Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds

Groundwater flow regimes in the seasonally thawed soils in areas of continuous permafrost are relatively unknown despite their potential role in delivering water, carbon, and nutrients to streams. Using numerical groundwater flow models informed by observations from a headwater catchment in arctic A...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Neilson, Bethany T., Cardenas, M. Bayani, O’Connor, Michael T., Rasmussen, Mitchell T., King, Tyler V., Kling, George W.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2018
Subjects:
Online Access:https://hdl.handle.net/2027.42/145518
https://doi.org/10.1029/2018GL078140
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/145518
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic DOC transport
groundwater
permafrost
groundwater/surface water
arctic
Geological Sciences
Science
spellingShingle DOC transport
groundwater
permafrost
groundwater/surface water
arctic
Geological Sciences
Science
Neilson, Bethany T.
Cardenas, M. Bayani
O’Connor, Michael T.
Rasmussen, Mitchell T.
King, Tyler V.
Kling, George W.
Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds
topic_facet DOC transport
groundwater
permafrost
groundwater/surface water
arctic
Geological Sciences
Science
description Groundwater flow regimes in the seasonally thawed soils in areas of continuous permafrost are relatively unknown despite their potential role in delivering water, carbon, and nutrients to streams. Using numerical groundwater flow models informed by observations from a headwater catchment in arctic Alaska, United States, we identify several mechanisms that result in substantial surface‐subsurface water exchanges across the land surface during downslope transport and create a primary control on dissolved organic carbon loading to streams and rivers. The models indicate that surface water flowing downslope has a substantial groundwater component due to rapid surface‐subsurface exchanges across a range of hydrologic states, from unsaturated to flooded. Field‐based measurements corroborate the high groundwater contributions, and river dissolved organic carbon concentrations are similar to that of groundwater across large discharge ranges. The persistence of these groundwater contributions in arctic watersheds will influence carbon export to rivers as thaw depth increases in a warmer climate.Plain Language SummaryThis paper shows that groundwater processes have a dominant role in controlling carbon export from the land to streams in permafrost terrain. We use hydrologic models to show that microtopography on the land surface drives the rapid exchange of overland flow with shallow groundwater. In other words, the water (porpoises) from just above to just below the land surface and back again as it moves downslope. Combined with the rapid leaching of organic carbon from soils, these findings provide a mechanistic explanation for two decades of measurements showing high concentrations of carbon in soils and streams during high flow conditions for both spring snowmelt and summer storms. During drier time periods, groundwater contributions from the thin thawed layer make up the flow in streams and keep dissolved organic carbon concentrations high. The persistence of these groundwater contributions in arctic watersheds will ...
format Article in Journal/Newspaper
author Neilson, Bethany T.
Cardenas, M. Bayani
O’Connor, Michael T.
Rasmussen, Mitchell T.
King, Tyler V.
Kling, George W.
author_facet Neilson, Bethany T.
Cardenas, M. Bayani
O’Connor, Michael T.
Rasmussen, Mitchell T.
King, Tyler V.
Kling, George W.
author_sort Neilson, Bethany T.
title Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds
title_short Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds
title_full Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds
title_fullStr Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds
title_full_unstemmed Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds
title_sort groundwater flow and exchange across the land surface explain carbon export patterns in continuous permafrost watersheds
publisher Wiley Periodicals, Inc.
publishDate 2018
url https://hdl.handle.net/2027.42/145518
https://doi.org/10.1029/2018GL078140
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
permafrost
Alaska
genre_facet Arctic
Arctic
permafrost
Alaska
op_relation Neilson, Bethany T.; Cardenas, M. Bayani; O’Connor, Michael T.; Rasmussen, Mitchell T.; King, Tyler V.; Kling, George W. (2018). "Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds." Geophysical Research Letters 45(15): 7596-7605.
0094-8276
1944-8007
https://hdl.handle.net/2027.42/145518
doi:10.1029/2018GL078140
Geophysical Research Letters
Quinton, W. L., & Marsh, P. ( 1999 ). A conceptual framework for runoff generation in a permafrost environment. Hydrological Processes, 13 ( 16 ), 2563 – 2581. https://doi.org/10.1002/(SICI)1099‐1085(199911)13:16<2563::AID‐HYP942>3.0.CO;2‐D
Cory, R. M., Ward, C. P., Crump, B. C., & Kling, G. W. ( 2014 ). Sunlight controls water column processing of carbon in arctic fresh waters. Science, 345 ( 6199 ), 925 – 928. https://doi.org/10.1126/science.1253119
Creed, I. F., McKnight, D. M., Pellerin, B. A., Green, M. B., Bergamaschi, B. A., Aiken, G. R., et al. ( 2015 ). The river as a chemostat: Fresh perspectives on dissolved organic matter flowing down the river continuum. Canadian Journal of Fisheries and Aquatic Sciences, 72 ( 8 ), 1272 – 1285. https://doi.org/10.1139/cjfas‐2014‐0400
Frey, K. E., & McClelland, J. W. ( 2009 ). Impacts of permafrost degradation on arctic river biogeochemistry. Hydrological Processes, 23 ( 1 ), 169 – 182. https://doi.org/10.1002/hyp.7196
Gleeson, T., Befus, K. M., Luijendijk, E., Jasechko, S., & Cardenas, M. B. ( 2016 ). The global volume and distribution of modern groundwater. Nature Geoscience, 9 ( 2 ), 161 – 167. https://doi.org/10.1038/ngeo2590
Hinzman, L. D., Kane, D. L., Gieck, R. E., & Everett, K. R. ( 1991 ). Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Regions Science and Technology, 19 ( 2 ), 95 – 110. https://doi.org/10.1016/0165‐232X(91)90001‐W
Hornberger, G. M., Bencala, K. E., & McKnight, D. M. ( 1994 ). Hydrological controls on the temporal variation of dissolved organic carbon in the Snake River near Montezuma, Colorado. Biogeochemistry, 25 ( 3 ), 147 – 165. https://doi.org/10.1007/BF00024390
Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K. E., & Marshall, L. A. ( 2009 ). Hydrologic connectivity between landscapes and streams: Transferring reach‐ and plot‐scale understanding to the catchment scale. Water Resources Research, 45, W04428. https://doi.org/10.1029/2008WR007225
Judd, K. E., & Kling, G. W. ( 2002 ). Production and export of dissolved C in arctic tundra mesocosms: The roles of vegetation and water flow. Biogeochemistry, 60 ( 3 ), 213 – 234. https://doi.org/10.1023/A:1020371412061
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D. J., et al. ( 2009 ). Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79 ( 4 ), 523 – 555. https://doi.org/10.1890/08‐2025.1
McNamara, J. P., Kane, D. L., & Hinzman, L. D. ( 1998 ). An analysis of streamflow hydrology in the Kuparuk River basin, Arctic Alaska: A nested watershed approach. Journal of Hydrology, 206 ( 1‐2 ), 39 – 57. https://doi.org/10.1016/S0022‐1694(98)00083‐3
McNamara, J. P., Kane, D. L., & Hinzman, L. D. ( 1999 ). An analysis of an arctic channel network using a digital elevation model. Geomorphology, 29 ( 3–4 ), 339 – 353. https://doi.org/10.1016/S0169‐555X(99)00017‐3
McNamara, J. P., Kane, D. L., Hobbie, J. E., & Kling, G. W. ( 2008 ). Hydrologic and biogeochemical controls on the spatial and temporal patterns of nitrogen and phosphorus in the Kuparuk River, arctic Alaska. Hydrological Processes, 22 ( 17 ), 3294 – 3309. https://doi.org/10.1002/hyp.6920
Quinton, W. L., Gray, D. M., & Marsh, P. ( 2000 ). Subsurface drainage from hummock‐covered hillslopes in the Arctic tundra. Journal of Hydrology, 237 ( 1‐2 ), 113 – 125. https://doi.org/10.1016/S0022‐1694(00)00304‐8
Quinton, W. L., & Pomeroy, J. W. ( 2006 ). Transformations of runoff chemistry in the Arctic tundra, Northwest Territories, Canada. Hydrological Processes, 20 ( 14 ), 2901 – 2919. https://doi.org/10.1002/hyp.6083
Stieglitz, M., Shaman, J., McNamara, J., Engel, V., Shanley, J., & Kling, G. W. ( 2003 ). An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global Biogeochemical Cycles, 17 ( 4 ), 1105. https://doi.org/10.1029/2003GB002041
Su, F., Adam, J. C., Bowling, L. C., & Lettenmaier, D. P. ( 2005 ). Streamflow simulations of the terrestrial Arctic domain. Journal of Geophysical Research, 110, D08112. https://doi.org/10.1029/2004JD005518
Tóth, J. ( 1963 ). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68 ( 16 ), 4795 – 4812. https://doi.org/10.1029/JZ068i016p04795
Townley, L. R., & Trefry, M. G. ( 2000 ). Surface water‐groundwater interaction near shallow circular lakes: Flow geometry in three dimensions. Water Resources Research, 36 ( 4 ), 935 – 948. https://doi.org/10.1029/1999WR900304
Wagener, T., Sivapalan, M., Troch, P., & Woods, R. ( 2007 ). Catchment classification and hydrologic similarity. Geography Compass, 1 ( 4 ), 901 – 931. https://doi.org/10.1111/j.1749‐8198.2007.00039.x
Walker, D. A. ( 2000 ). Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography. Global Change Biology, 6 ( S1 ), 19 – 34. https://doi.org/10.1046/j.1365‐2486.2000.06010.x
Walvoord, M. A., & Striegl, R. G. ( 2007 ). Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophysical Research Letters, 34, L12402. https://doi.org/10.1029/2007GL030216
Winter, T. C., & Rosenberry, D. O. ( 1995 ). The interaction of ground water with prairie pothole wetlands in the Cottonwood Lake area, east‐central North Dakota, 1979–1990. Wetlands, 15 ( 3 ), 193 – 211. https://doi.org/10.1007/BF03160700
Wright, N., Hayashi, M., & Quinton, W. L. ( 2009 ). Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat‐covered permafrost terrain. Water Resources Research, 45, W05414. https://doi.org/10.1029/2008WR006880
Kane, D. L., McNamara, J. P., Yang, D., Olsson, P. Q., & Gieck, R. E. ( 2003 ). An extreme rainfall/runoff event in Arctic Alaska. Journal of Hydrometeorology, 4 ( 6 ), 1220 – 1228. https://doi.org/10.1175/1525‐7541(2003)004<1220:AEREIA>2.0.CO;2
Lilly, E. K., Kane, D. L., Hinzman, L. D., & Gieck, R. E. ( 1998 ). Annual water balance for three nested watersheds on the north slope of Alaska. Arctic Forum, 53.
McGlynn, B. L., & McDonnell, J. J. ( 2003 ). Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Research, 39 ( 4 ), 1090. https://doi.org/10.1029/2002WR001525
Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., & Moore, R. B. ( 2007 ). The role of headwater streams in downstream water quality. JAWRA Journal of the American Water Resources Association, 43 ( 1 ), 41 – 59. https://doi.org/10.1111/j.1752‐1688.2007.00005.x
Arctic Long Term Ecological Research Data Archives ( 2017 ). Terrestrial data. Retrieved from http://arc‐lter.ecosystems.mbl.edu/terrestrial‐data
Boyer, E. B., Hornberger, G. M., Bencala, K. E., & McKnight, D. M. ( 1997 ). Response characteristics of DOC flushing into an alpine catchment stream. Hydrological Processes, 11 ( 12 ), 1635 – 1647. https://doi.org/10.1002/(SICI)1099‐1085(19971015)11:12<1635::AID‐HYP494>3.0.CO;2‐H
Cardenas, M. B., & Jiang, X.‐W. ( 2010 ). Groundwater flow, transport, and residence times through topography‐driven basins with exponentially decreasing permeability and porosity. Water Resources Research, 46, W11538. https://doi.org/10.1029/2010WR009370
Cardenas, M. B., & Wilson, J. L. ( 2007 ). Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research, 43, W08412. https://doi.org/10.1029/2006WR005787
Circumpolar Active Layer Monitoring Network ( 2017 ). Long‐Term Observations of the Climate‐Active Layer‐Permafrost System. Retreived from https://www2.gwu.edu/~calm/data/north.html
Cory, R. M., Harrold, K. H., Neilson, B. T., & Kling, G. W. ( 2015 ). Controls on dissolved organic matter (DOM) degradation in a headwater stream: The influence of photochemical and hydrological conditions in determining light‐limitation or substrate‐limitation of photo‐degradation. Biogeosciences, 12 ( 22 ), 6669 – 6685. https://doi.org/10.5194/bg‐12‐6669‐2015
op_rights IndexNoFollow
op_doi https://doi.org/10.1029/2018GL07814010.1139/cjfas‐2014‐040010.1890/08‐2025.110.1029/JZ068i016p0479510.1046/j.1365‐2486.2000.06010.x
container_title Geophysical Research Letters
container_volume 45
container_issue 15
container_start_page 7596
op_container_end_page 7605
_version_ 1774713525348859904
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/145518 2023-08-20T04:03:04+02:00 Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds Neilson, Bethany T. Cardenas, M. Bayani O’Connor, Michael T. Rasmussen, Mitchell T. King, Tyler V. Kling, George W. 2018-08-16 application/pdf https://hdl.handle.net/2027.42/145518 https://doi.org/10.1029/2018GL078140 unknown Wiley Periodicals, Inc. Neilson, Bethany T.; Cardenas, M. Bayani; O’Connor, Michael T.; Rasmussen, Mitchell T.; King, Tyler V.; Kling, George W. (2018). "Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds." Geophysical Research Letters 45(15): 7596-7605. 0094-8276 1944-8007 https://hdl.handle.net/2027.42/145518 doi:10.1029/2018GL078140 Geophysical Research Letters Quinton, W. L., & Marsh, P. ( 1999 ). A conceptual framework for runoff generation in a permafrost environment. Hydrological Processes, 13 ( 16 ), 2563 – 2581. https://doi.org/10.1002/(SICI)1099‐1085(199911)13:16<2563::AID‐HYP942>3.0.CO;2‐D Cory, R. M., Ward, C. P., Crump, B. C., & Kling, G. W. ( 2014 ). Sunlight controls water column processing of carbon in arctic fresh waters. Science, 345 ( 6199 ), 925 – 928. https://doi.org/10.1126/science.1253119 Creed, I. F., McKnight, D. M., Pellerin, B. A., Green, M. B., Bergamaschi, B. A., Aiken, G. R., et al. ( 2015 ). The river as a chemostat: Fresh perspectives on dissolved organic matter flowing down the river continuum. Canadian Journal of Fisheries and Aquatic Sciences, 72 ( 8 ), 1272 – 1285. https://doi.org/10.1139/cjfas‐2014‐0400 Frey, K. E., & McClelland, J. W. ( 2009 ). Impacts of permafrost degradation on arctic river biogeochemistry. Hydrological Processes, 23 ( 1 ), 169 – 182. https://doi.org/10.1002/hyp.7196 Gleeson, T., Befus, K. M., Luijendijk, E., Jasechko, S., & Cardenas, M. B. ( 2016 ). The global volume and distribution of modern groundwater. Nature Geoscience, 9 ( 2 ), 161 – 167. https://doi.org/10.1038/ngeo2590 Hinzman, L. D., Kane, D. L., Gieck, R. E., & Everett, K. R. ( 1991 ). Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Regions Science and Technology, 19 ( 2 ), 95 – 110. https://doi.org/10.1016/0165‐232X(91)90001‐W Hornberger, G. M., Bencala, K. E., & McKnight, D. M. ( 1994 ). Hydrological controls on the temporal variation of dissolved organic carbon in the Snake River near Montezuma, Colorado. Biogeochemistry, 25 ( 3 ), 147 – 165. https://doi.org/10.1007/BF00024390 Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K. E., & Marshall, L. A. ( 2009 ). Hydrologic connectivity between landscapes and streams: Transferring reach‐ and plot‐scale understanding to the catchment scale. Water Resources Research, 45, W04428. https://doi.org/10.1029/2008WR007225 Judd, K. E., & Kling, G. W. ( 2002 ). Production and export of dissolved C in arctic tundra mesocosms: The roles of vegetation and water flow. Biogeochemistry, 60 ( 3 ), 213 – 234. https://doi.org/10.1023/A:1020371412061 McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L., Hayes, D. J., et al. ( 2009 ). Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79 ( 4 ), 523 – 555. https://doi.org/10.1890/08‐2025.1 McNamara, J. P., Kane, D. L., & Hinzman, L. D. ( 1998 ). An analysis of streamflow hydrology in the Kuparuk River basin, Arctic Alaska: A nested watershed approach. Journal of Hydrology, 206 ( 1‐2 ), 39 – 57. https://doi.org/10.1016/S0022‐1694(98)00083‐3 McNamara, J. P., Kane, D. L., & Hinzman, L. D. ( 1999 ). An analysis of an arctic channel network using a digital elevation model. Geomorphology, 29 ( 3–4 ), 339 – 353. https://doi.org/10.1016/S0169‐555X(99)00017‐3 McNamara, J. P., Kane, D. L., Hobbie, J. E., & Kling, G. W. ( 2008 ). Hydrologic and biogeochemical controls on the spatial and temporal patterns of nitrogen and phosphorus in the Kuparuk River, arctic Alaska. Hydrological Processes, 22 ( 17 ), 3294 – 3309. https://doi.org/10.1002/hyp.6920 Quinton, W. L., Gray, D. M., & Marsh, P. ( 2000 ). Subsurface drainage from hummock‐covered hillslopes in the Arctic tundra. Journal of Hydrology, 237 ( 1‐2 ), 113 – 125. https://doi.org/10.1016/S0022‐1694(00)00304‐8 Quinton, W. L., & Pomeroy, J. W. ( 2006 ). Transformations of runoff chemistry in the Arctic tundra, Northwest Territories, Canada. Hydrological Processes, 20 ( 14 ), 2901 – 2919. https://doi.org/10.1002/hyp.6083 Stieglitz, M., Shaman, J., McNamara, J., Engel, V., Shanley, J., & Kling, G. W. ( 2003 ). An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global Biogeochemical Cycles, 17 ( 4 ), 1105. https://doi.org/10.1029/2003GB002041 Su, F., Adam, J. C., Bowling, L. C., & Lettenmaier, D. P. ( 2005 ). Streamflow simulations of the terrestrial Arctic domain. Journal of Geophysical Research, 110, D08112. https://doi.org/10.1029/2004JD005518 Tóth, J. ( 1963 ). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68 ( 16 ), 4795 – 4812. https://doi.org/10.1029/JZ068i016p04795 Townley, L. R., & Trefry, M. G. ( 2000 ). Surface water‐groundwater interaction near shallow circular lakes: Flow geometry in three dimensions. Water Resources Research, 36 ( 4 ), 935 – 948. https://doi.org/10.1029/1999WR900304 Wagener, T., Sivapalan, M., Troch, P., & Woods, R. ( 2007 ). Catchment classification and hydrologic similarity. Geography Compass, 1 ( 4 ), 901 – 931. https://doi.org/10.1111/j.1749‐8198.2007.00039.x Walker, D. A. ( 2000 ). Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography. Global Change Biology, 6 ( S1 ), 19 – 34. https://doi.org/10.1046/j.1365‐2486.2000.06010.x Walvoord, M. A., & Striegl, R. G. ( 2007 ). Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophysical Research Letters, 34, L12402. https://doi.org/10.1029/2007GL030216 Winter, T. C., & Rosenberry, D. O. ( 1995 ). The interaction of ground water with prairie pothole wetlands in the Cottonwood Lake area, east‐central North Dakota, 1979–1990. Wetlands, 15 ( 3 ), 193 – 211. https://doi.org/10.1007/BF03160700 Wright, N., Hayashi, M., & Quinton, W. L. ( 2009 ). Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat‐covered permafrost terrain. Water Resources Research, 45, W05414. https://doi.org/10.1029/2008WR006880 Kane, D. L., McNamara, J. P., Yang, D., Olsson, P. Q., & Gieck, R. E. ( 2003 ). An extreme rainfall/runoff event in Arctic Alaska. Journal of Hydrometeorology, 4 ( 6 ), 1220 – 1228. https://doi.org/10.1175/1525‐7541(2003)004<1220:AEREIA>2.0.CO;2 Lilly, E. K., Kane, D. L., Hinzman, L. D., & Gieck, R. E. ( 1998 ). Annual water balance for three nested watersheds on the north slope of Alaska. Arctic Forum, 53. McGlynn, B. L., & McDonnell, J. J. ( 2003 ). Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Research, 39 ( 4 ), 1090. https://doi.org/10.1029/2002WR001525 Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., & Moore, R. B. ( 2007 ). The role of headwater streams in downstream water quality. JAWRA Journal of the American Water Resources Association, 43 ( 1 ), 41 – 59. https://doi.org/10.1111/j.1752‐1688.2007.00005.x Arctic Long Term Ecological Research Data Archives ( 2017 ). Terrestrial data. Retrieved from http://arc‐lter.ecosystems.mbl.edu/terrestrial‐data Boyer, E. B., Hornberger, G. M., Bencala, K. E., & McKnight, D. M. ( 1997 ). Response characteristics of DOC flushing into an alpine catchment stream. Hydrological Processes, 11 ( 12 ), 1635 – 1647. https://doi.org/10.1002/(SICI)1099‐1085(19971015)11:12<1635::AID‐HYP494>3.0.CO;2‐H Cardenas, M. B., & Jiang, X.‐W. ( 2010 ). Groundwater flow, transport, and residence times through topography‐driven basins with exponentially decreasing permeability and porosity. Water Resources Research, 46, W11538. https://doi.org/10.1029/2010WR009370 Cardenas, M. B., & Wilson, J. L. ( 2007 ). Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research, 43, W08412. https://doi.org/10.1029/2006WR005787 Circumpolar Active Layer Monitoring Network ( 2017 ). Long‐Term Observations of the Climate‐Active Layer‐Permafrost System. Retreived from https://www2.gwu.edu/~calm/data/north.html Cory, R. M., Harrold, K. H., Neilson, B. T., & Kling, G. W. ( 2015 ). Controls on dissolved organic matter (DOM) degradation in a headwater stream: The influence of photochemical and hydrological conditions in determining light‐limitation or substrate‐limitation of photo‐degradation. Biogeosciences, 12 ( 22 ), 6669 – 6685. https://doi.org/10.5194/bg‐12‐6669‐2015 IndexNoFollow DOC transport groundwater permafrost groundwater/surface water arctic Geological Sciences Science Article 2018 ftumdeepblue https://doi.org/10.1029/2018GL07814010.1139/cjfas‐2014‐040010.1890/08‐2025.110.1029/JZ068i016p0479510.1046/j.1365‐2486.2000.06010.x 2023-07-31T21:12:51Z Groundwater flow regimes in the seasonally thawed soils in areas of continuous permafrost are relatively unknown despite their potential role in delivering water, carbon, and nutrients to streams. Using numerical groundwater flow models informed by observations from a headwater catchment in arctic Alaska, United States, we identify several mechanisms that result in substantial surface‐subsurface water exchanges across the land surface during downslope transport and create a primary control on dissolved organic carbon loading to streams and rivers. The models indicate that surface water flowing downslope has a substantial groundwater component due to rapid surface‐subsurface exchanges across a range of hydrologic states, from unsaturated to flooded. Field‐based measurements corroborate the high groundwater contributions, and river dissolved organic carbon concentrations are similar to that of groundwater across large discharge ranges. The persistence of these groundwater contributions in arctic watersheds will influence carbon export to rivers as thaw depth increases in a warmer climate.Plain Language SummaryThis paper shows that groundwater processes have a dominant role in controlling carbon export from the land to streams in permafrost terrain. We use hydrologic models to show that microtopography on the land surface drives the rapid exchange of overland flow with shallow groundwater. In other words, the water (porpoises) from just above to just below the land surface and back again as it moves downslope. Combined with the rapid leaching of organic carbon from soils, these findings provide a mechanistic explanation for two decades of measurements showing high concentrations of carbon in soils and streams during high flow conditions for both spring snowmelt and summer storms. During drier time periods, groundwater contributions from the thin thawed layer make up the flow in streams and keep dissolved organic carbon concentrations high. The persistence of these groundwater contributions in arctic watersheds will ... Article in Journal/Newspaper Arctic Arctic permafrost Alaska University of Michigan: Deep Blue Arctic Geophysical Research Letters 45 15 7596 7605