 ). High natural aerosol loading over boreal forests. Science, 312 ( 5771 ), 261 – 263. http://science.sciencemag.org/content/sci/312/5771/261.full.pdf Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. ( 2014 ). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, 11. https://doi.org/10.1038/ngeo2325 Turetsky, M. R., Kane, E. S., Harden, J. W., Ottmar, R. D., Manies, K. L., Hoy, E., & Kasischke, E. S. ( 2010 ). Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 4, 27. https://doi.org/10.1038/ngeo1027 Uttal, T., Starkweather, S., Drummond, J. R., Vihma, T., Makshtas, A. P., Darby, L. S., et al. ( 2016 ). International Arctic systems for observing the atmosphere: An international polar year legacy consortium. Bulletin of the American Meteorological Society, 97 ( 6 ), 1033 – 1056. https://doi.org/10.1175/BAMS‐D‐14‐00145.1 van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. ( 2011 ). The representative concentration pathways: An overview. Climatic Change, 109 ( 1 ), 5. https://doi.org/10.1007/s10584‐011‐0148‐z van Zelm, R., Preiss, P., van Goethem, T., Van Dingenen, R., & Huijbregts, M. ( 2016 ). Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation. Atmospheric Environment, 134, 129 – 137. http://www.sciencedirect.com/science/article/pii/S1352231016302084 Vasileva, A., Moiseenko, K., Skorokhod, A., Belikov, I., Kopeikin, V., & Lavrova, O. ( 2017 ). Emission ratios of trace gases and particles for Siberian forest fires on the basis of mobile ground observations. Atmospheric Chemistry and Physics Discussions, 2017, 1 – 41. http://www.atmos‐chem‐phys‐discuss.net/acp‐2017‐362/ Vedel‐Petersen, I., Schollert, M., Nymand, J., & Rinnan, R. ( 2015 ). Volatile organic compound emission profiles of four common arctic plants. Atmospheric Environment, 120, 117 – 126. http://www.sciencedirect.com/science/article/pii/S1352231015303277 Viana, M., Hammingh, P., Colette, A., Querol, X., Degraeuwe, B., Vlieger, I. d., & van Aardenne, J. ( 2014 ). Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment, 90, 96 – 105. http://www.sciencedirect.com/science/article/pii/S1352231014002313 Vos, T., Allen, C., Arora, M., Barber, R. M., Bhutta, Z. A., Brown, A., et al. ( 2016 ). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990&#x2013;2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388 ( 10053 ), 1545 – 1602. https://doi.org/10.1016/S0140‐6736(16)31678‐6 Waigl, C. F., Stuefer, M., Prakash, A., & Ichoku, C. ( 2017 ). Detecting high and low‐intensity fires in Alaska using VIIRS I‐band data: An improved operational approach for high latitudes. Remote Sensing of Environment, 199, 389 – 400. http://www.sciencedirect.com/science/article/pii/S0034425717303085 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., et al. ( 2016 ). Persistent sulfate formation from London fog to Chinese haze. Proceedings of the National Academy of Sciences, 113 ( 48 ), 13,630 – 13,635. http://www.pnas.org/content/113/48/13630.abstract Wang, Y., & Hopke, P. K. ( 2014 ). Is Alaska truly the great escape from air pollution? Long term source apportionment of fine particulate matter in Fairbanks, Alaska. Aerosol and Air Quality Research, 14 ( 7 ), 1875 – 1882. https://doi.org/10.4209/aaqr.2014.03.0047 Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., et al. ( 2014 ). Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. Journal of Geophysical Research: Atmospheres, 119, 10,425 – 410,440. https://doi.org/10.1002/2013JD021426 Ward, T., Trost, B., Conner, J., Flanagan, J., & Jayanty, R. K. M. ( 2012 ). Source apportionment of PM 2.5 in a subarctic Airshed‐Fairbanks, Alaska. Aerosol and Air Quality Research, 12 ( 4 ), 536 – 543. https://doi.org/10.4209/aaqr.2011.11.0208 Ware, D. N., Lewis, J., Hopkins, S., Boyer, B., Montrose, L., Noonan, C. W., et al. ( 2014 ). Household reporting of childhood respiratory health and air pollution in rural Alaska Native communities. International Journal of Circumpolar Health, 73 ( 1 ), 24324. https://doi.org/10.3402/ijch.v73.24324 Warneck, P. ( 1991 ). Chemical reactions in clouds. Fresenius’ Journal of Analytical Chemistry, 340 ( 9 ), 585 – 590. https://doi.org/10.1007/BF00322434 Warneck, P. ( 1999 ). The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds. Physical Chemistry Chemical Physics, 1 ( 24 ), 5471 – 5483. https://doi.org/10.1039/A906558J Warneke, C., Bahreini, R., Brioude, J., Brock, C. A., de Gouw, J. A., Fahey, D. W., et al. ( 2009 ). Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophysical Research Letters, 36, L02813. https://doi.org/10.1029/2008GL036194. Article. <Go to ISI>://000262982000002 Wild, R. J., Edwards, P. M., Bates, T. S., Cohen, R. C., de Gouw, J. A., Dubé, W. P., et al. ( 2016 ). Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics, 16 ( 2 ), 573 – 583. https://www.atmos‐chem‐phys.net/16/573/2016/ Willet, H. C. ( 1929 ). Fog and haze, their causes, distribution, and forecasting. Monthly Weather Review, 56 ( 11 ), 435 – 459. Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., Semiletov, I. P., Dudarev, O. V., et al. ( 2017 ). Siberian Arctic black carbon sources constrained by model and observation. Proceedings of the National Academy of Sciences, 114 ( 7 ), E1054 – E1061. http://www.pnas.org/content/114/7/E1054.abstract Winther, M., Christensen, J. H., Angelidis, I., & Ravn, E. S. ( 2017 ). Emissions from shipping in the Arctic from 2012–2016 and emission projections for 2020, 2030 and 2050. Retrieved from Aarhus, Denmark: http://dce2.au.dk/pub/SR252.pdf Winther, M., Christensen, J. H., Plejdrup, M. S., Ravn, E. S., Eriksson, Ó. F., & Kristensen, H. O. ( 2014 ). Emission inventories for ships in the arctic based on satellite sampled AIS data. Atmospheric Environment, 91, 1 – 14. http://www.sciencedirect.com/science/article/pii/S1352231014001678 Ye, H. ( 2009 ). The influence of air temperature and atmospheric circulation on winter fog frequency over Northern Eurasia. International Journal of Climatology, 29 ( 5 ), 729 – 734. https://doi.org/10.1002/joc.1741 Yttri, K. E., Lund Myhre, C., Eckhardt, S., Fiebig, M., Dye, C., Hirdman, D., et al. ( 2014 ). Quantifying black carbon from biomass burning by means of levoglucosan – A one‐year time series at the Arctic observatory zeppelin. Atmospheric Chemistry and Physics, 14 ( 12 ), 6427 – 6442. https://www.atmos‐chem‐phys.net/14/6427/2014/ Yue, X., Strada, S., Unger, N., & Wang, A. ( 2017 ). Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America. Atmospheric Chemistry and Physics, 17 ( 22 ), 13,699 – 13,719. https://www.atmos‐chem‐phys.net/17/13699/2017/ Zhou, P., Ganzeveld, L., Taipale, D., Rannik, Ü., Rantala, P., Rissanen, M. P., et al. ( 2017 ). Boreal forest BVOCs exchange: Emissions versus in‐canopy sinks. Atmospheric Chemistry and Physics Discussions, 2017, 1 – 36. https://www.atmos‐chem‐phys‐discuss.net/acp‐2017‐493/ Arctic Council (AC) ( 2017 ). Fairbanks declaration. Retrieved from Fairbanks. Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., et al. ( 2015 ). Understanding high wintertime ozone pollution events in an oil‐ and natural gas‐producing region of the western US. Atmospheric Chemistry and Physics, 15 ( 1 ), 411 – 429. https://www.atmos‐chem‐phys.net/15/411/2015/ Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., et al. ( 2011 ). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11 ( 9 ), 4039 – 4072. http://www.atmos‐chem‐phys.net/11/4039/2011/ Aksoyoglu, S., Baltensperger, U., & Prévôt, A. S. H. ( 2016 ). Contribution of ship emissions to the concentration and deposition of air pollutants in Europe. Atmospheric Chemistry and Physics, 16 ( 4 ), 1895 – 1906. https://www.atmos‐chem‐phys.net/16/1895/2016/ Alaska Native Tumor Registry Consortium ( 2016 ). Alaska native mortality update: 2009–2013. Retrieved from Epidemiology Center: http://anthctoday.org/epicenter/publications/mortality/Alaska‐Native‐Mortality‐Update‐2009‐2013.pdf Alexander, B., Park, R. J., Jacob, D. J., & Gong, S. ( 2009 ). Transition metal‐catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget. Journal of Geophysical Research, 114, D02309. https://doi.org/10.1029/2008JD010486 Aliabadi, A. A., Staebler, R. M., & Sharma, S. ( 2015 ). Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution. Atmospheric Chemistry and Physics, 15 ( 5 ), 2651 – 2673. http://www.atmos‐chem‐phys.net/15/2651/2015/ Allison, E. H., & Bassett, H. R. ( 2015 ). Climate change in the oceans: Human impacts and responses. Science, 350 ( 6262 ), 778 – 782. Amann, M., Bertok, I., Borken‐Kleefeld, J., Cofala, J., Heyes, C., Höglund‐Isaksson, L., et al. ( 2011 ). Cost‐effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software, 26 ( 12 ), 1489 – 1501. http://www.sciencedirect.com/science/article/pii/S1364815211001733 Amann, M., Klimont, Z., & Wagner, F. ( 2013 ). Regional and global emissions of air pollutants: Recent trends and future scenarios. Annual Review of Environment and Resources, 38, 31 – 55. AMAP ( 2006 ). AMAP assessment 2006: Acidifying pollutants, Arctic haze, and acidification in the Arctic. Oslo, Norway. AMAP ( 2011 ). Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate change and the cryosphere. Oslo, Norway. AMAP ( 2015a ). AMAP assessment 2015: Black carbon and ozone as Arctic climate forcers (8279710922). Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2015. AMAP ( 2015b ). AMAP assessment 2015: Human health in the Arctic. Oslo, Norway. AMAP ( 2015c ). AMAP assessment 2015: Methane as an Arctic climate forcer. Oslo, Norway. AMAP ( 2015d ). AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP) (vii + 116 pp). Oslo, Norway. Retrieved from https://www.amap.no/documents/doc/amap-assessment-2015-black-carbon-and-ozone-as-arctic-climate-forcers/1299 IndexNoFollow chemistry scenario health air pollution Arctic ecosystem impact Geological Sciences Science Article 2018 ftumdeepblue https://doi.org/10.1029/2018EF00095210.1175/BAMS‐D‐14‐00145.110.1007/s10584‐011‐0148‐z10.1002/2013JD02142610.3402/ijch.v73.2432410.1007/BF0032243410.1039/A906558J10.1029/2008GL03619410.1002/joc.174110.1038/nature2208610.12952/journal.elementa.00010410.117 2023-07-31T20:57:52Z Air pollution in the Arctic caused by local emission sources is a challenge that is important but often overlooked. Local Arctic air pollution can be severe and significantly exceed air quality standards, impairing public health and affecting ecosystems. Specifically in the wintertime, pollution can accumulate under inversion layers. However, neither the contributing emission sources are well identified and quantified nor the relevant atmospheric mechanisms forming pollution are well understood. In the summer, boreal forest fires cause high levels of atmospheric pollution. Despite the often high exposure to air pollution, there are neither specific epidemiological nor toxicological health impact studies in the Arctic. Hence, effects on the local population are difficult to estimate at present. Socioeconomic development of the Arctic is already occurring and expected to be significant in the future. Arctic destination shipping is likely to increase with the development of natural resource extraction, and tourism might expand. Such development will not only lead to growth in the population living in the Arctic but will likely increase emission types and magnitudes. Present‐day inventories show a large spread in the amount and location of emissions representing a significant source of uncertainty in model predictions that often deviate significantly from observations. This is a challenge for modeling studies that aim to assess the impacts of within Arctic air pollution. Prognoses for the future are hence even more difficult, given the additional uncertainty of estimating emissions based on future Arctic economic development scenarios.Key PointsLocal Arctic air pollution is among the most severe world wideArctic meteorological conditions exacerbate air pollution and create unique pollution formation mechanismsFuture economic activities in the Arctic are expected to increase local air pollution Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/146562/1/eft2461_am.pdf ... Article in Journal/Newspaper Arctic Arctic Circumpolar Health International Journal of Circumpolar Health The Cryosphere University of Michigan: Deep Blue Arctic Nature Communications 13 1