Internal lee wave closures: Parameter sensitivity and comparison to observations

This paper examines two internal lee wave closures that have been used together with ocean models to predict the timeâ averaged global energy conversion rate into lee waves and dissipation rate associated with lee waves and topographic blocking: the Garner (2005) scheme and the Bell (1975) theory. T...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Trossman, D.S., Waterman, S., Polzin, K.L., Arbic, B.K., Garner, S.T., Naveira‐garabato, A.C., Sheen, K.L.
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge Univ. Press 2015
Subjects:
Online Access:https://hdl.handle.net/2027.42/145418
https://doi.org/10.1002/2015JC010892
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/145418
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic mixing
dissipation
finestructure
internal waves
topographic interactions
microstructure
Atmospheric and Oceanic Sciences
Geological Sciences
Science
spellingShingle mixing
dissipation
finestructure
internal waves
topographic interactions
microstructure
Atmospheric and Oceanic Sciences
Geological Sciences
Science
Trossman, D.S.
Waterman, S.
Polzin, K.L.
Arbic, B.K.
Garner, S.T.
Naveira‐garabato, A.C.
Sheen, K.L.
Internal lee wave closures: Parameter sensitivity and comparison to observations
topic_facet mixing
dissipation
finestructure
internal waves
topographic interactions
microstructure
Atmospheric and Oceanic Sciences
Geological Sciences
Science
description This paper examines two internal lee wave closures that have been used together with ocean models to predict the timeâ averaged global energy conversion rate into lee waves and dissipation rate associated with lee waves and topographic blocking: the Garner (2005) scheme and the Bell (1975) theory. The closure predictions in two Southern Ocean regions where geostrophic flows dominate over tides are examined and compared to microstructure profiler observations of the turbulent kinetic energy dissipation rate, where the latter are assumed to reflect the dissipation associated with topographic blocking and generated lee wave energy. It is shown that when applied to these Southern Ocean regions, the two closures differ most in their treatment of topographic blocking. For several reasons, pointwise validation of the closures is not possible using existing observations, but horizontally averaged comparisons between closure predictions and observations are made. When anisotropy of the underlying topography is accounted for, the two horizontally averaged closure predictions near the seafloor are approximately equal. The dissipation associated with topographic blocking is predicted by the Garner (2005) scheme to account for the majority of the depthâ integrated dissipation over the bottom 1000 m of the water column, where the horizontally averaged predictions lie well within the spatial variability of the horizontally averaged observations. Simplifications made by the Garner (2005) scheme that are inappropriate for the oceanic context, together with imperfect observational information, can partially account for the predictionâ observation disagreement, particularly in the upper water column.Key Points:Average abyssal closure predictions within factor of 2 of each other, observationsClosures differ most in their treatment of topographic blocking, which cannot be validated yetBottom enhancement of dissipation is mostly due to topographic blocking Peer Reviewed ...
format Article in Journal/Newspaper
author Trossman, D.S.
Waterman, S.
Polzin, K.L.
Arbic, B.K.
Garner, S.T.
Naveira‐garabato, A.C.
Sheen, K.L.
author_facet Trossman, D.S.
Waterman, S.
Polzin, K.L.
Arbic, B.K.
Garner, S.T.
Naveira‐garabato, A.C.
Sheen, K.L.
author_sort Trossman, D.S.
title Internal lee wave closures: Parameter sensitivity and comparison to observations
title_short Internal lee wave closures: Parameter sensitivity and comparison to observations
title_full Internal lee wave closures: Parameter sensitivity and comparison to observations
title_fullStr Internal lee wave closures: Parameter sensitivity and comparison to observations
title_full_unstemmed Internal lee wave closures: Parameter sensitivity and comparison to observations
title_sort internal lee wave closures: parameter sensitivity and comparison to observations
publisher Cambridge Univ. Press
publishDate 2015
url https://hdl.handle.net/2027.42/145418
https://doi.org/10.1002/2015JC010892
geographic Southern Ocean
geographic_facet Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_relation Trossman, D. S.; Waterman, S.; Polzin, K. L.; Arbic, B. K.; Garner, S. T.; Naveira‐garabato, A. C.
Sheen, K. L. (2015). "Internal lee wave closures: Parameter sensitivity and comparison to observations." Journal of Geophysical Research: Oceans 120(12): 7997-8019.
2169-9275
2169-9291
https://hdl.handle.net/2027.42/145418
doi:10.1002/2015JC010892
Journal of Geophysical Research: Oceans
Shaw, T. A., M. Sigmond, T. G. Shepherd, and J. F. Scinocca ( 2009 ), Sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization, J. Clim., 22, 2726 â 2742.
Nikurashin, M., and R. Ferrari ( 2010a ), Radiation and dissipation of internal waves generated by geostrophic motions impinging on smallâ scale topography: Theory, J. Phys. Oceanogr., 40, 1055 â 1074.
Nikurashin, M., and R. Ferrari ( 2010b ), Radiation and dissipation of internal waves generated by geostrophic motions impinging on smallâ scale topography: Application to the Southern Ocean, J. Phys. Oceanogr., 40, 2025 â 2042.
Nikurashin, M., and R. Ferrari ( 2011 ), Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean, Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.
Nikurashin, M., and R. Ferrari ( 2013 ), Overturning circulation driven by breaking internal waves in the deep ocean, Geophys. Res. Lett., 40, 3133 â 3137, doi:10.1002/grl.50542.
Nikurashin, M., and S. Legg ( 2011 ), A mechanism for local dissipation of internal tides generated at rough topography, J. Phys. Oceanogr., 41, 378 â 395.
Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin ( 2014 ), The impact of finite amplitude bottom topography on internal wave generation in the Southern Ocean, J. Phys. Oceanogr., 44, 2938 â 2950.
Nycander, J. ( 2005 ), Generation of internal waves in the deep ocean by tides, J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.
Polzin, K. L. ( 2008 ), Mesoscale eddyâ internal wave coupling. Part I: Symmetry, wave capture, and results from the midâ ocean dynamics experiment, J. Phys. Oceanogr., 38, 2556 â 2574.
Polzin, K. L. ( 2010 ), Mesoscale eddyâ internal wave coupling. Part II: Energetics and results from PolyMode, J. Phys. Oceanogr., 40, 789 â 801.
Polzin, K. L., A. C. Naveira Garabato, E. P. Abrahamsen, L. Jullion, and M. P. Meredith ( 2014 ), Boundary mixing in Orkney Passage outflow, J. Geophys. Res. Oceans, 119, 8627 â 8645, doi:10.1002/2014JC010099.
Scinocca, J. F., and N. A. McFarlane ( 2000 ), The parameterization of drag induced by stratified flow over anisotropic orography, Q. J. R. Meteorol. Soc., 126, 2353 â 2393.
Scott, R. B., J. A. Goff, A. C. Naveiraâ Garabato, and A. J. G. Nurser ( 2011 ), Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography, J. Geophys. Res., 116, C09029, doi:10.1029/2011JC007005.
Shaw, T. A., and T. G. Shepherd ( 2007 ), Angular momentum conservation and gravity wave drag parameterization: Implications for climate models, J. Atmos. Sci., 64, 190 â 203.
Sheen, K. L., et al. ( 2013 ), Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), J. Geophys. Res. Oceans, 118, 2774 â 2792, doi:10.1002/jgrc.20217.
Smith, W. H. F., and D. T. Sandwell ( 1997 ), Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956 â 1962.
St. Laurent, L. C., J. M. Toole, and R. W. Schmitt ( 2001 ), Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin, J. Phys. Oceanogr., 31, 3476 â 3495.
St. Laurent, L. C., H. L. Simmons, and S. R. Jayne ( 2002 ), Estimating tidally driven mixing in the deep ocean, Geophys. Res. Lett., 29 ( 23 ), 2106, doi:10.1029/2002GL015633.
St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson ( 2012 ), Turbulence and diapycnal mixing in drake passage, J. Phys. Oceanogr., 42, 2143 â 2152.
Stern, W. F., and R. T. Pierrehumbert ( 1988 ), The impact of an orographic gravity wave drag parameterization on extended range predictions with a GCM. In Eight Conference on Numerical Weather Prediction, pp. 745 â 750, Am. Meteorol. Soc., Baltimore, Md.
Sun, H., and E. Kunze ( 1999a ), Internal waveâ wave interactions. Part I: The role of internal wave vertical divergence, J. Phys. Oceanogr., 29, 2886 â 2904.
Sun, H., and E. Kunze ( 1999b ), Internal waveâ wave interactions. Part II: Spectral energy transfer and turbulence production, J. Phys. Oceanogr., 29, 2905 â 2919.
Trossman, D. S., B. K. Arbic, S. T. Garner, J. A. Goff, S. R. Jayne, E. J. Metzger, and A. J. Wallcraft ( 2013 ), Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model, Ocean Modell., 72, 119 â 142.
Trossman, D. S., B. K. Arbic, J. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft ( 2015 ), Impact of topographic internal lee wave drag on an eddying global ocean model, Ocean Modell., doi:10.1016/j.ocemod.2015.10.013, in press.
Waterhouse, A. F., et al. ( 2014 ), Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate, J. Phys. Oceanogr., 44, 1854 â 1872.
Waterman, S., A. C. Naveira Garabato, and K. L. Polzin ( 2013 ), Internal waves and turbulence in the Antarctic Circumpolar Current, J. Phys. Oceanogr., 43, 259 â 282.
Waterman, S., K. L. Polzin, A. C. Naveira Garabato, K. L. Sheen, and A. Forryan ( 2014 ), Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography, J. Phys. Oceanogr., 44, 1466 â 1492.
Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones ( 2003 ), Improvements to the representation of orography in the Met Office Unified Model, Q. J. R. Meteorol. Soc., 129, 1989 â 2010.
Wright, C. J., R. B. Scott, P. Ailliot, and D. Furnival ( 2014 ), Lee wave generation rates in the deep ocean, Geophys. Res. Lett., 41, 2434 â 2440, doi:10.1002/2013GL059087.
Aguilar, D., and B. Sutherland ( 2006 ), Internal wave generation from rough topography, Phys. Fluids, 18 ( 6 ), 066603, doi:10.1063/1.2214538.
Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons ( 2004 ), The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep Sea Res., Part II, 51, 3069 â 3101, doi:10.1016/j.dsr2.2004.09.014.
Arbic, B. K., A. J. Wallcraft, and E. J. Metzger ( 2010 ), Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Modell., 32, 175 â 187.
Arbic, B. K., K. L. Polzin, R. B. Scott, J. G. Richman, and J. F. Shriver ( 2013 ), On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products, J. Phys. Oceanogr., 43, 283 â 300.
Baines, P. G. ( 1995 ), Topographic Effects in Stratified Flows, Cambridge Univ. Press, Cambridge, U. K.
Bell, T. H., Jr. ( 1975 ), Topographically generated internal waves in the open ocean, J. Geophys. Res., 80 ( 3 ), 320 â 327.
Bretherton, F. P. ( 1969 ), Momentum transport by gravity waves, Q. J. R. Meteorol. Soc., 302, 529 â 554.
Bühler, O., and M. E. McIntyre ( 2005 ), Wave capture and waveâ vortex duality, J. Fluid Mech., 534, 67 â 95.
Eckermann, S. D., J. Lindeman, D. Broutman, J. Ma, and Z. Boybeyi ( 2010 ), Momentum fluxes of gravity waves generated by variable Froude number flow over threeâ dimensional obstacles, J. Atmos. Sci., 67, 2260 â 2278.
Eliassen, A., and E. Palm ( 1961 ), On the transfer of energy in stationary mountain waves, Geofys. Publ., 22, 1 â 23.
Garner, S. T. ( 2005 ), A topographic drag closure built on an analytical base flux, J. Atmos. Sci., 62, 2302 â 2315.
Goff, J. A. ( 2010 ), Global prediction of abyssal hill rootâ meanâ square heights from smallâ scale altimetric gravity variability, J. Geophys. Res., 115, B12104, doi:10.1029/2010JB007867.
Goff, J. A., and B. K. Arbic ( 2010 ), Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleoâ spreading rate, paleoâ ridge orientation, and sediment thickness, Ocean Modell., 32, 36 â 43.
Goff, J. A., and T. H. Jordan ( 1988 ), Stochastic modeling of seafloor morphology inversion of sea beam data for secondâ order statistics, J. Geophys. Res., 93 ( B11 ), 13,589 â 13,608.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2015JC01089210.1029/2011GL04657610.1002/grl.5054210.1029/2004JC00248710.1002/2014JC01009910.1029/2011JC00700510.1002/jgrc.2021710.1029/2002GL01563310.1016/j.ocemod.2015.10.01310.1002/2013GL05908710.1063/1.221453810.1016/j.dsr2.2004
container_title Journal of Geophysical Research: Oceans
container_volume 120
container_issue 12
container_start_page 7997
op_container_end_page 8019
_version_ 1774723709230120960
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/145418 2023-08-20T04:09:56+02:00 Internal lee wave closures: Parameter sensitivity and comparison to observations Trossman, D.S. Waterman, S. Polzin, K.L. Arbic, B.K. Garner, S.T. Naveira‐garabato, A.C. Sheen, K.L. 2015-12 application/pdf https://hdl.handle.net/2027.42/145418 https://doi.org/10.1002/2015JC010892 unknown Cambridge Univ. Press Wiley Periodicals, Inc. Trossman, D. S.; Waterman, S.; Polzin, K. L.; Arbic, B. K.; Garner, S. T.; Naveira‐garabato, A. C. Sheen, K. L. (2015). "Internal lee wave closures: Parameter sensitivity and comparison to observations." Journal of Geophysical Research: Oceans 120(12): 7997-8019. 2169-9275 2169-9291 https://hdl.handle.net/2027.42/145418 doi:10.1002/2015JC010892 Journal of Geophysical Research: Oceans Shaw, T. A., M. Sigmond, T. G. Shepherd, and J. F. Scinocca ( 2009 ), Sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization, J. Clim., 22, 2726 â 2742. Nikurashin, M., and R. Ferrari ( 2010a ), Radiation and dissipation of internal waves generated by geostrophic motions impinging on smallâ scale topography: Theory, J. Phys. Oceanogr., 40, 1055 â 1074. Nikurashin, M., and R. Ferrari ( 2010b ), Radiation and dissipation of internal waves generated by geostrophic motions impinging on smallâ scale topography: Application to the Southern Ocean, J. Phys. Oceanogr., 40, 2025 â 2042. Nikurashin, M., and R. Ferrari ( 2011 ), Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean, Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576. Nikurashin, M., and R. Ferrari ( 2013 ), Overturning circulation driven by breaking internal waves in the deep ocean, Geophys. Res. Lett., 40, 3133 â 3137, doi:10.1002/grl.50542. Nikurashin, M., and S. Legg ( 2011 ), A mechanism for local dissipation of internal tides generated at rough topography, J. Phys. Oceanogr., 41, 378 â 395. Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin ( 2014 ), The impact of finite amplitude bottom topography on internal wave generation in the Southern Ocean, J. Phys. Oceanogr., 44, 2938 â 2950. Nycander, J. ( 2005 ), Generation of internal waves in the deep ocean by tides, J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487. Polzin, K. L. ( 2008 ), Mesoscale eddyâ internal wave coupling. Part I: Symmetry, wave capture, and results from the midâ ocean dynamics experiment, J. Phys. Oceanogr., 38, 2556 â 2574. Polzin, K. L. ( 2010 ), Mesoscale eddyâ internal wave coupling. Part II: Energetics and results from PolyMode, J. Phys. Oceanogr., 40, 789 â 801. Polzin, K. L., A. C. Naveira Garabato, E. P. Abrahamsen, L. Jullion, and M. P. Meredith ( 2014 ), Boundary mixing in Orkney Passage outflow, J. Geophys. Res. Oceans, 119, 8627 â 8645, doi:10.1002/2014JC010099. Scinocca, J. F., and N. A. McFarlane ( 2000 ), The parameterization of drag induced by stratified flow over anisotropic orography, Q. J. R. Meteorol. Soc., 126, 2353 â 2393. Scott, R. B., J. A. Goff, A. C. Naveiraâ Garabato, and A. J. G. Nurser ( 2011 ), Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography, J. Geophys. Res., 116, C09029, doi:10.1029/2011JC007005. Shaw, T. A., and T. G. Shepherd ( 2007 ), Angular momentum conservation and gravity wave drag parameterization: Implications for climate models, J. Atmos. Sci., 64, 190 â 203. Sheen, K. L., et al. ( 2013 ), Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), J. Geophys. Res. Oceans, 118, 2774 â 2792, doi:10.1002/jgrc.20217. Smith, W. H. F., and D. T. Sandwell ( 1997 ), Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956 â 1962. St. Laurent, L. C., J. M. Toole, and R. W. Schmitt ( 2001 ), Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin, J. Phys. Oceanogr., 31, 3476 â 3495. St. Laurent, L. C., H. L. Simmons, and S. R. Jayne ( 2002 ), Estimating tidally driven mixing in the deep ocean, Geophys. Res. Lett., 29 ( 23 ), 2106, doi:10.1029/2002GL015633. St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson ( 2012 ), Turbulence and diapycnal mixing in drake passage, J. Phys. Oceanogr., 42, 2143 â 2152. Stern, W. F., and R. T. Pierrehumbert ( 1988 ), The impact of an orographic gravity wave drag parameterization on extended range predictions with a GCM. In Eight Conference on Numerical Weather Prediction, pp. 745 â 750, Am. Meteorol. Soc., Baltimore, Md. Sun, H., and E. Kunze ( 1999a ), Internal waveâ wave interactions. Part I: The role of internal wave vertical divergence, J. Phys. Oceanogr., 29, 2886 â 2904. Sun, H., and E. Kunze ( 1999b ), Internal waveâ wave interactions. Part II: Spectral energy transfer and turbulence production, J. Phys. Oceanogr., 29, 2905 â 2919. Trossman, D. S., B. K. Arbic, S. T. Garner, J. A. Goff, S. R. Jayne, E. J. Metzger, and A. J. Wallcraft ( 2013 ), Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model, Ocean Modell., 72, 119 â 142. Trossman, D. S., B. K. Arbic, J. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft ( 2015 ), Impact of topographic internal lee wave drag on an eddying global ocean model, Ocean Modell., doi:10.1016/j.ocemod.2015.10.013, in press. Waterhouse, A. F., et al. ( 2014 ), Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate, J. Phys. Oceanogr., 44, 1854 â 1872. Waterman, S., A. C. Naveira Garabato, and K. L. Polzin ( 2013 ), Internal waves and turbulence in the Antarctic Circumpolar Current, J. Phys. Oceanogr., 43, 259 â 282. Waterman, S., K. L. Polzin, A. C. Naveira Garabato, K. L. Sheen, and A. Forryan ( 2014 ), Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography, J. Phys. Oceanogr., 44, 1466 â 1492. Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones ( 2003 ), Improvements to the representation of orography in the Met Office Unified Model, Q. J. R. Meteorol. Soc., 129, 1989 â 2010. Wright, C. J., R. B. Scott, P. Ailliot, and D. Furnival ( 2014 ), Lee wave generation rates in the deep ocean, Geophys. Res. Lett., 41, 2434 â 2440, doi:10.1002/2013GL059087. Aguilar, D., and B. Sutherland ( 2006 ), Internal wave generation from rough topography, Phys. Fluids, 18 ( 6 ), 066603, doi:10.1063/1.2214538. Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons ( 2004 ), The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep Sea Res., Part II, 51, 3069 â 3101, doi:10.1016/j.dsr2.2004.09.014. Arbic, B. K., A. J. Wallcraft, and E. J. Metzger ( 2010 ), Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Modell., 32, 175 â 187. Arbic, B. K., K. L. Polzin, R. B. Scott, J. G. Richman, and J. F. Shriver ( 2013 ), On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products, J. Phys. Oceanogr., 43, 283 â 300. Baines, P. G. ( 1995 ), Topographic Effects in Stratified Flows, Cambridge Univ. Press, Cambridge, U. K. Bell, T. H., Jr. ( 1975 ), Topographically generated internal waves in the open ocean, J. Geophys. Res., 80 ( 3 ), 320 â 327. Bretherton, F. P. ( 1969 ), Momentum transport by gravity waves, Q. J. R. Meteorol. Soc., 302, 529 â 554. Bühler, O., and M. E. McIntyre ( 2005 ), Wave capture and waveâ vortex duality, J. Fluid Mech., 534, 67 â 95. Eckermann, S. D., J. Lindeman, D. Broutman, J. Ma, and Z. Boybeyi ( 2010 ), Momentum fluxes of gravity waves generated by variable Froude number flow over threeâ dimensional obstacles, J. Atmos. Sci., 67, 2260 â 2278. Eliassen, A., and E. Palm ( 1961 ), On the transfer of energy in stationary mountain waves, Geofys. Publ., 22, 1 â 23. Garner, S. T. ( 2005 ), A topographic drag closure built on an analytical base flux, J. Atmos. Sci., 62, 2302 â 2315. Goff, J. A. ( 2010 ), Global prediction of abyssal hill rootâ meanâ square heights from smallâ scale altimetric gravity variability, J. Geophys. Res., 115, B12104, doi:10.1029/2010JB007867. Goff, J. A., and B. K. Arbic ( 2010 ), Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleoâ spreading rate, paleoâ ridge orientation, and sediment thickness, Ocean Modell., 32, 36 â 43. Goff, J. A., and T. H. Jordan ( 1988 ), Stochastic modeling of seafloor morphology inversion of sea beam data for secondâ order statistics, J. Geophys. Res., 93 ( B11 ), 13,589 â 13,608. IndexNoFollow mixing dissipation finestructure internal waves topographic interactions microstructure Atmospheric and Oceanic Sciences Geological Sciences Science Article 2015 ftumdeepblue https://doi.org/10.1002/2015JC01089210.1029/2011GL04657610.1002/grl.5054210.1029/2004JC00248710.1002/2014JC01009910.1029/2011JC00700510.1002/jgrc.2021710.1029/2002GL01563310.1016/j.ocemod.2015.10.01310.1002/2013GL05908710.1063/1.221453810.1016/j.dsr2.2004 2023-07-31T21:00:54Z This paper examines two internal lee wave closures that have been used together with ocean models to predict the timeâ averaged global energy conversion rate into lee waves and dissipation rate associated with lee waves and topographic blocking: the Garner (2005) scheme and the Bell (1975) theory. The closure predictions in two Southern Ocean regions where geostrophic flows dominate over tides are examined and compared to microstructure profiler observations of the turbulent kinetic energy dissipation rate, where the latter are assumed to reflect the dissipation associated with topographic blocking and generated lee wave energy. It is shown that when applied to these Southern Ocean regions, the two closures differ most in their treatment of topographic blocking. For several reasons, pointwise validation of the closures is not possible using existing observations, but horizontally averaged comparisons between closure predictions and observations are made. When anisotropy of the underlying topography is accounted for, the two horizontally averaged closure predictions near the seafloor are approximately equal. The dissipation associated with topographic blocking is predicted by the Garner (2005) scheme to account for the majority of the depthâ integrated dissipation over the bottom 1000 m of the water column, where the horizontally averaged predictions lie well within the spatial variability of the horizontally averaged observations. Simplifications made by the Garner (2005) scheme that are inappropriate for the oceanic context, together with imperfect observational information, can partially account for the predictionâ observation disagreement, particularly in the upper water column.Key Points:Average abyssal closure predictions within factor of 2 of each other, observationsClosures differ most in their treatment of topographic blocking, which cannot be validated yetBottom enhancement of dissipation is mostly due to topographic blocking Peer Reviewed ... Article in Journal/Newspaper Southern Ocean University of Michigan: Deep Blue Southern Ocean Journal of Geophysical Research: Oceans 120 12 7997 8019