The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars

The water uptake and release by perchlorate salts have been well studied since the first in situ identification of such salts in the Martian soil by the Phoenix mission in 2008. However, there have been few studies on the effect of the insoluble regolith minerals on the interaction of perchlorate wi...

Full description

Bibliographic Details
Published in:Environmental Science & Technology
Main Authors: Primm, K. M., Gough, R. V., Wong, J., Rivera‐valentin, E. G., Martinez, G. M., Hogancamp, J. V., Archer, P. D., Ming, D. W., Tolbert, M. A.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2018
Subjects:
MSL
Online Access:http://hdl.handle.net/2027.42/146327
https://doi.org/10.1029/2018JE005540
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/146327
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Phoenix
perchlorate
Mars
perchlorate and mineral mixtures
MSL
deliquescence
Geological Sciences
Science
spellingShingle Phoenix
perchlorate
Mars
perchlorate and mineral mixtures
MSL
deliquescence
Geological Sciences
Science
Primm, K. M.
Gough, R. V.
Wong, J.
Rivera‐valentin, E. G.
Martinez, G. M.
Hogancamp, J. V.
Archer, P. D.
Ming, D. W.
Tolbert, M. A.
The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars
topic_facet Phoenix
perchlorate
Mars
perchlorate and mineral mixtures
MSL
deliquescence
Geological Sciences
Science
description The water uptake and release by perchlorate salts have been well studied since the first in situ identification of such salts in the Martian soil by the Phoenix mission in 2008. However, there have been few studies on the effect of the insoluble regolith minerals on the interaction of perchlorate with water vapor. In this work, we investigate the impact of a Marsâ relevant mineral, montmorillonite, and a Mars soil analog, Mojave Mars Simulant (MMS), on the deliquescence (transition from dry crystalline to aqueous via water vapor absorption), ice formation, and efflorescence (transition from aqueous to dry crystalline via loss of water) of pure magnesium perchlorate. We studied mixtures of magnesium perchlorate hexahydrate with either montmorillonite or MMS. Although montmorillonite and MMS are materials that may serve as nuclei for either ice nucleation or salt efflorescence, we find that these soil analogs did not affect the phase transitions of magnesium perchlorate. The saltâ mineral mixture behaved similarly, within estimated uncertainties, to pure magnesium perchlorate in all cases. Experiments were performed in both N2 and CO2 atmospheres, with no detectable difference. We use data from the Mars Science Laboratory Rover Environmental Monitoring Station instrument and the Phoenix Thermal and Electrical Conductivity Probe, as well as modeling of the shallow subsurface, to determine the likelihood of these perchlorate phase transitions occurring at Gale Crater and the northern arctic plains (Vastitas Borealis). We find that aqueous solutions are predicted in the shallow subsurface of the Phoenix landing site, but not predicted at Gale Crater.Plain Language SummaryMost previous studies on Marsâ relevant salts have looked at the water uptake and release of the pure salts, but few have looked at the effect that insoluble minerals might have on the water uptake and release. This is an important potential effect because the surface of Mars is mainly composed of (~99%) mineral dust and we might not be accurately ...
format Article in Journal/Newspaper
author Primm, K. M.
Gough, R. V.
Wong, J.
Rivera‐valentin, E. G.
Martinez, G. M.
Hogancamp, J. V.
Archer, P. D.
Ming, D. W.
Tolbert, M. A.
author_facet Primm, K. M.
Gough, R. V.
Wong, J.
Rivera‐valentin, E. G.
Martinez, G. M.
Hogancamp, J. V.
Archer, P. D.
Ming, D. W.
Tolbert, M. A.
author_sort Primm, K. M.
title The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars
title_short The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars
title_full The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars
title_fullStr The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars
title_full_unstemmed The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars
title_sort effect of marsâ relevant soil analogs on the water uptake of magnesium perchlorate and implications for the nearâ surface of mars
publisher Wiley Periodicals, Inc.
publishDate 2018
url http://hdl.handle.net/2027.42/146327
https://doi.org/10.1029/2018JE005540
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation Primm, K. M.; Gough, R. V.; Wong, J.; Rivera‐valentin, E. G.
Martinez, G. M.; Hogancamp, J. V.; Archer, P. D.; Ming, D. W.; Tolbert, M. A. (2018). "The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars." Journal of Geophysical Research: Planets 123(8): 2076-2088.
2169-9097
2169-9100
http://hdl.handle.net/2027.42/146327
doi:10.1029/2018JE005540
Journal of Geophysical Research: Planets
Pant, A., Parsons, M. T., & Bertram, A. K. ( 2006 ). Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: Crystallization relative humidities and nucleation rates. Journal of Physical Chemistry A, 110 ( 28 ), 8701 â 8709. https://doi.org/10.1021/jp060985s
Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A., Gerthsen, D., & Leisner, T. ( 2017 ). Active sites in heterogeneous ice nucleationâ The example of Kâ rich feldspars. Science, 355 ( January ), 367 â 371.
Ladino, L. a., & Abbatt, J. P. D. ( 2013 ). Laboratory investigation of Martian water ice cloud formation using dust aerosol simulants. Journal of Geophysical Research: Planets, 118, 14 â 25. https://doi.org/10.1029/2012JE004238
Marion, G. M., Catling, D. C., Zahnle, K. J., & Claire, M. W. ( 2010 ). Modeling aqueous perchlorate chemistries with applications to Mars. Icarus, 207 ( 2 ), 675 â 685. https://doi.org/10.1016/j.icarus.2009.12.003
Marshall, C. P., & Olcott Marshall, A. ( 2015 ). Challenges analyzing gypsum on Mars by Raman spectroscopy. Astrobiology, 15 ( 9 ), 761 â 769. https://doi.org/10.1089/ast.2015.1334
Martínez, G. M., Fischer, E., Rennó, N. O., Sebastián, E., Kemppinen, O., Bridges, N., et al. ( 2016 ). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus, 280, 93 â 102. https://doi.org/10.1016/j.icarus.2015.12.004
Martínez, G. M., Newman, C. N., De Vicenteâ Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern nearâ surface Martian climate: A review of inâ situ meteorological data from Viking to Curiosity. Space Science Reviews, 212 ( 1â 2 ), 339 â 340. https://doi.org/10.1007/s11214â 017â 0368â 2
Navarroâ González, R., Vargas, E., de la Rosa, J., Raga, A. C., & McKay, C. P. ( 2010 ). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. Journal of Geophysical Research, 115, E12010. https://doi.org/10.1029/2010JE003599
Nikolakakos, G., & Whiteway, J. A. ( 2015 ). Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar. Geophysical Research Letters, 42, 7899 â 7906. https://doi.org/10.1002/2015GL065434
Nikolakakos, G., & Whiteway, J. A. ( 2018 ). Laboratory study of adsorption and deliquescence on the surface of Mars. Icarus, 308, 221 â 229. https://doi.org/10.1016/j.icarus.2017.05.006
Nuding, D. L., Riveraâ Valentin, E. G., Davis, R. D., Gough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2014 ). Deliquescence and efflorescence of calcium perchlorate: An investigation of stable aqueous solutions relevant to Mars. Icarus, 243, 420 â 428. https://doi.org/10.1016/j.icarus.2014.08.036
Ojha, L., Wilhelm, M. B., Murchie, S. L., Mcewen, A. S., Wray, J. J., Hanley, J., et al. ( 2015 ). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience, 8 ( 11 ), 829 â 832. https://doi.org/10.1038/NGEO2546
Pestova, O. N., Myund, L. A., Khripun, M. K., & Prigaro, A. V. ( 2005 ). Polythermal study of the systems M (ClO4)2â H2O (M2+Â =Â Mg2+, Ca2+, Sr2+, Ba2+). Russian Journal of Applied Chemistry, 78 ( 3 ), 409 â 413. https://doi.org/10.1007/s11167â 005â 0306â z
Peters, G. H., Abbey, W., Bearman, G. H., Mungas, G. S., Smith, J. A., Anderson, R. C., et al. ( 2008 ). Mojave Mars simulantâ Characterization of a new geologic Mars analog. Icarus, 197 ( 2 ), 470 â 479. https://doi.org/10.1016/j.icarus.2008.05.004
Primm, K. M., Gough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2017 ). Freezing of perchlorate and chloride brines under Marsâ relevant conditions. Geochimica et Cosmochimica Acta, 212, 211 â 220. https://doi.org/10.1016/j.gca.2017.06.012
Reid, J. P., & Sayer, R. M. ( 2003 ). Heterogeneous atmospheric aerosol chemistry: Laboratory studies of chemistry on water droplets. Chemical Society Reviews, 32 ( 2 ), 70 â 79. https://doi.org/10.1039/b204463n
Riveraâ Valentin, E. G., Blackburn, D. G., & Ulrich, R. ( 2011 ). Revisiting the thermal inertia of Iapetus: Clues to the thickness of the dark material. Icarus, 216 ( 1 ), 347 â 358. https://doi.org/10.1016/j.icarus.2011.09.006
Robertson, K., & Bish, D. ( 2011 ). Stability of phases in the Mg (ClO4)2·nH2O system and implications for perchlorate occurrences on Mars. Journal of Geophysical Research, 116, E07006. https://doi.org/10.1029/2010JE003754
Schill, G. P., & Tolbert, M. A. ( 2013 ). Heterogeneous ice nucleation on phaseâ separated organicâ sulfate particles: effect of liquid vs. glassy coatings. Atmospheric Chemistry and Physics, 13, 4681 â 4695. https://doi.org/10.5194/acp-13-4681-2013
Smith, P. H., Tamppari, L. K., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W. V., et al. ( 2009 ). H 2 O at the Phoenix landing site. Science 325, 58 â 61.
Toner, J. D., Catling, D. C., & Light, B. ( 2014 ). The formation of supercooled brines, viscous liquids, and lowâ temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus, 233, 36 â 47. https://doi.org/10.1016/j.icarus.2014.01.018
Toner, J. D., Catling, D. C., & Light, B. ( 2015 ). A revised Pitzer model for lowâ temperature soluble salt assemblages at the Phoenix site, Mars. Geochimica et Cosmochimica Acta, 166, 327 â 343. https://doi.org/10.1016/j.gca.2015.06.011
Ushijima, S. B., Davis, R. D., & Tolbert, M. A. ( 2018 ). Immersion and contact efflorescence induced by mineral dust particles. Journal of Physical Chemistry A, 122 ( 5 ), 1303 â 1311. https://doi.org/10.1021/acs.jpca.7b12075
Vasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., & Smith, M. D. ( 2017 ). Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus, 284, 372 â 386. https://doi.org/10.1016/j.icarus.2016.11.035
Welti, A., Lüönd, F., Stetzer, O., & Lohmann, U. ( 2009 ). Influence of particle size on the ice nucleating ability of mineral dusts. Atmospheric Chemistry and Physics, 6705 â 6715. Retrieved from http://www.atmosâ chemâ phys.net/9/6705/
Zent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the Thermal and Electrical Conductivity Probe (TECP) on phoenix. Journal of Geophysical Research, 115, E00E14. https://doi.org/10.1029/2009JE003420
Zent, A. P., Hecht, M. H., Hudson, T. L., Wood, S. E., & Chevrier, V. F. ( 2016 ). A revised calibration function and results for the Phoenix mission TECP relative humidity sensor. Journal of Geophysical Research: Planets, 121, 626 â 651. https://doi.org/10.1002/2015JE004933
Zorzano, M.â P., Mateoâ Martí, E., Prietoâ Ballesteros, O., Osuna, S., & Renno, N. ( 2009 ). Stability of liquid saline water on present day Mars. Geophysical Research Letters, 36, L20201. https://doi.org/10.1029/2009GL040315
Assemi, S., Sharma, S., Tadjiki, S., Prisbrey, K., Ranville, J., & Miller, J. D. ( 2015 ). Effect of surface charge and elemental composition on the swelling and delamination of montmorillonite nanoclays using sedimentation fieldâ flow fractionation and mass spectroscopy. Clays and Clay Minerals, 63 ( 6 ), 457 â 468. https://doi.org/10.1346/CCMN.2015.0630604
Baustian, K. J., Wise, M. E., & Tolbert, M. A. ( 2010 ). Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles. Atmospheric Chemistry and Physics, 10, 2307 â 2317. https://doi.org/10.5194/acp-10-2307-2010
Bristow, T. F., Blake, D. F., Vaniman, D. T., Chipera, S. J., Rampe, E. B., Grotzinger, J. P., et al. ( 2017 ). Surveying clay mineral diversity in the Murray Formation, Gale Crater, Mars. LPSC Abstract, 48, 9 â 10. Retrieved from https://ntrs.nasa.gov/search.jsp? R=20170001744
Bryant, G. W., Hallett, J., & Mason, B. J. ( 1960 ). The epitaxial growth of ice on singleâ crystalline substrates. Journal of Physics and Chemistry of Solids, 12 ( 2 ), 189 â IN18. https://doi.org/10.1016/0022â 3697(60)90036â 6
Carter, J., Loizeau, D., Mangold, N., Poulet, F., & Bibring, J. ( 2015 ). Widespread surface weathering on early Mars: A case for a warmer and wetter climate. Icarus, 248, 373 â 382. https://doi.org/10.1016/j.icarus.2014.11.011
Chevrier, V. F., Hanley, J., & Altheide, T. S. ( 2009 ). Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, mars. Geophysical Research Letters, 36, L10202. https://doi.org/10.1029/2009GL037497
Chevrier, V. F., & Riveraâ Valentin, E. G. ( 2012 ). Formation of recurring slope lineae by liquid brines on presentâ day Mars. Geophysical Research Letters, 39, L21202. https://doi.org/10.1029/2012GL054119
Cull, S. C., Arvidson, R. E., Catalano, J. G., Ming, D. W., Morris, R. V., Mellon, M. T., & Lemmon, M. ( 2010 ). Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophysical Research Letters, 37, L22203. https://doi.org/10.1029/2010GL045269
Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M., et al. ( 2013 ). Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340 ( 6138 ), 1320 â 1324. https://doi.org/10.1126/science.1234145
Davis, R. D., Lance, S., Gordon, J. A., Ushijima, S. B., & Tolbert, M. A. ( 2015 ). Contact efflorescence as a pathway for crystallization of atmospherically relevant particles. Proceedings of the National Academy of Sciences, 112 ( 52 ), 15,815 â 15,820. https://doi.org/10.1073/pnas.1522860113
Davis, R. D., & Tolbert, M. A. ( 2017 ). Crystal nucleation initiated by transient ionâ surface interactions at aerosol interfaces. Science Advances, 3 ( 7 ), e1700425. https://doi.org/10.1126/sciadv.1700425
Dollfus, A., & Deschamps, M. ( 1986 ). Grainâ size determination at the surface of Mars. Icarus, 67 ( 1 ), 37 â 50. https://doi.org/10.1016/0019â 1035(86)90172â 7
Ehlmann, B. L., & Edwards, C. S. ( 2014 ). Mineralogy of the Martian surface. Annual Review of Earth and Planetary Sciences, 42 ( 1 ), 291 â 315. https://doi.org/10.1146/annurevâ earthâ 060313â 055024
Fischer, E., Martínez, G., Elliot, H. M., & Rennó, N. O. ( 2014 ). Experimental evidence for the formation of liquid saline water on Mars. Geophysical Research Letters, 41, 4456 â 4462. https://doi.org/10.1002/2014GL060302.Received
Fischer, E., Martínez, G. M., & Rennó, N. O. ( 2016 ). Formation and persistence of brine on Mars: Experimental simulations throughout the diurnal cycle at the Phoenix landing site. Astrobiology, 16 ( 12 ), 937 â 948. https://doi.org/10.1089/ast.2016.1525
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2018JE00554010.1016/j.icarus.2015.12.00410.1007/s11214â10.1038/NGEO254610.1016/j.icarus.2008.05.00410.1029/2009JE00342010.1126/science.123414510.1002/jgre.2014410.1002/2013JE00452010.1002/2013JE004514.Received10.1127/ejm/2/1/0063
container_title Environmental Science & Technology
container_volume 57
container_issue 25
container_start_page 9342
op_container_end_page 9352
_version_ 1809897669186813952
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/146327 2024-09-09T19:28:25+00:00 The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars Primm, K. M. Gough, R. V. Wong, J. Rivera‐valentin, E. G. Martinez, G. M. Hogancamp, J. V. Archer, P. D. Ming, D. W. Tolbert, M. A. 2018-08 application/pdf http://hdl.handle.net/2027.42/146327 https://doi.org/10.1029/2018JE005540 unknown Wiley Periodicals, Inc. Primm, K. M.; Gough, R. V.; Wong, J.; Rivera‐valentin, E. G. Martinez, G. M.; Hogancamp, J. V.; Archer, P. D.; Ming, D. W.; Tolbert, M. A. (2018). "The Effect of Marsâ Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ Surface of Mars." Journal of Geophysical Research: Planets 123(8): 2076-2088. 2169-9097 2169-9100 http://hdl.handle.net/2027.42/146327 doi:10.1029/2018JE005540 Journal of Geophysical Research: Planets Pant, A., Parsons, M. T., & Bertram, A. K. ( 2006 ). Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: Crystallization relative humidities and nucleation rates. Journal of Physical Chemistry A, 110 ( 28 ), 8701 â 8709. https://doi.org/10.1021/jp060985s Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A., Gerthsen, D., & Leisner, T. ( 2017 ). Active sites in heterogeneous ice nucleationâ The example of Kâ rich feldspars. Science, 355 ( January ), 367 â 371. Ladino, L. a., & Abbatt, J. P. D. ( 2013 ). Laboratory investigation of Martian water ice cloud formation using dust aerosol simulants. Journal of Geophysical Research: Planets, 118, 14 â 25. https://doi.org/10.1029/2012JE004238 Marion, G. M., Catling, D. C., Zahnle, K. J., & Claire, M. W. ( 2010 ). Modeling aqueous perchlorate chemistries with applications to Mars. Icarus, 207 ( 2 ), 675 â 685. https://doi.org/10.1016/j.icarus.2009.12.003 Marshall, C. P., & Olcott Marshall, A. ( 2015 ). Challenges analyzing gypsum on Mars by Raman spectroscopy. Astrobiology, 15 ( 9 ), 761 â 769. https://doi.org/10.1089/ast.2015.1334 Martínez, G. M., Fischer, E., Rennó, N. O., Sebastián, E., Kemppinen, O., Bridges, N., et al. ( 2016 ). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus, 280, 93 â 102. https://doi.org/10.1016/j.icarus.2015.12.004 Martínez, G. M., Newman, C. N., De Vicenteâ Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern nearâ surface Martian climate: A review of inâ situ meteorological data from Viking to Curiosity. Space Science Reviews, 212 ( 1â 2 ), 339 â 340. https://doi.org/10.1007/s11214â 017â 0368â 2 Navarroâ González, R., Vargas, E., de la Rosa, J., Raga, A. C., & McKay, C. P. ( 2010 ). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. Journal of Geophysical Research, 115, E12010. https://doi.org/10.1029/2010JE003599 Nikolakakos, G., & Whiteway, J. A. ( 2015 ). Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar. Geophysical Research Letters, 42, 7899 â 7906. https://doi.org/10.1002/2015GL065434 Nikolakakos, G., & Whiteway, J. A. ( 2018 ). Laboratory study of adsorption and deliquescence on the surface of Mars. Icarus, 308, 221 â 229. https://doi.org/10.1016/j.icarus.2017.05.006 Nuding, D. L., Riveraâ Valentin, E. G., Davis, R. D., Gough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2014 ). Deliquescence and efflorescence of calcium perchlorate: An investigation of stable aqueous solutions relevant to Mars. Icarus, 243, 420 â 428. https://doi.org/10.1016/j.icarus.2014.08.036 Ojha, L., Wilhelm, M. B., Murchie, S. L., Mcewen, A. S., Wray, J. J., Hanley, J., et al. ( 2015 ). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience, 8 ( 11 ), 829 â 832. https://doi.org/10.1038/NGEO2546 Pestova, O. N., Myund, L. A., Khripun, M. K., & Prigaro, A. V. ( 2005 ). Polythermal study of the systems M (ClO4)2â H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+). Russian Journal of Applied Chemistry, 78 ( 3 ), 409 â 413. https://doi.org/10.1007/s11167â 005â 0306â z Peters, G. H., Abbey, W., Bearman, G. H., Mungas, G. S., Smith, J. A., Anderson, R. C., et al. ( 2008 ). Mojave Mars simulantâ Characterization of a new geologic Mars analog. Icarus, 197 ( 2 ), 470 â 479. https://doi.org/10.1016/j.icarus.2008.05.004 Primm, K. M., Gough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2017 ). Freezing of perchlorate and chloride brines under Marsâ relevant conditions. Geochimica et Cosmochimica Acta, 212, 211 â 220. https://doi.org/10.1016/j.gca.2017.06.012 Reid, J. P., & Sayer, R. M. ( 2003 ). Heterogeneous atmospheric aerosol chemistry: Laboratory studies of chemistry on water droplets. Chemical Society Reviews, 32 ( 2 ), 70 â 79. https://doi.org/10.1039/b204463n Riveraâ Valentin, E. G., Blackburn, D. G., & Ulrich, R. ( 2011 ). Revisiting the thermal inertia of Iapetus: Clues to the thickness of the dark material. Icarus, 216 ( 1 ), 347 â 358. https://doi.org/10.1016/j.icarus.2011.09.006 Robertson, K., & Bish, D. ( 2011 ). Stability of phases in the Mg (ClO4)2·nH2O system and implications for perchlorate occurrences on Mars. Journal of Geophysical Research, 116, E07006. https://doi.org/10.1029/2010JE003754 Schill, G. P., & Tolbert, M. A. ( 2013 ). Heterogeneous ice nucleation on phaseâ separated organicâ sulfate particles: effect of liquid vs. glassy coatings. Atmospheric Chemistry and Physics, 13, 4681 â 4695. https://doi.org/10.5194/acp-13-4681-2013 Smith, P. H., Tamppari, L. K., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W. V., et al. ( 2009 ). H 2 O at the Phoenix landing site. Science 325, 58 â 61. Toner, J. D., Catling, D. C., & Light, B. ( 2014 ). The formation of supercooled brines, viscous liquids, and lowâ temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus, 233, 36 â 47. https://doi.org/10.1016/j.icarus.2014.01.018 Toner, J. D., Catling, D. C., & Light, B. ( 2015 ). A revised Pitzer model for lowâ temperature soluble salt assemblages at the Phoenix site, Mars. Geochimica et Cosmochimica Acta, 166, 327 â 343. https://doi.org/10.1016/j.gca.2015.06.011 Ushijima, S. B., Davis, R. D., & Tolbert, M. A. ( 2018 ). Immersion and contact efflorescence induced by mineral dust particles. Journal of Physical Chemistry A, 122 ( 5 ), 1303 â 1311. https://doi.org/10.1021/acs.jpca.7b12075 Vasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., & Smith, M. D. ( 2017 ). Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus, 284, 372 â 386. https://doi.org/10.1016/j.icarus.2016.11.035 Welti, A., Lüönd, F., Stetzer, O., & Lohmann, U. ( 2009 ). Influence of particle size on the ice nucleating ability of mineral dusts. Atmospheric Chemistry and Physics, 6705 â 6715. Retrieved from http://www.atmosâ chemâ phys.net/9/6705/ Zent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the Thermal and Electrical Conductivity Probe (TECP) on phoenix. Journal of Geophysical Research, 115, E00E14. https://doi.org/10.1029/2009JE003420 Zent, A. P., Hecht, M. H., Hudson, T. L., Wood, S. E., & Chevrier, V. F. ( 2016 ). A revised calibration function and results for the Phoenix mission TECP relative humidity sensor. Journal of Geophysical Research: Planets, 121, 626 â 651. https://doi.org/10.1002/2015JE004933 Zorzano, M.â P., Mateoâ Martí, E., Prietoâ Ballesteros, O., Osuna, S., & Renno, N. ( 2009 ). Stability of liquid saline water on present day Mars. Geophysical Research Letters, 36, L20201. https://doi.org/10.1029/2009GL040315 Assemi, S., Sharma, S., Tadjiki, S., Prisbrey, K., Ranville, J., & Miller, J. D. ( 2015 ). Effect of surface charge and elemental composition on the swelling and delamination of montmorillonite nanoclays using sedimentation fieldâ flow fractionation and mass spectroscopy. Clays and Clay Minerals, 63 ( 6 ), 457 â 468. https://doi.org/10.1346/CCMN.2015.0630604 Baustian, K. J., Wise, M. E., & Tolbert, M. A. ( 2010 ). Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles. Atmospheric Chemistry and Physics, 10, 2307 â 2317. https://doi.org/10.5194/acp-10-2307-2010 Bristow, T. F., Blake, D. F., Vaniman, D. T., Chipera, S. J., Rampe, E. B., Grotzinger, J. P., et al. ( 2017 ). Surveying clay mineral diversity in the Murray Formation, Gale Crater, Mars. LPSC Abstract, 48, 9 â 10. Retrieved from https://ntrs.nasa.gov/search.jsp? R=20170001744 Bryant, G. W., Hallett, J., & Mason, B. J. ( 1960 ). The epitaxial growth of ice on singleâ crystalline substrates. Journal of Physics and Chemistry of Solids, 12 ( 2 ), 189 â IN18. https://doi.org/10.1016/0022â 3697(60)90036â 6 Carter, J., Loizeau, D., Mangold, N., Poulet, F., & Bibring, J. ( 2015 ). Widespread surface weathering on early Mars: A case for a warmer and wetter climate. Icarus, 248, 373 â 382. https://doi.org/10.1016/j.icarus.2014.11.011 Chevrier, V. F., Hanley, J., & Altheide, T. S. ( 2009 ). Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, mars. Geophysical Research Letters, 36, L10202. https://doi.org/10.1029/2009GL037497 Chevrier, V. F., & Riveraâ Valentin, E. G. ( 2012 ). Formation of recurring slope lineae by liquid brines on presentâ day Mars. Geophysical Research Letters, 39, L21202. https://doi.org/10.1029/2012GL054119 Cull, S. C., Arvidson, R. E., Catalano, J. G., Ming, D. W., Morris, R. V., Mellon, M. T., & Lemmon, M. ( 2010 ). Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophysical Research Letters, 37, L22203. https://doi.org/10.1029/2010GL045269 Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M., et al. ( 2013 ). Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340 ( 6138 ), 1320 â 1324. https://doi.org/10.1126/science.1234145 Davis, R. D., Lance, S., Gordon, J. A., Ushijima, S. B., & Tolbert, M. A. ( 2015 ). Contact efflorescence as a pathway for crystallization of atmospherically relevant particles. Proceedings of the National Academy of Sciences, 112 ( 52 ), 15,815 â 15,820. https://doi.org/10.1073/pnas.1522860113 Davis, R. D., & Tolbert, M. A. ( 2017 ). Crystal nucleation initiated by transient ionâ surface interactions at aerosol interfaces. Science Advances, 3 ( 7 ), e1700425. https://doi.org/10.1126/sciadv.1700425 Dollfus, A., & Deschamps, M. ( 1986 ). Grainâ size determination at the surface of Mars. Icarus, 67 ( 1 ), 37 â 50. https://doi.org/10.1016/0019â 1035(86)90172â 7 Ehlmann, B. L., & Edwards, C. S. ( 2014 ). Mineralogy of the Martian surface. Annual Review of Earth and Planetary Sciences, 42 ( 1 ), 291 â 315. https://doi.org/10.1146/annurevâ earthâ 060313â 055024 Fischer, E., Martínez, G., Elliot, H. M., & Rennó, N. O. ( 2014 ). Experimental evidence for the formation of liquid saline water on Mars. Geophysical Research Letters, 41, 4456 â 4462. https://doi.org/10.1002/2014GL060302.Received Fischer, E., Martínez, G. M., & Rennó, N. O. ( 2016 ). Formation and persistence of brine on Mars: Experimental simulations throughout the diurnal cycle at the Phoenix landing site. Astrobiology, 16 ( 12 ), 937 â 948. https://doi.org/10.1089/ast.2016.1525 IndexNoFollow Phoenix perchlorate Mars perchlorate and mineral mixtures MSL deliquescence Geological Sciences Science Article 2018 ftumdeepblue https://doi.org/10.1029/2018JE00554010.1016/j.icarus.2015.12.00410.1007/s11214â10.1038/NGEO254610.1016/j.icarus.2008.05.00410.1029/2009JE00342010.1126/science.123414510.1002/jgre.2014410.1002/2013JE00452010.1002/2013JE004514.Received10.1127/ejm/2/1/0063 2024-07-30T04:06:06Z The water uptake and release by perchlorate salts have been well studied since the first in situ identification of such salts in the Martian soil by the Phoenix mission in 2008. However, there have been few studies on the effect of the insoluble regolith minerals on the interaction of perchlorate with water vapor. In this work, we investigate the impact of a Marsâ relevant mineral, montmorillonite, and a Mars soil analog, Mojave Mars Simulant (MMS), on the deliquescence (transition from dry crystalline to aqueous via water vapor absorption), ice formation, and efflorescence (transition from aqueous to dry crystalline via loss of water) of pure magnesium perchlorate. We studied mixtures of magnesium perchlorate hexahydrate with either montmorillonite or MMS. Although montmorillonite and MMS are materials that may serve as nuclei for either ice nucleation or salt efflorescence, we find that these soil analogs did not affect the phase transitions of magnesium perchlorate. The saltâ mineral mixture behaved similarly, within estimated uncertainties, to pure magnesium perchlorate in all cases. Experiments were performed in both N2 and CO2 atmospheres, with no detectable difference. We use data from the Mars Science Laboratory Rover Environmental Monitoring Station instrument and the Phoenix Thermal and Electrical Conductivity Probe, as well as modeling of the shallow subsurface, to determine the likelihood of these perchlorate phase transitions occurring at Gale Crater and the northern arctic plains (Vastitas Borealis). We find that aqueous solutions are predicted in the shallow subsurface of the Phoenix landing site, but not predicted at Gale Crater.Plain Language SummaryMost previous studies on Marsâ relevant salts have looked at the water uptake and release of the pure salts, but few have looked at the effect that insoluble minerals might have on the water uptake and release. This is an important potential effect because the surface of Mars is mainly composed of (~99%) mineral dust and we might not be accurately ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Arctic Environmental Science & Technology 57 25 9342 9352