Statistical Characteristics of Polar Cap Patches Observed by RISR‐C

Polar cap “patches” are ~100 to 1,000 km islands of high‐density plasma at polar latitudes, which can cause scintillation to communication and navigation signals. An automatic algorithm for patch identification has been developed and applied to the observations from the Resolute Bay Incoherent Scatt...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Ren, Jiaen, Zou, Shasha, Gillies, Robert G., Donovan, Eric, Varney, Roger H.
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge University Press 2018
Subjects:
Online Access:https://hdl.handle.net/2027.42/146513
https://doi.org/10.1029/2018JA025621
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/146513
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Astronomy and Astrophysics
Science
spellingShingle Astronomy and Astrophysics
Science
Ren, Jiaen
Zou, Shasha
Gillies, Robert G.
Donovan, Eric
Varney, Roger H.
Statistical Characteristics of Polar Cap Patches Observed by RISR‐C
topic_facet Astronomy and Astrophysics
Science
description Polar cap “patches” are ~100 to 1,000 km islands of high‐density plasma at polar latitudes, which can cause scintillation to communication and navigation signals. An automatic algorithm for patch identification has been developed and applied to the observations from the Resolute Bay Incoherent Scatter Radar‐Canada during January to March and September to December, 2016. Four hundred thirty‐seven patches have been identified, and their statistical characteristics have been studied, including their occurrence rate as a function of magnetic local time (MLT) and statistical profiles of plasma parameters at different MLT sectors. About 60% of the patches are observed between 1200 and 2400 MLT, consistent with earlier observations near this latitude (~82° MLat) using different instruments. Superposed epoch analysis has been used to study the vertical profiles of electron density and temperature, ion temperature, vertical velocity, and flux measured within the patches where the density peaks. The patch median density is higher than the sector median with a ratio of ~1.8–2.1 at the altitude of F‐region density peak. Meanwhile, the patch electron temperature is typically lower than the sector median between ~200 and 450 km with the largest difference near noon (~380 K). In contrast, the ion temperature profile of the patches does not show obvious differences except in the noon sector, where the ion temperature is about 150 K higher than the sector median at ~360 km. Additionally, downward ion fluxes with peak exceeding ~1013 m−2 s−1 are found in the patches between ~200 and 400 km at all MLT sectors.Key PointsAn automatic algorithm was developed to identify polar cap patches observed by the Resolute Bay Incoherent Scatter Radar‐CanadaA peak of patch occurrence is found between 14 and 19 magnetic local time at Resolute BayTypical plasma characteristics within the patches include high density, low electron temperature, and downward ion fluxes Peer Reviewed ...
format Article in Journal/Newspaper
author Ren, Jiaen
Zou, Shasha
Gillies, Robert G.
Donovan, Eric
Varney, Roger H.
author_facet Ren, Jiaen
Zou, Shasha
Gillies, Robert G.
Donovan, Eric
Varney, Roger H.
author_sort Ren, Jiaen
title Statistical Characteristics of Polar Cap Patches Observed by RISR‐C
title_short Statistical Characteristics of Polar Cap Patches Observed by RISR‐C
title_full Statistical Characteristics of Polar Cap Patches Observed by RISR‐C
title_fullStr Statistical Characteristics of Polar Cap Patches Observed by RISR‐C
title_full_unstemmed Statistical Characteristics of Polar Cap Patches Observed by RISR‐C
title_sort statistical characteristics of polar cap patches observed by risr‐c
publisher Cambridge University Press
publishDate 2018
url https://hdl.handle.net/2027.42/146513
https://doi.org/10.1029/2018JA025621
genre Resolute Bay
genre_facet Resolute Bay
op_relation Ren, Jiaen; Zou, Shasha; Gillies, Robert G.; Donovan, Eric; Varney, Roger H. (2018). "Statistical Characteristics of Polar Cap Patches Observed by RISR‐C." Journal of Geophysical Research: Space Physics 123(8): 6981-6995.
2169-9380
2169-9402
https://hdl.handle.net/2027.42/146513
doi:10.1029/2018JA025621
Journal of Geophysical Research: Space Physics
Sojka, J. J., Raitt, W. J., & Schunk, R. W. ( 1979 ). Effect of displaced geomagnetic and geographic poles on high‐latitude plasma convection and ionospheric depletions. Journal of Geophysical Research, 84 ( A10 ), 5943 – 5951. https://doi.org/10.1029/JA084iA10p05943
Noja, M., Stolle, C., Park, J., & Lühr, H. ( 2013 ). Long‐term analysis of ionospheric polar patches based on CHAMP TEC data. Radio Science, 48, 289 – 301. https://doi.org/10.1002/rds.20033
Perry, G. W. ( 2015 ). Large scale plasma density perturbations in the polar F‐region ionosphere, (Doctoral dissertation). Retrieved from eCommons. ( http://hdl.handle.net/10388/ETD‐2015‐02‐1947 ). Saskatoon: University of Saskatchewan.
Rodger, A. S., Pinnock, M., Dudeney, J. R., Baker, K. B., & Greenwald, R. A. ( 1994 ). A new mechanism for polar patch formation. Journal of Geophysical Research, 99 ( A4 ), 6425 – 6436. https://doi.org/10.1029/93JA01501
Ruohoniemi, J. M., & Greenwald, R. A. ( 1996 ). Statistical patterns of high‐latitude convection obtained from Goose Bay HF radar observations. Journal of Geophysical Research, 101 ( A10 ), 21,743 – 21,763. https://doi.org/10.1029/96JA01584
Ruohoniemi, J. M., & Greenwald, R. A. ( 2005 ). Dependencies of high‐latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. Journal of Geophysical Research, 110, A09204. https://doi.org/10.1029/2004JA010815
Schunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511635342
Sojka, J. J., Bowline, M. D., & Schunk, R. W. ( 1994 ). Patches in the polar ionosphere: UT and seasonal dependence. Journal of Geophysical Research, 99 ( A8 ), 14,959 – 14,970. https://doi.org/10.1029/93JA03327
Sojka, J. J., Bowline, M. D., Schunk, R. W., Decker, D. T., Valladares, C. E., Sheehan, R., et al. ( 1993 ). Modeling polar cap F‐region patches using time varying convection. Geophysical Research Letters, 20 ( 17 ), 1783 – 1786. https://doi.org/10.1029/93GL01347
Spicher, A., Clausen, L. B. N., Miloch, W. J., Lofstad, V., Jin, Y., & Moen, J. I. ( 2017 ). Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. Journal of Geophysical Research: Space Physics, 122, 3837 – 3851. https://doi.org/10.1002/2016JA023750
Tanaka, T. ( 2001 ). Interplanetary magnetic field B y and auroral conductance effects on high‐latitude ionospheric convection patterns. Journal of Geophysical Research, 106 ( A11 ), 24,505 – 24,516. https://doi.org/10.1029/2001JA900061
Tsunoda, R. T. ( 1988 ). High‐latitude F region irregularities: A review and synthesis. Reviews of Geophysics, 26 ( 4 ), 719 – 760. https://doi.org/10.1029/RG026i004p00719
Wang, B., Nishimura, Y., Lyons, L. R., Zou, Y., Carlson, H. C., Frey, H. U., & Mende, S. B. ( 2016 ). Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all‐sky imager and DMSP. Earth, Planets and Space, 68 ( 1 ), 150. https://doi.org/10.1186/s40623‐016‐0524‐z
Weber, E. J., Buchau, J., Moore, J. G., Sharber, J. R., Livingston, R. C., Winningham, J. D., & Reinisch, B. W. ( 1984 ). F layer ionization patches in the polar cap. Journal of Geophysical Research, 89, 1683 – 1694. https://doi.org/10.1029/JA089iA03p01683
Wu, Q., Jee, G., Lee, C., Kim, J.‐H., Kim, Y. H., Ward, W., & Varney, R. H. ( 2017 ). First simultaneous multistation observations of the polar cap thermospheric winds. Journal of Geophysical Research: Space Physics, 122, 907 – 915. https://doi.org/10.1002/2016JA023560
Zhang, Q.‐H., Zhang, B. C., Liu, R. Y., Dunlop, M. W., Lockwood, M., Moen, J., et al. ( 2011 ). On the importance of interplanetary magnetic field ∣B y ∣ on polar cap patch formation. Journal of Geophysical Research, 116, A05308. https://doi.org/10.1029/2010JA016287
Zou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2014 ). On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow. Journal of Geophysical Research: Space Physics, 119, 8543 – 8559. https://doi.org/10.1002/2014JA020408
Zou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2013 ). Multi‐instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 118, 7798 – 7809. https://doi.org/10.1002/2013JA018860
Zou, Y., Nishimura, Y., Lyons, L. R., Shiokawa, K., Donovan, E. F., Ruohoniemi, J. M., et al. ( 2015 ). Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection. Journal of Geophysical Research: Space Physics, 120, 4064 – 4078. https://doi.org/10.1002/2014JA020946
Anderson, D. N., Buchau, J., & Heelis, R. A. ( 1988 ). Origin of density enhancements in the winter polar cap ionosphere. Radio Science, 23 ( 4 ), 513 – 519. https://doi.org/10.1029/RS023i004p00513
Atkinson, G., & Hutchison, D. ( 1978 ). Effect of the day night ionospheric conductivity gradient on polar cap convective flow. Journal of Geophysical Research, 83 ( A2 ), 725 – 729. https://doi.org/10.1029/JA083iA02p00725
Basu, S., MacKenzie, E., & Basu, S. ( 1988 ). Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Science, 23 ( 3 ), 363 – 378. https://doi.org/10.1029/RS023i003p00363
Basu, S., MacKenzie, E., Costa, E., Fougere, P., Carlson, H., & Whitney, H. ( 1987 ). 250 MHz/GHz scintillation parameters in the equatorial, polar, and auroral environments. IEEE Journal on Selected Areas in Communications, 5 ( 2 ), 102 – 115. https://doi.org/10.1109/JSAC.1987.1146533
Carlson, H. C. ( 2012 ). Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio Science, 47, RS0L21. https://doi.org/10.1029/2011RS004946
Carlson, H. C., Moen, J., Oksavik, K., Nielsen, C., McCrea, I. W., Pedersen, T., & Gallop, P. ( 2006 ). Direct observations of injection events of subauroral plasma into the polar cap. Geophysical Research Letters, 33, L05103. https://doi.org/10.1029/2005GL025230
Coley, W. R., & Heelis, R. A. ( 1995 ). Adaptive identification and characterization of polar ionization patches. Journal of Geophysical Research, 100 ( A12 ), 23,819 – 23,827. https://doi.org/10.1029/95JA02700
Crowley, G. ( 1996 ). Critical review of ionospheric patches and blobs. Review of Radio Science, 1993–1996, 619 – 648.
David, M., Sojka, J. J., Schunk, R. W., & Coster, A. J. ( 2016 ). Polar cap patches and the tongue of ionization: A survey of GPS TEC maps from 2009 to 2015. Geophysical Research Letters, 43, 2422 – 2428. https://doi.org/10.1002/2016GL068136
Foster, J. C. ( 1993 ). Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research, 98 ( A2 ), 1675 – 1689. https://doi.org/10.1029/92JA02032
Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., et al. ( 2005 ). Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 110, A09S31. https://doi.org/10.1029/2004JA010928
Gillies, R. G., van Eyken, A., Spanswick, E., Nicolls, M. J., Kelly, J., Greffen, M., et al. ( 2016 ). First observations from the RISR‐C incoherent scatter radar. Radio Science, 51, 1645 – 1659. https://doi.org/10.1002/2016RS006062
Heelis, R. A., Sojka, J. J., David, M., & Schunk, R. W. ( 2009 ). Storm time density enhancements in the middle‐latitude dayside ionosphere. Journal of Geophysical Research, 114, A03315. https://doi.org/10.1029/2008JA013690
Hosokawa, K., Kashimoto, T., Suzuki, S., Shiokawa, K., Otsuka, Y., & Ogawa, T. ( 2009 ). Motion of polar cap patches: A statistical study with all‐sky airglow imager at Resolute Bay, Canada. Journal of Geophysical Research, 114, A04318. https://doi.org/10.1029/2008JA014020
Lockwood, M., & Carlson, H. C. ( 1992 ). Production of polar cap electron density patches by transient magnetopause reconnection. Geophysical Research Letters, 19 ( 17 ), 1731 – 1734. https://doi.org/10.1029/92GL01993
McEwen, D. J., & Harris, D. P. ( 1996 ). Occurrence patterns of F layer patches over the north magnetic pole. Radio Science, 31 ( 3 ), 619 – 628. https://doi.org/10.1029/96RS00312
Moen, J., Gulbrandsen, N., Lorentzen, D. A., & Carlson, H. C. ( 2007 ). On the MLT distribution of F region polar cap patches at night. Geophysical Research Letters, 34, L14113. https://doi.org/10.1029/2007GL029632
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2018JA02562110.1029/93GL0134710.1029/2001JA90006110.1029/RG026i004p0071910.1029/2010JA01628710.1002/2014JA02094610.1029/2011RS00494610.1029/92JA0203210.1029/2004JA01092810.1002/2016RS006062
container_title Journal of Geophysical Research: Space Physics
container_volume 123
container_issue 8
container_start_page 6981
op_container_end_page 6995
_version_ 1810474053464489984
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/146513 2024-09-15T18:32:20+00:00 Statistical Characteristics of Polar Cap Patches Observed by RISR‐C Ren, Jiaen Zou, Shasha Gillies, Robert G. Donovan, Eric Varney, Roger H. 2018-08 application/pdf https://hdl.handle.net/2027.42/146513 https://doi.org/10.1029/2018JA025621 unknown Cambridge University Press Wiley Periodicals, Inc. Ren, Jiaen; Zou, Shasha; Gillies, Robert G.; Donovan, Eric; Varney, Roger H. (2018). "Statistical Characteristics of Polar Cap Patches Observed by RISR‐C." Journal of Geophysical Research: Space Physics 123(8): 6981-6995. 2169-9380 2169-9402 https://hdl.handle.net/2027.42/146513 doi:10.1029/2018JA025621 Journal of Geophysical Research: Space Physics Sojka, J. J., Raitt, W. J., & Schunk, R. W. ( 1979 ). Effect of displaced geomagnetic and geographic poles on high‐latitude plasma convection and ionospheric depletions. Journal of Geophysical Research, 84 ( A10 ), 5943 – 5951. https://doi.org/10.1029/JA084iA10p05943 Noja, M., Stolle, C., Park, J., & Lühr, H. ( 2013 ). Long‐term analysis of ionospheric polar patches based on CHAMP TEC data. Radio Science, 48, 289 – 301. https://doi.org/10.1002/rds.20033 Perry, G. W. ( 2015 ). Large scale plasma density perturbations in the polar F‐region ionosphere, (Doctoral dissertation). Retrieved from eCommons. ( http://hdl.handle.net/10388/ETD‐2015‐02‐1947 ). Saskatoon: University of Saskatchewan. Rodger, A. S., Pinnock, M., Dudeney, J. R., Baker, K. B., & Greenwald, R. A. ( 1994 ). A new mechanism for polar patch formation. Journal of Geophysical Research, 99 ( A4 ), 6425 – 6436. https://doi.org/10.1029/93JA01501 Ruohoniemi, J. M., & Greenwald, R. A. ( 1996 ). Statistical patterns of high‐latitude convection obtained from Goose Bay HF radar observations. Journal of Geophysical Research, 101 ( A10 ), 21,743 – 21,763. https://doi.org/10.1029/96JA01584 Ruohoniemi, J. M., & Greenwald, R. A. ( 2005 ). Dependencies of high‐latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. Journal of Geophysical Research, 110, A09204. https://doi.org/10.1029/2004JA010815 Schunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511635342 Sojka, J. J., Bowline, M. D., & Schunk, R. W. ( 1994 ). Patches in the polar ionosphere: UT and seasonal dependence. Journal of Geophysical Research, 99 ( A8 ), 14,959 – 14,970. https://doi.org/10.1029/93JA03327 Sojka, J. J., Bowline, M. D., Schunk, R. W., Decker, D. T., Valladares, C. E., Sheehan, R., et al. ( 1993 ). Modeling polar cap F‐region patches using time varying convection. Geophysical Research Letters, 20 ( 17 ), 1783 – 1786. https://doi.org/10.1029/93GL01347 Spicher, A., Clausen, L. B. N., Miloch, W. J., Lofstad, V., Jin, Y., & Moen, J. I. ( 2017 ). Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. Journal of Geophysical Research: Space Physics, 122, 3837 – 3851. https://doi.org/10.1002/2016JA023750 Tanaka, T. ( 2001 ). Interplanetary magnetic field B y and auroral conductance effects on high‐latitude ionospheric convection patterns. Journal of Geophysical Research, 106 ( A11 ), 24,505 – 24,516. https://doi.org/10.1029/2001JA900061 Tsunoda, R. T. ( 1988 ). High‐latitude F region irregularities: A review and synthesis. Reviews of Geophysics, 26 ( 4 ), 719 – 760. https://doi.org/10.1029/RG026i004p00719 Wang, B., Nishimura, Y., Lyons, L. R., Zou, Y., Carlson, H. C., Frey, H. U., & Mende, S. B. ( 2016 ). Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all‐sky imager and DMSP. Earth, Planets and Space, 68 ( 1 ), 150. https://doi.org/10.1186/s40623‐016‐0524‐z Weber, E. J., Buchau, J., Moore, J. G., Sharber, J. R., Livingston, R. C., Winningham, J. D., & Reinisch, B. W. ( 1984 ). F layer ionization patches in the polar cap. Journal of Geophysical Research, 89, 1683 – 1694. https://doi.org/10.1029/JA089iA03p01683 Wu, Q., Jee, G., Lee, C., Kim, J.‐H., Kim, Y. H., Ward, W., & Varney, R. H. ( 2017 ). First simultaneous multistation observations of the polar cap thermospheric winds. Journal of Geophysical Research: Space Physics, 122, 907 – 915. https://doi.org/10.1002/2016JA023560 Zhang, Q.‐H., Zhang, B. C., Liu, R. Y., Dunlop, M. W., Lockwood, M., Moen, J., et al. ( 2011 ). On the importance of interplanetary magnetic field ∣B y ∣ on polar cap patch formation. Journal of Geophysical Research, 116, A05308. https://doi.org/10.1029/2010JA016287 Zou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2014 ). On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow. Journal of Geophysical Research: Space Physics, 119, 8543 – 8559. https://doi.org/10.1002/2014JA020408 Zou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2013 ). Multi‐instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 118, 7798 – 7809. https://doi.org/10.1002/2013JA018860 Zou, Y., Nishimura, Y., Lyons, L. R., Shiokawa, K., Donovan, E. F., Ruohoniemi, J. M., et al. ( 2015 ). Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection. Journal of Geophysical Research: Space Physics, 120, 4064 – 4078. https://doi.org/10.1002/2014JA020946 Anderson, D. N., Buchau, J., & Heelis, R. A. ( 1988 ). Origin of density enhancements in the winter polar cap ionosphere. Radio Science, 23 ( 4 ), 513 – 519. https://doi.org/10.1029/RS023i004p00513 Atkinson, G., & Hutchison, D. ( 1978 ). Effect of the day night ionospheric conductivity gradient on polar cap convective flow. Journal of Geophysical Research, 83 ( A2 ), 725 – 729. https://doi.org/10.1029/JA083iA02p00725 Basu, S., MacKenzie, E., & Basu, S. ( 1988 ). Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Science, 23 ( 3 ), 363 – 378. https://doi.org/10.1029/RS023i003p00363 Basu, S., MacKenzie, E., Costa, E., Fougere, P., Carlson, H., & Whitney, H. ( 1987 ). 250 MHz/GHz scintillation parameters in the equatorial, polar, and auroral environments. IEEE Journal on Selected Areas in Communications, 5 ( 2 ), 102 – 115. https://doi.org/10.1109/JSAC.1987.1146533 Carlson, H. C. ( 2012 ). Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio Science, 47, RS0L21. https://doi.org/10.1029/2011RS004946 Carlson, H. C., Moen, J., Oksavik, K., Nielsen, C., McCrea, I. W., Pedersen, T., & Gallop, P. ( 2006 ). Direct observations of injection events of subauroral plasma into the polar cap. Geophysical Research Letters, 33, L05103. https://doi.org/10.1029/2005GL025230 Coley, W. R., & Heelis, R. A. ( 1995 ). Adaptive identification and characterization of polar ionization patches. Journal of Geophysical Research, 100 ( A12 ), 23,819 – 23,827. https://doi.org/10.1029/95JA02700 Crowley, G. ( 1996 ). Critical review of ionospheric patches and blobs. Review of Radio Science, 1993–1996, 619 – 648. David, M., Sojka, J. J., Schunk, R. W., & Coster, A. J. ( 2016 ). Polar cap patches and the tongue of ionization: A survey of GPS TEC maps from 2009 to 2015. Geophysical Research Letters, 43, 2422 – 2428. https://doi.org/10.1002/2016GL068136 Foster, J. C. ( 1993 ). Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research, 98 ( A2 ), 1675 – 1689. https://doi.org/10.1029/92JA02032 Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., et al. ( 2005 ). Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 110, A09S31. https://doi.org/10.1029/2004JA010928 Gillies, R. G., van Eyken, A., Spanswick, E., Nicolls, M. J., Kelly, J., Greffen, M., et al. ( 2016 ). First observations from the RISR‐C incoherent scatter radar. Radio Science, 51, 1645 – 1659. https://doi.org/10.1002/2016RS006062 Heelis, R. A., Sojka, J. J., David, M., & Schunk, R. W. ( 2009 ). Storm time density enhancements in the middle‐latitude dayside ionosphere. Journal of Geophysical Research, 114, A03315. https://doi.org/10.1029/2008JA013690 Hosokawa, K., Kashimoto, T., Suzuki, S., Shiokawa, K., Otsuka, Y., & Ogawa, T. ( 2009 ). Motion of polar cap patches: A statistical study with all‐sky airglow imager at Resolute Bay, Canada. Journal of Geophysical Research, 114, A04318. https://doi.org/10.1029/2008JA014020 Lockwood, M., & Carlson, H. C. ( 1992 ). Production of polar cap electron density patches by transient magnetopause reconnection. Geophysical Research Letters, 19 ( 17 ), 1731 – 1734. https://doi.org/10.1029/92GL01993 McEwen, D. J., & Harris, D. P. ( 1996 ). Occurrence patterns of F layer patches over the north magnetic pole. Radio Science, 31 ( 3 ), 619 – 628. https://doi.org/10.1029/96RS00312 Moen, J., Gulbrandsen, N., Lorentzen, D. A., & Carlson, H. C. ( 2007 ). On the MLT distribution of F region polar cap patches at night. Geophysical Research Letters, 34, L14113. https://doi.org/10.1029/2007GL029632 IndexNoFollow Astronomy and Astrophysics Science Article 2018 ftumdeepblue https://doi.org/10.1029/2018JA02562110.1029/93GL0134710.1029/2001JA90006110.1029/RG026i004p0071910.1029/2010JA01628710.1002/2014JA02094610.1029/2011RS00494610.1029/92JA0203210.1029/2004JA01092810.1002/2016RS006062 2024-07-30T04:06:07Z Polar cap “patches” are ~100 to 1,000 km islands of high‐density plasma at polar latitudes, which can cause scintillation to communication and navigation signals. An automatic algorithm for patch identification has been developed and applied to the observations from the Resolute Bay Incoherent Scatter Radar‐Canada during January to March and September to December, 2016. Four hundred thirty‐seven patches have been identified, and their statistical characteristics have been studied, including their occurrence rate as a function of magnetic local time (MLT) and statistical profiles of plasma parameters at different MLT sectors. About 60% of the patches are observed between 1200 and 2400 MLT, consistent with earlier observations near this latitude (~82° MLat) using different instruments. Superposed epoch analysis has been used to study the vertical profiles of electron density and temperature, ion temperature, vertical velocity, and flux measured within the patches where the density peaks. The patch median density is higher than the sector median with a ratio of ~1.8–2.1 at the altitude of F‐region density peak. Meanwhile, the patch electron temperature is typically lower than the sector median between ~200 and 450 km with the largest difference near noon (~380 K). In contrast, the ion temperature profile of the patches does not show obvious differences except in the noon sector, where the ion temperature is about 150 K higher than the sector median at ~360 km. Additionally, downward ion fluxes with peak exceeding ~1013 m−2 s−1 are found in the patches between ~200 and 400 km at all MLT sectors.Key PointsAn automatic algorithm was developed to identify polar cap patches observed by the Resolute Bay Incoherent Scatter Radar‐CanadaA peak of patch occurrence is found between 14 and 19 magnetic local time at Resolute BayTypical plasma characteristics within the patches include high density, low electron temperature, and downward ion fluxes Peer Reviewed ... Article in Journal/Newspaper Resolute Bay University of Michigan: Deep Blue Journal of Geophysical Research: Space Physics 123 8 6981 6995