Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow
Biomass burning produces smoke aerosols that are emitted into the atmosphere. Some smoke constituents, notably black carbon, are highly effective light‐absorbing aerosols (LAA). Emitted LAA can be transported to high‐albedo regions like the Greenland Ice Sheet (GrIS) and affect local snowmelt. In th...
Published in: | Journal of Geophysical Research: Atmospheres |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Wiley Periodicals, Inc.
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/2027.42/144656 https://doi.org/10.1029/2017JD027878 |
id |
ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/144656 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
University of Michigan: Deep Blue |
op_collection_id |
ftumdeepblue |
language |
unknown |
topic |
snowmelt light‐absorbing aerosols Greenland Ice Sheet Atmospheric and Oceanic Sciences Science |
spellingShingle |
snowmelt light‐absorbing aerosols Greenland Ice Sheet Atmospheric and Oceanic Sciences Science Ward, Jamie L. Flanner, Mark G. Bergin, Mike Dibb, Jack E. Polashenski, Chris M. Soja, Amber J. Thomas, Jennie L. Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow |
topic_facet |
snowmelt light‐absorbing aerosols Greenland Ice Sheet Atmospheric and Oceanic Sciences Science |
description |
Biomass burning produces smoke aerosols that are emitted into the atmosphere. Some smoke constituents, notably black carbon, are highly effective light‐absorbing aerosols (LAA). Emitted LAA can be transported to high‐albedo regions like the Greenland Ice Sheet (GrIS) and affect local snowmelt. In the summer, the effects of LAA in Greenland are uncertain. To explore how LAA affect GrIS snowmelt and surface energy flux in the summer, we conduct idealized global climate model simulations with perturbed aerosol amounts and properties in the GrIS snow and overlying atmosphere. The in‐snow and atmospheric aerosol burdens we select range from background values measured on the GrIS to unrealistically high values. This helps us explore the linearity of snowmelt response and to achieve high signal‐to‐noise ratios. With LAA operating only in the atmosphere, we find no significant change in snowmelt due to the competing effects of surface dimming and tropospheric warming. Regardless of atmospheric LAA presence, in‐snow black carbon‐equivalent mixing ratios greater than ~60 ng/g produce statistically significant snowmelt increases over much of the GrIS. We find that net surface energy flux changes correspond well to snowmelt changes for all cases. The dominant component of surface energy flux change is solar energy flux, but sensible and longwave energy fluxes respond to temperature changes. Atmospheric LAA dampen the magnitude of solar radiation absorbed by in‐snow LAA when both varieties are simulated. In general, the significant melt and surface energy flux changes we simulate occur with LAA quantities that have never been recorded in Greenland.Key PointsWe compare the effects of in‐snow and atmospheric light‐absorbing aerosols on Greenland’s climateAtmospheric light‐absorbing aerosols warm the troposphere and dim the surface, which causes nonlinear snowmelt changes across GreenlandFor qualitatively similar burdens, snowmelt on Greenland is more sensitive to in‐snow light‐absorbing aerosols than atmospheric aerosols ... |
format |
Article in Journal/Newspaper |
author |
Ward, Jamie L. Flanner, Mark G. Bergin, Mike Dibb, Jack E. Polashenski, Chris M. Soja, Amber J. Thomas, Jennie L. |
author_facet |
Ward, Jamie L. Flanner, Mark G. Bergin, Mike Dibb, Jack E. Polashenski, Chris M. Soja, Amber J. Thomas, Jennie L. |
author_sort |
Ward, Jamie L. |
title |
Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow |
title_short |
Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow |
title_full |
Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow |
title_fullStr |
Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow |
title_full_unstemmed |
Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow |
title_sort |
modeled response of greenland snowmelt to the presence of biomass burning‐based absorbing aerosols in the atmosphere and snow |
publisher |
Wiley Periodicals, Inc. |
publishDate |
2018 |
url |
https://hdl.handle.net/2027.42/144656 https://doi.org/10.1029/2017JD027878 |
geographic |
Greenland |
geographic_facet |
Greenland |
genre |
Arctic Greenland Ice Sheet The Cryosphere |
genre_facet |
Arctic Greenland Ice Sheet The Cryosphere |
op_relation |
Ward, Jamie L.; Flanner, Mark G.; Bergin, Mike; Dibb, Jack E.; Polashenski, Chris M.; Soja, Amber J.; Thomas, Jennie L. (2018). "Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow." Journal of Geophysical Research: Atmospheres 123(11): 6122-6141. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/144656 doi:10.1029/2017JD027878 Journal of Geophysical Research: Atmospheres Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., & Landry, C. C. ( 2012 ). Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resources Research, 48, W07521. https://doi.org/10.1029/2012WR011985 Lamarque, J.‐F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klmont, Z., et al. ( 2010 ). Historical (1850‐2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10 ( 15 ), 7017 – 7039. https://doi.org/10.5194/acp‐10‐7017‐2010 Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., et al. ( 2012 ). Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 5 ( 3 ), 709 – 739. https://doi.org/10.5194/gmd‐5‐709‐2012 Marlon, J. R., Bartlein, P. J., Daniau, A.‐L., Harrison, S. P., Maezumi, S. Y., Power, M. J., et al. ( 2013 ). Global biomass burning: A synthesis and review of Holocene paleofire records and their controls. Quaternary Science Reviews, 65, 5 – 25. https://doi.org/10.1016/j.quascirev.2012.11.029 McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., et al. ( 2007 ). 20th‐century industrial black carbon emissions altered Arctic climate forcing. Science, 317 ( 5843 ), 1381 – 1384. https://doi.org/10.1126/science.1144856 Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. ( 2002 ). Climate effects of black carbon aerosols in China and India. Science, 297 ( 5590 ), 2250 – 2253. https://doi.org/10.1126/science.1075159 Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., et al. ( 2012 ). The extreme melt across the Greenland ice sheet in 2012. Geophysical Research Letters, 39, L20502. https://doi.org/10.1029/2012GL053611 Ocko, I. B., Ramaswamy, V., Ginoux, P., Ming, Y., & Horowitz, L. W. ( 2012 ). Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors. Journal of Geophysical Research, 117, D20203. https://doi.org/10.1029/2012JD018019 Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., et al. ( 2010 ). Technical description of version 4.0 of the Community Land Model (CLM), NCAR/TN‐478+STR, National Center for Atmospheric Research, Boulder, CO. Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., et al. ( 2007 ). Impact of disturbed desert soils on duration of mountain snow cover. Geophysical Research Letters, 34, L12502. https://doi.org/10.1029/2007GL030284 Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R., Lai, A. M., et al. ( 2015 ). Neither dust nor black carbon causing apparent albedo decline in Greenland’s dry snow zone: Implications for MODIS C5 surface reflectance. Geophysical Research Letters, 42, 9319 – 9327. https://doi.org/10.1002/2015GL065912 Ramanathan, V., & Carmichael, G. ( 2008, April). Global and regional climate changes due to black carbon. Nature Geoscience, 1 ( 4 ), 221 – 227. https://doi.org/10.1038/ngeo156 Sand, M., Berntsen, T. K., Kay, J. E., Lamarque, J.‐F., Seland, Ø., & Kirkevåg, A. ( 2013 ). The Arctic response to remote and local forcing of black carbon. Atmospheric Chemistry and Physics, 13 ( 1 ), 211 – 224. https://doi.org/10.5194/acp‐13‐211‐2013 Screen, J. A., Deser, C., & Simmonds, I. ( 2012 ). Local and remote controls on observed Arctic warming. Geophysical Research Letters, 39, L10709. https://doi.org/10.1029/2012GL051598 Soja, A. J., Tchebakova, N. M., French, N. H. F., Flannigan, M. D., Shugart, H. H., Stocks, B. J., et al. ( 2007 ). Climate‐induced boreal forest change: Predictions versus current observations. Global and Planetary Change, Special NEESPI Issue, 56 ( 3–4 ), 274 – 296. https://doi.org/10.1016/j.gloplacha.2006.07.028 Spracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., Yevich, R., Flannigan, M. D., & Westerling, A. L. ( 2009 ). Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. Journal of Geophysical Research, 114, D20301. https://doi.org/10.1029/2008JD010966 Stocks, B. J., Fosberg, M. A., Lynham, T. J., Mearns, L., Wotton, B. M., Yang, Q., et al. ( 1998 ). Climate change and forest fire potential in Russian and Canadian boreal forests. Climate Change, 38 ( 1 ), 1 – 13. https://doi.org/10.1023/A:1005306001055 Stohl, A., Andrews, E., Burkhart, J. F., Forster, C., Herber, A., Hoch, S. W., et al. ( 2006 ). Pan‐Arctic enhancements of light absorbing aerosol concentrations due to north American boreal forest fires during summer 2004. Journal of Geophysical Research, 111, D22214. https://doi.org/10.1029/2006JD007216 Strellis, B. M., Bergin, M. H., Dibb, J. E., Sokolik, I., Sheridan, P., Orgen, J. A., et al. ( 2013 ). Aerosol radiative forcing over Central Greenland: Estimates based on field measurements, (Master’s thesis). Retrieved from https://smartech.gatech.edu/bitstream/handle/1853/49063/STRELLIS‐THESIS‐2013.pdf Thomas, J. L., Polashenski, C. M., Soja, A. J., Marelle, L., Casey, K., Choi, H. D., et al. ( 2017 ). Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophysical Research Letters, 44, 7965 – 7974. https://doi.org/10.1002/2017GL073701 Wang, C. ( 2004 ). A modeling study on the climate impacts of black carbon aerosols. Journal of Geophysical Research, 109, D03106. https://doi.org/10.1029/2003JD004084 Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., et al. ( 2011 ). Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter‐spring: Implications for radiative forcing. Atmospheric Chemistry and Physics, 11 ( 23 ), 12,453 – 12,473. https://doi.org/10.5194/acp‐11‐12453‐2011 Wang, Y., Jiang, J. H., Su, H., Choi, Y.‐S., Huang, L., Guo, J., & Yung, Y. L. ( 2018 ). Elucidating the role of anthropogenic aerosols in Arctic Sea ice variations. Journal of Climate, 31 ( 1 ), 99 – 114. https://doi.org/10.1175/JCLI‐D‐17‐0287.1 Warren, S. G., & Wiscombe, W. J. ( 1980 ). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of the Atmospheric Sciences, 37, 2734 – 2745. Ban‐Weiss, G. A., Cao, L., Bala, G., & Caldeira, K. ( 2011 ). Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dynamics, 38 ( 5‐6 ), 897 – 911. https://doi.org/10.1007/s00382‐011‐1052‐y Bond, T. C., Charlson, R. J., & Heintzenburg, J. ( 1998 ). Quantifying the emission of light‐absorbing particles: Measurements tailored to climate studies. Geophysical Research Letters, 25 ( 3 ), 337 – 340. https://doi.org/10.1029/98GL00039 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. ( 2013 ). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380 – 5552. https://doi.org/10.1002/jgrd.50171 Bory, A. J.‐M., Biscaye, P. E., Piotrowski, A. M., & Steffensen, J. P. ( 2003 ). Regional variability of ice core dust composition and provenance in Greenland. Geochemistry, Geophysics, Geosystems, 4 ( 12 ), 1107. https://doi.org/10.1029/2003GC000627 Chung, S. H., & Seinfeld, J. H. ( 2002 ). Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research, 107 ( D19 ), 4407. https://doi.org/10.1029/2001JD001397 Clark, S. K., Ward, D. S., & Mahowald, N. M. ( 2015 ). The sensitivity of global climate to the episodicity of fire aerosol emissions. Journal of Geophysical Research: Atmospheres, 120, 11,589 – 11,607. https://doi.org/10.1002/2015JD024068 Curry, J. A., Rossow, W. B., Randall, D., & Schramm, J. L. ( 1996, August). Overview of Arctic cloud and radiation characteristics. Journal of Climate, 9 ( 8 ), 1731 – 1764. https://doi.org/10.1175/1520-0442(1996)009%3C1731:OOACAR%3E2.0.CO;2 de Boer, G., Chapman, W., Kay, J. E., Medeiros, B., Shupe, M. D., Vavrus, S., & Walsh, J. ( 2012 ). A characterization of the present‐day Arctic atmosphere in CCSM4. Journal of Climate, 25 ( 8 ), 2676 – 2695. https://doi.org/10.1175/JCLI‐D‐11‐00228.1 Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., & Brandt, R. E. ( 2010 ). Light‐absorbing impurities in Arctic snow. Atmospheric Chemistry and Physics, 10 ( 23 ), 11,647 – 11,680. https://doi.org/10.5194/acp‐10‐11647‐2010 Ettema, J., van den Broeke, M. R., van Meijgaard, E., & van de Berg, W. J. ( 2010 ). Climate of the Greenland ice sheet using a high‐resolution climate model—Part 2: Near‐surface climate and energy balance. The Cryosphere, 4 ( 4 ), 529 – 544. https://doi.org/10.5194/tc‐4‐529‐2010 Flanner, M. G. ( 2013 ). Arctic climate sensitivity to local black carbon. Journal of Geophysical Research: Atmospheres, 118, 1840 – 1851. https://doi.org/10.1002/jgrd.50176 Flanner, M. G., & Zender, C. S. ( 2005 ). Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophysical Research Letters, 32, L06501. https://doi.org/10.1029/2004GL022076 Flanner, M. G., & Zender, C. S. ( 2006 ). Linking snowpack microphysics and albedo evolution. Journal of Geophysical Research, 111, D12208. https://doi.org/10.1029/2005JD006834 Flanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. ( 2007 ). Present‐day climate forcing and response from black carbon in snow. Journal of Geophysical Research, 112, D11202. https://doi.org/10.1029/2006JD008003 Flannigan, M., Cantin, A. S., de Groot, W. J., Wotton, M., Newbery, A., & Gowman, L. M. ( 2013 ). Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294, 54 – 61. https://doi.org/10.1016/j.foreco.2012.10.022 Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., & Gowman, L. M. ( 2009 ). Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18 ( 5 ), 483 – 507. https://doi.org/10.1071/WF08187 Gregory, J. M., Huybrechts, P., & Raper, S. C. B. ( 2004 ). Climatology: Threatened loss of the Greenland ice‐sheet. Nature, 428 ( 6983 ), 616. https://doi.org/10.1038/428616a Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., et al. ( 2008 ). Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. Journal of Climate, 21 ( 2 ), 331 – 341. https://doi.org/10.1175/2007JCLI1964.1 Hansen, J., & Nazarenko, L. ( 2004 ). Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 101 ( 2 ), 423 – 428. https://doi.org/10.1073/pnas.2237157100 Haywood, J. M., & Ramaswamy, V. ( 1998 ). Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. Journal of Geophysical Research, 103 ( D6 ), 6043 – 6058. https://doi.org/10.1029/97JD03426 |
op_rights |
IndexNoFollow |
op_doi |
https://doi.org/10.1029/2017JD02787810.5194/acp‐10‐7017‐201010.5194/gmd‐5‐709‐201210.1016/j.quascirev.2012.11.02910.1126/science.114485610.1029/2012GL05361110.1029/2007GL03028410.1002/2015GL06591210.1016/j.gloplacha.2006.07.02810.1023/A:100530600105510.10 |
container_title |
Journal of Geophysical Research: Atmospheres |
container_volume |
123 |
container_issue |
11 |
container_start_page |
6122 |
op_container_end_page |
6141 |
_version_ |
1774713574594183168 |
spelling |
ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/144656 2023-08-20T04:03:10+02:00 Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow Ward, Jamie L. Flanner, Mark G. Bergin, Mike Dibb, Jack E. Polashenski, Chris M. Soja, Amber J. Thomas, Jennie L. 2018-06-16 application/pdf https://hdl.handle.net/2027.42/144656 https://doi.org/10.1029/2017JD027878 unknown Wiley Periodicals, Inc. Ward, Jamie L.; Flanner, Mark G.; Bergin, Mike; Dibb, Jack E.; Polashenski, Chris M.; Soja, Amber J.; Thomas, Jennie L. (2018). "Modeled Response of Greenland Snowmelt to the Presence of Biomass Burning‐Based Absorbing Aerosols in the Atmosphere and Snow." Journal of Geophysical Research: Atmospheres 123(11): 6122-6141. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/144656 doi:10.1029/2017JD027878 Journal of Geophysical Research: Atmospheres Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., & Landry, C. C. ( 2012 ). Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resources Research, 48, W07521. https://doi.org/10.1029/2012WR011985 Lamarque, J.‐F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klmont, Z., et al. ( 2010 ). Historical (1850‐2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10 ( 15 ), 7017 – 7039. https://doi.org/10.5194/acp‐10‐7017‐2010 Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., et al. ( 2012 ). Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 5 ( 3 ), 709 – 739. https://doi.org/10.5194/gmd‐5‐709‐2012 Marlon, J. R., Bartlein, P. J., Daniau, A.‐L., Harrison, S. P., Maezumi, S. Y., Power, M. J., et al. ( 2013 ). Global biomass burning: A synthesis and review of Holocene paleofire records and their controls. Quaternary Science Reviews, 65, 5 – 25. https://doi.org/10.1016/j.quascirev.2012.11.029 McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., et al. ( 2007 ). 20th‐century industrial black carbon emissions altered Arctic climate forcing. Science, 317 ( 5843 ), 1381 – 1384. https://doi.org/10.1126/science.1144856 Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. ( 2002 ). Climate effects of black carbon aerosols in China and India. Science, 297 ( 5590 ), 2250 – 2253. https://doi.org/10.1126/science.1075159 Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., et al. ( 2012 ). The extreme melt across the Greenland ice sheet in 2012. Geophysical Research Letters, 39, L20502. https://doi.org/10.1029/2012GL053611 Ocko, I. B., Ramaswamy, V., Ginoux, P., Ming, Y., & Horowitz, L. W. ( 2012 ). Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors. Journal of Geophysical Research, 117, D20203. https://doi.org/10.1029/2012JD018019 Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., et al. ( 2010 ). Technical description of version 4.0 of the Community Land Model (CLM), NCAR/TN‐478+STR, National Center for Atmospheric Research, Boulder, CO. Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., et al. ( 2007 ). Impact of disturbed desert soils on duration of mountain snow cover. Geophysical Research Letters, 34, L12502. https://doi.org/10.1029/2007GL030284 Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R., Lai, A. M., et al. ( 2015 ). Neither dust nor black carbon causing apparent albedo decline in Greenland’s dry snow zone: Implications for MODIS C5 surface reflectance. Geophysical Research Letters, 42, 9319 – 9327. https://doi.org/10.1002/2015GL065912 Ramanathan, V., & Carmichael, G. ( 2008, April). Global and regional climate changes due to black carbon. Nature Geoscience, 1 ( 4 ), 221 – 227. https://doi.org/10.1038/ngeo156 Sand, M., Berntsen, T. K., Kay, J. E., Lamarque, J.‐F., Seland, Ø., & Kirkevåg, A. ( 2013 ). The Arctic response to remote and local forcing of black carbon. Atmospheric Chemistry and Physics, 13 ( 1 ), 211 – 224. https://doi.org/10.5194/acp‐13‐211‐2013 Screen, J. A., Deser, C., & Simmonds, I. ( 2012 ). Local and remote controls on observed Arctic warming. Geophysical Research Letters, 39, L10709. https://doi.org/10.1029/2012GL051598 Soja, A. J., Tchebakova, N. M., French, N. H. F., Flannigan, M. D., Shugart, H. H., Stocks, B. J., et al. ( 2007 ). Climate‐induced boreal forest change: Predictions versus current observations. Global and Planetary Change, Special NEESPI Issue, 56 ( 3–4 ), 274 – 296. https://doi.org/10.1016/j.gloplacha.2006.07.028 Spracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., Yevich, R., Flannigan, M. D., & Westerling, A. L. ( 2009 ). Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. Journal of Geophysical Research, 114, D20301. https://doi.org/10.1029/2008JD010966 Stocks, B. J., Fosberg, M. A., Lynham, T. J., Mearns, L., Wotton, B. M., Yang, Q., et al. ( 1998 ). Climate change and forest fire potential in Russian and Canadian boreal forests. Climate Change, 38 ( 1 ), 1 – 13. https://doi.org/10.1023/A:1005306001055 Stohl, A., Andrews, E., Burkhart, J. F., Forster, C., Herber, A., Hoch, S. W., et al. ( 2006 ). Pan‐Arctic enhancements of light absorbing aerosol concentrations due to north American boreal forest fires during summer 2004. Journal of Geophysical Research, 111, D22214. https://doi.org/10.1029/2006JD007216 Strellis, B. M., Bergin, M. H., Dibb, J. E., Sokolik, I., Sheridan, P., Orgen, J. A., et al. ( 2013 ). Aerosol radiative forcing over Central Greenland: Estimates based on field measurements, (Master’s thesis). Retrieved from https://smartech.gatech.edu/bitstream/handle/1853/49063/STRELLIS‐THESIS‐2013.pdf Thomas, J. L., Polashenski, C. M., Soja, A. J., Marelle, L., Casey, K., Choi, H. D., et al. ( 2017 ). Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophysical Research Letters, 44, 7965 – 7974. https://doi.org/10.1002/2017GL073701 Wang, C. ( 2004 ). A modeling study on the climate impacts of black carbon aerosols. Journal of Geophysical Research, 109, D03106. https://doi.org/10.1029/2003JD004084 Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., et al. ( 2011 ). Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter‐spring: Implications for radiative forcing. Atmospheric Chemistry and Physics, 11 ( 23 ), 12,453 – 12,473. https://doi.org/10.5194/acp‐11‐12453‐2011 Wang, Y., Jiang, J. H., Su, H., Choi, Y.‐S., Huang, L., Guo, J., & Yung, Y. L. ( 2018 ). Elucidating the role of anthropogenic aerosols in Arctic Sea ice variations. Journal of Climate, 31 ( 1 ), 99 – 114. https://doi.org/10.1175/JCLI‐D‐17‐0287.1 Warren, S. G., & Wiscombe, W. J. ( 1980 ). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of the Atmospheric Sciences, 37, 2734 – 2745. Ban‐Weiss, G. A., Cao, L., Bala, G., & Caldeira, K. ( 2011 ). Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dynamics, 38 ( 5‐6 ), 897 – 911. https://doi.org/10.1007/s00382‐011‐1052‐y Bond, T. C., Charlson, R. J., & Heintzenburg, J. ( 1998 ). Quantifying the emission of light‐absorbing particles: Measurements tailored to climate studies. Geophysical Research Letters, 25 ( 3 ), 337 – 340. https://doi.org/10.1029/98GL00039 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. ( 2013 ). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118, 5380 – 5552. https://doi.org/10.1002/jgrd.50171 Bory, A. J.‐M., Biscaye, P. E., Piotrowski, A. M., & Steffensen, J. P. ( 2003 ). Regional variability of ice core dust composition and provenance in Greenland. Geochemistry, Geophysics, Geosystems, 4 ( 12 ), 1107. https://doi.org/10.1029/2003GC000627 Chung, S. H., & Seinfeld, J. H. ( 2002 ). Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research, 107 ( D19 ), 4407. https://doi.org/10.1029/2001JD001397 Clark, S. K., Ward, D. S., & Mahowald, N. M. ( 2015 ). The sensitivity of global climate to the episodicity of fire aerosol emissions. Journal of Geophysical Research: Atmospheres, 120, 11,589 – 11,607. https://doi.org/10.1002/2015JD024068 Curry, J. A., Rossow, W. B., Randall, D., & Schramm, J. L. ( 1996, August). Overview of Arctic cloud and radiation characteristics. Journal of Climate, 9 ( 8 ), 1731 – 1764. https://doi.org/10.1175/1520-0442(1996)009%3C1731:OOACAR%3E2.0.CO;2 de Boer, G., Chapman, W., Kay, J. E., Medeiros, B., Shupe, M. D., Vavrus, S., & Walsh, J. ( 2012 ). A characterization of the present‐day Arctic atmosphere in CCSM4. Journal of Climate, 25 ( 8 ), 2676 – 2695. https://doi.org/10.1175/JCLI‐D‐11‐00228.1 Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., & Brandt, R. E. ( 2010 ). Light‐absorbing impurities in Arctic snow. Atmospheric Chemistry and Physics, 10 ( 23 ), 11,647 – 11,680. https://doi.org/10.5194/acp‐10‐11647‐2010 Ettema, J., van den Broeke, M. R., van Meijgaard, E., & van de Berg, W. J. ( 2010 ). Climate of the Greenland ice sheet using a high‐resolution climate model—Part 2: Near‐surface climate and energy balance. The Cryosphere, 4 ( 4 ), 529 – 544. https://doi.org/10.5194/tc‐4‐529‐2010 Flanner, M. G. ( 2013 ). Arctic climate sensitivity to local black carbon. Journal of Geophysical Research: Atmospheres, 118, 1840 – 1851. https://doi.org/10.1002/jgrd.50176 Flanner, M. G., & Zender, C. S. ( 2005 ). Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophysical Research Letters, 32, L06501. https://doi.org/10.1029/2004GL022076 Flanner, M. G., & Zender, C. S. ( 2006 ). Linking snowpack microphysics and albedo evolution. Journal of Geophysical Research, 111, D12208. https://doi.org/10.1029/2005JD006834 Flanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. ( 2007 ). Present‐day climate forcing and response from black carbon in snow. Journal of Geophysical Research, 112, D11202. https://doi.org/10.1029/2006JD008003 Flannigan, M., Cantin, A. S., de Groot, W. J., Wotton, M., Newbery, A., & Gowman, L. M. ( 2013 ). Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294, 54 – 61. https://doi.org/10.1016/j.foreco.2012.10.022 Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., & Gowman, L. M. ( 2009 ). Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18 ( 5 ), 483 – 507. https://doi.org/10.1071/WF08187 Gregory, J. M., Huybrechts, P., & Raper, S. C. B. ( 2004 ). Climatology: Threatened loss of the Greenland ice‐sheet. Nature, 428 ( 6983 ), 616. https://doi.org/10.1038/428616a Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., et al. ( 2008 ). Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. Journal of Climate, 21 ( 2 ), 331 – 341. https://doi.org/10.1175/2007JCLI1964.1 Hansen, J., & Nazarenko, L. ( 2004 ). Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 101 ( 2 ), 423 – 428. https://doi.org/10.1073/pnas.2237157100 Haywood, J. M., & Ramaswamy, V. ( 1998 ). Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. Journal of Geophysical Research, 103 ( D6 ), 6043 – 6058. https://doi.org/10.1029/97JD03426 IndexNoFollow snowmelt light‐absorbing aerosols Greenland Ice Sheet Atmospheric and Oceanic Sciences Science Article 2018 ftumdeepblue https://doi.org/10.1029/2017JD02787810.5194/acp‐10‐7017‐201010.5194/gmd‐5‐709‐201210.1016/j.quascirev.2012.11.02910.1126/science.114485610.1029/2012GL05361110.1029/2007GL03028410.1002/2015GL06591210.1016/j.gloplacha.2006.07.02810.1023/A:100530600105510.10 2023-07-31T21:02:43Z Biomass burning produces smoke aerosols that are emitted into the atmosphere. Some smoke constituents, notably black carbon, are highly effective light‐absorbing aerosols (LAA). Emitted LAA can be transported to high‐albedo regions like the Greenland Ice Sheet (GrIS) and affect local snowmelt. In the summer, the effects of LAA in Greenland are uncertain. To explore how LAA affect GrIS snowmelt and surface energy flux in the summer, we conduct idealized global climate model simulations with perturbed aerosol amounts and properties in the GrIS snow and overlying atmosphere. The in‐snow and atmospheric aerosol burdens we select range from background values measured on the GrIS to unrealistically high values. This helps us explore the linearity of snowmelt response and to achieve high signal‐to‐noise ratios. With LAA operating only in the atmosphere, we find no significant change in snowmelt due to the competing effects of surface dimming and tropospheric warming. Regardless of atmospheric LAA presence, in‐snow black carbon‐equivalent mixing ratios greater than ~60 ng/g produce statistically significant snowmelt increases over much of the GrIS. We find that net surface energy flux changes correspond well to snowmelt changes for all cases. The dominant component of surface energy flux change is solar energy flux, but sensible and longwave energy fluxes respond to temperature changes. Atmospheric LAA dampen the magnitude of solar radiation absorbed by in‐snow LAA when both varieties are simulated. In general, the significant melt and surface energy flux changes we simulate occur with LAA quantities that have never been recorded in Greenland.Key PointsWe compare the effects of in‐snow and atmospheric light‐absorbing aerosols on Greenland’s climateAtmospheric light‐absorbing aerosols warm the troposphere and dim the surface, which causes nonlinear snowmelt changes across GreenlandFor qualitatively similar burdens, snowmelt on Greenland is more sensitive to in‐snow light‐absorbing aerosols than atmospheric aerosols ... Article in Journal/Newspaper Arctic Greenland Ice Sheet The Cryosphere University of Michigan: Deep Blue Greenland Journal of Geophysical Research: Atmospheres 123 11 6122 6141 |