Metacommunities, metaecosystems and the environmental fate of chemical contaminants

Although pollution is a major driver of ecosystem change, models predicting the environmental fate of contaminants suffer from critical uncertainties related to oversimplifying the dynamics of the biological compartment.It is increasingly recognized that contaminant processing is an outcome of ecosy...

Full description

Bibliographic Details
Published in:Journal of Applied Ecology
Main Authors: Schiesari, Luis, Leibold, Mathew A., Burton, G. Allen
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge University Press 2018
Subjects:
Online Access:https://hdl.handle.net/2027.42/143615
https://doi.org/10.1111/1365-2664.13054
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/143615
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic metaecosystems
pollution
migration
biotransport
biovector
dispersal
ecosystem function
ecotoxicology
keystone species
metacommunities
Ecology and Evolutionary Biology
Science
spellingShingle metaecosystems
pollution
migration
biotransport
biovector
dispersal
ecosystem function
ecotoxicology
keystone species
metacommunities
Ecology and Evolutionary Biology
Science
Schiesari, Luis
Leibold, Mathew A.
Burton, G. Allen
Metacommunities, metaecosystems and the environmental fate of chemical contaminants
topic_facet metaecosystems
pollution
migration
biotransport
biovector
dispersal
ecosystem function
ecotoxicology
keystone species
metacommunities
Ecology and Evolutionary Biology
Science
description Although pollution is a major driver of ecosystem change, models predicting the environmental fate of contaminants suffer from critical uncertainties related to oversimplifying the dynamics of the biological compartment.It is increasingly recognized that contaminant processing is an outcome of ecosystem functioning, that ecosystem functioning is contingent on community structure and that community structure is influenced by organismal dispersal. We propose a conceptual organization of the contribution of organismal dispersal to local contaminant fate. Direct dispersal effects occur when the dispersing organism directly couples contaminant stocks in spatially separate ecosystems by transporting contaminants in its biomass. Indirect dispersal effects occur when the dispersing organism indirectly influences contaminant fate via community assembly. This can occur either when the dispersing organism is a contaminant processor or when the dispersing organism alters, via species interactions, the abundance of contaminant biotransporters or processors already established in the ecosystem. The magnitude of direct and indirect dispersal effects is modulated by many factors, including other contaminants. These will influence population growth rates of the dispersing species in the donor ecosystem, or the probability that a dispersing individual reaches the recipient ecosystem.We provide a review of pertinent literature demonstrating that these two mechanisms, and their chemical modulation, are well supported or likely to occur in many natural and human‐modified landscapes. The literature also demonstrates that they can operate in concert with each other.Synthesis and applications. Managed ecosystems thought to be important contaminant and nutrient sinks, such as artificial ponds and constructed wetlands, should be monitored and controlled for in‐and‐out animal movement if contaminant export is found to be relevant. Uncontaminated fishing grounds linked to contaminated sites via movement of dispersing species should be ...
format Article in Journal/Newspaper
author Schiesari, Luis
Leibold, Mathew A.
Burton, G. Allen
author_facet Schiesari, Luis
Leibold, Mathew A.
Burton, G. Allen
author_sort Schiesari, Luis
title Metacommunities, metaecosystems and the environmental fate of chemical contaminants
title_short Metacommunities, metaecosystems and the environmental fate of chemical contaminants
title_full Metacommunities, metaecosystems and the environmental fate of chemical contaminants
title_fullStr Metacommunities, metaecosystems and the environmental fate of chemical contaminants
title_full_unstemmed Metacommunities, metaecosystems and the environmental fate of chemical contaminants
title_sort metacommunities, metaecosystems and the environmental fate of chemical contaminants
publisher Cambridge University Press
publishDate 2018
url https://hdl.handle.net/2027.42/143615
https://doi.org/10.1111/1365-2664.13054
genre Arctic
genre_facet Arctic
op_relation Schiesari, Luis; Leibold, Mathew A.; Burton, G. Allen (2018). "Metacommunities, metaecosystems and the environmental fate of chemical contaminants." Journal of Applied Ecology 55(3): 1553-1563.
0021-8901
1365-2664
https://hdl.handle.net/2027.42/143615
doi:10.1111/1365-2664.13054
Journal of Applied Ecology
Raikow, D. F., Walters, D. M., Fritz, K. M., & Mills, M. A. ( 2011 ). The distance that contaminated aquatic subsidies extend into lake riparian zones. Ecological Applications, 21, 983 – 990. https://doi.org/10.1890/09-1504.1
Marentette, J. R., Tong, S., Wang, G., Sopinka, N. M., Taves, M. D., Koops, M. A., & Balshine, S. ( 2012 ). Behavior as biomarker? Laboratory versus field movement in round goby ( Neogobius melanostomus ) from highly contaminated habitats. Ecotoxicology, 21, 1003 – 1012. https://doi.org/10.1007/s10646-012-0854-y
Massol, F., & Petit, S. ( 2013 ). Interaction networks in agricultural landscape mosaics. Advances in Ecological Research, 49, 291 – 338. https://doi.org/10.1016/B978-0-12-420002-9.00005-6
MEA (Millenium Ecosystem Assessment). ( 2005 ). Chapter 3. Drivers of ecosystem change: Summary chapter. In Current state and trends. Washington, DC: Island Press.
Mitsch, W. J., & Gosselink, J. G. ( 2015 ). Wetlands. Hoboken, NJ: John Wiley and Sons.
Moore, M. T., Kröger, R., & Jackson, C. R. ( 2011 ). The role of aquatic ecosystems in the elimination of pollutants. In F. Sánchez‐Bayo, P. J. van den Brink, & R. M. Mann (Eds.), Ecological impacts of toxic chemicals (pp. 225 – 237 ). Emirate of Sharjah: Bentham Science Publishers.
Muehlbauer, J. D., Collins, S. F., Doyle, M. W., & Tockner, K. ( 2014 ). How wide is a stream? Spatial extent of the potential “stream signature” in terrestrial food webs using meta‐analysis. Ecology, 95, 44 – 55. https://doi.org/10.1890/12-1628.1
National Research Council. ( 2007 ). Sediment dredging at Superfund Megasites: Assessing the effectiveness. Washington, DC: The National Academies Press.
Polis, G. A., Holt, B. A., Menge, B. A., & Winemiller, K. O. ( 1997 ). Toward an integration of landscape and foodweb ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289 – 316. https://doi.org/10.1146/annurev.ecolsys.28.1.289
Relyea, R., & Hoverman, J. ( 2006 ). Assessing the ecology in ecotoxicology: A review and synthesis in freshwater systems. Ecology Letters, 9, 1157 – 1171. https://doi.org/10.1111/j.1461-0248.2006.00966.x
Rohr, J. R., Kerby, J. L., & Sih, A. ( 2006 ). Community ecology as a framework for predicting contaminant effects. Trends in Ecology and Evolution, 21, 606 – 613. https://doi.org/10.1016/j.tree.2006.07.002
Runck, C. ( 2007 ). Macroinvertebrate production and food web energetics in an industrially contaminated stream. Ecological Applications, 17, 740 – 753. https://doi.org/10.1890/05-1026
Sarica, J., Amyot, M., Hare, L., Doyon, M.‐R., & Stanfield, L. W. ( 2004 ). Salmon‐derived mercury and nutrients in a Lake Ontario spawning stream. Limnology and Oceanography, 49, 891 – 899. https://doi.org/10.4319/lo.2004.49.4.0891
Scholtz, A. T., Horrall, R. M., Cooper, J. C., & Hasler, A. D. ( 1976 ). Imprinting to chemical cues: The basis for home stream selection in salmon. Science, 192, 1247 – 1249. https://doi.org/10.1126/science.1273590
Scholz, N. L., Truelove, N. K., French, B. L., Berejikian, B. A., Quinn, T. P., Casillas, E., & Collier, T. K. ( 2000 ). Diazinon disrupts antipredator and homing behaviors in chinook salmon ( Oncorhynchus tshawytscha ). Canadian Journal of Fisheries and Aquatic Sciences, 57, 1911 – 1918. https://doi.org/10.1139/f00-147
State of Colorado, Natural Resource Trustees. ( 2007 ). Natural resource damage assessment plan for the Rocky Mountain Arsenal, Commerce City, Colorado. Retrieved from https://www.colorado.gov/pacific/sites/default/files/HM_RMA-Assess-Plan-Table-of-Contents-List-of-Figures-Tables-Acronyms-and-Abbreviations.pdf (accessed 27 November 2017).
Suhring, R., Diamond, M. L., Scheringer, M., Wong, F., Pucko, M., Stern, G., … Jantunen, L. M. ( 2016 ). Organophosphate esters in the Canadian Arctic: Occurrence, levels and trends. Environmental Science and Technology, 50, 7409 – 7415. https://doi.org/10.1021/acs.est.6b00365
Texas Commission on Environmental Quality. ( 2008 ). The interagency pesticide database ad pesticide occurrence in the state′s aquifers. Retrieved from http://www.tceq.com/assets/public/permitting/watersupply/groundwater/pesticides/ipd_report.pdf (accessed 27 November 2017).
Texas Commission on Environmental Quality. ( 2011 ). Trophic classification of Texas reservoirs. 2010 Texas Water Quality Inventory and 303(d) List.
Tierney, K. B., Baldwin, D. H., Hara, T. J., Ross, P. S., Scholz, N. L., & Kennedy, C. J. ( 2010 ). Olfactory toxicity in fishes. Aquatic Toxicology, 96, 2 – 26. https://doi.org/10.1016/j.aquatox.2009.09.019
Tweedy, B. N., Drenner, R. W., Chumchal, M. M., & Kennedy, J. H. ( 2013 ). Effects of fish on emergent insect‐mediated flux of methyl mercury across a gradient of contamination. Environmental Science and Technology, 47, 1614 – 1619.
US EPA. ( 2015 ). ATTAINS: Water quality reporting database. http://www.epa.gov/waters/ir/; http://ofmpub.epa.gov/waters10/attains_nation_cy.control (accessed 24 January 2015).
Vanderploeg, H. A., Nalepa, T. F., Jude, D. J., Mills, E. L., Holeck, K. T., Liebig, J. R., … Ojaveer, H. ( 2002 ). Dispersal and emerging ecological impacts of Ponto‐Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1209 – 1228. https://doi.org/10.1139/f02-087
Vonesh, J. R., & Buck, J. C. ( 2007 ). Pesticide alters oviposition site selection in gray treefrogs. Oecologia, 154, 219 – 226. https://doi.org/10.1007/s00442-007-0811-2
Walters, D. M., Fritz, K. M., & Otter, R. R. ( 2008 ). The dark side of subsidies: Adult stream insects export organic contaminants to riparian predators. Ecological Applications, 18, 1835 – 1841. https://doi.org/10.1890/08-0354.1
Williamson, S. M., Willis, S. J., & Wright, G. A. ( 2014 ). Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology, 23, 1409 – 1418. https://doi.org/10.1007/s10646-014-1283-x
Wilson, K. A., Magnuson, J. J., Lodge, D. M., Hill, A. M., Kratz, T. K., Perry, W. L., & Willis, T. V. ( 2004 ). A long‐term rusty crayfish ( Orconectes rusticus ) invasion: Dispersal patterns and community change in a north temperate lake. Canadian Journal of Fisheries and Aquatic Sciences, 61, 2255 – 2266. https://doi.org/10.1139/f04-170
Arnot, J. A., Mackay, D., Parkerton, T. F., Zaleski, R. T., & Warren, C. S. ( 2010 ). Multimedia modeling of human exposure to chemical substances: The roles of food web biomagnification and biotransformation. Environmental Toxicolology and Chemistry, 29, 45 – 55. https://doi.org/10.1002/etc.15
Baldwin, D. H., Sandahl, J. F., Labenia, J. S., & Scholz, N. L. ( 2003 ). Sublethal effects of copper on coho salmon: Impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environmental Toxicology and Chemistry, 22, 2266 – 2274. https://doi.org/10.1897/02-428
Blais, J. M., MacDonald, R. W., Mackay, D., Webster, E., Harvey, C., & Smol, J. P. ( 2007 ). Biologically mediated transport of contaminants to aquatic systems. Environmental Science and Technology, 41, 1075 – 1084. https://doi.org/10.1021/es061314a
Bodelier, P. L. E., Stomp, M., Santamaria, L., Klaassen, M., & Laanbroek, H. J. ( 2006 ). Animal‐plant‐microbe interactions: Direct and indirect effects of swan foraging behavior modulate methane cycling in temperate shallow wetlands. Oecologia, 149, 233 – 244. https://doi.org/10.1007/s00442-006-0445-9
Bruner, K. A., Fischer, S. W., & Landrum, P. F. ( 1994 ). The role of the Zebra Mussel, Dreissena polymorpha, in contaminant cycling: II. Zebra Mussel contaminant accumulation from algae and suspended particles, and transfer to the benthic invertebrate, Gammarus fasciatus. Journal of Great Lakes Research, 20, 735 – 750. https://doi.org/10.1016/S0380-1330(94)71191-6
Buckland‐Nicks, A., Hillier, K. N., Avery, T. S., & O′Driscoll, N. J. ( 2014 ). Mercury bioaccumulation in dragonflies (Odonata: Anisoptera): Examination of life stages and body regions. Environmental Toxicology and Chemistry, 33, 2047 – 2054. https://doi.org/10.1002/etc.2653
Burton, G. A. Jr., Giulio, R. D., Costello, D., & Rohr, J. R. ( 2017 ). Slipping through the cracks: Why is the U.S. Environmental Protection Agency not funding extramural research on chemicals in our environment? Environmental Science and Technology, 51, 755 – 756. https://doi.org/10.1021/acs.est.6b05877
Chumchal, M. M., & Drenner, R. W. ( 2015 ). An environmental problem hidden in plain sight? Small human‐made ponds, emergent insects, and mercury contamination in the Great Plains. Environmental Toxicology and Chemistry, 34, 1197 – 1205. https://doi.org/10.1002/etc.2954
Clements, W. H., & Rohr, J. R. ( 2009 ). Community responses to contaminants: Using basic ecological principles to predict ecotoxicological effects. Environmental Toxicology and Chemistry, 28, 1789 – 1800. https://doi.org/10.1897/09-140.1
Compton, J. E., Andersen, C. P., Phillips, D. L., Brooks, J. R., Johnson, M. G., Church, M. R., … Shaff, C. D. ( 2006 ). Ecological and water quality consequences of nutrient addition for salmon restoration in the Pacific Northwest. Frontiers in Ecology and the Environment, 4, 18 – 26. https://doi.org/10.1890/1540-9295(2006)004[0018:EAWQCO]2.0.CO;2
Cristol, D. A., Brasso, R. L., Condon, A. M., Fovargue, R. E., Friedman, S. L., Hallinger, K. K., … White, A. E. ( 2008 ). The movement of aquatic mercury through terrestrial food webs. Science, 320, 335. https://doi.org/10.1126/science.1154082
Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., & Dickinson, R. E., … Zhang, X. ( 2007 ). Couplings between changes in the climate system and biogeochemistry. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Dew, W. A., Wood, C. M., & Pyle, G. G. ( 2012 ). Effects of continuous copper exposure and calcium on the olfactory response of fathead minnows. Environmental Science and Technology, 46, 9019 – 9026. https://doi.org/10.1021/es300670p
Diamond, M. L., Mackay, D., & Welbourn, P. M. ( 1992 ). Models of multi‐media partitioning of multi‐species chemicals: The fugacity/equivalence approach. Chemosphere, 25, 1907 – 1921. https://doi.org/10.1016/0045-6535(92)90030-U
Dingemans, B. J. J., Bakker, E. S., & Bodelier, P. L. E. ( 2011 ). Aquatic herbivores facilitate the emission of methane from wetlands. Ecology, 92, 1166 – 1173. https://doi.org/10.1890/10-1297.1
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., … Middelburg, J. J. ( 2006 ). The global abundance and size distribution of lakes, ponds and impoundments. Limnology and Oceanography, 51, 2388 – 2397. https://doi.org/10.4319/lo.2006.51.5.2388
Elliott, J. E., & Bishop, C. A. ( 2011 ). Cyclodienes and other organochlorine pesticides in birds. In W. N. Beyer, & J. Meador (Eds.), Environmental contaminants in wildlife – interpreting tissue concentrations (pp. 447 – 476 ). Boca Raton, FL: CRC Press.
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/1365-2664.1305410.1890/05-102610.1021/acs.est.6b0036510.1139/f02-08710.1890/1540-9295(2006)004[0018:EAWQCO]2.0.CO;210.1126/science.115408210.4319/lo.2006.51.5.238810.1093/aob/mcp20110.1111/j.1461-0248.2004.00608.x
container_title Journal of Applied Ecology
container_volume 55
container_issue 3
container_start_page 1553
op_container_end_page 1563
_version_ 1774713609578872832
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/143615 2023-08-20T04:03:12+02:00 Metacommunities, metaecosystems and the environmental fate of chemical contaminants Schiesari, Luis Leibold, Mathew A. Burton, G. Allen 2018-05 application/pdf https://hdl.handle.net/2027.42/143615 https://doi.org/10.1111/1365-2664.13054 unknown Cambridge University Press Wiley Periodicals, Inc. Schiesari, Luis; Leibold, Mathew A.; Burton, G. Allen (2018). "Metacommunities, metaecosystems and the environmental fate of chemical contaminants." Journal of Applied Ecology 55(3): 1553-1563. 0021-8901 1365-2664 https://hdl.handle.net/2027.42/143615 doi:10.1111/1365-2664.13054 Journal of Applied Ecology Raikow, D. F., Walters, D. M., Fritz, K. M., & Mills, M. A. ( 2011 ). The distance that contaminated aquatic subsidies extend into lake riparian zones. Ecological Applications, 21, 983 – 990. https://doi.org/10.1890/09-1504.1 Marentette, J. R., Tong, S., Wang, G., Sopinka, N. M., Taves, M. D., Koops, M. A., & Balshine, S. ( 2012 ). Behavior as biomarker? Laboratory versus field movement in round goby ( Neogobius melanostomus ) from highly contaminated habitats. Ecotoxicology, 21, 1003 – 1012. https://doi.org/10.1007/s10646-012-0854-y Massol, F., & Petit, S. ( 2013 ). Interaction networks in agricultural landscape mosaics. Advances in Ecological Research, 49, 291 – 338. https://doi.org/10.1016/B978-0-12-420002-9.00005-6 MEA (Millenium Ecosystem Assessment). ( 2005 ). Chapter 3. Drivers of ecosystem change: Summary chapter. In Current state and trends. Washington, DC: Island Press. Mitsch, W. J., & Gosselink, J. G. ( 2015 ). Wetlands. Hoboken, NJ: John Wiley and Sons. Moore, M. T., Kröger, R., & Jackson, C. R. ( 2011 ). The role of aquatic ecosystems in the elimination of pollutants. In F. Sánchez‐Bayo, P. J. van den Brink, & R. M. Mann (Eds.), Ecological impacts of toxic chemicals (pp. 225 – 237 ). Emirate of Sharjah: Bentham Science Publishers. Muehlbauer, J. D., Collins, S. F., Doyle, M. W., & Tockner, K. ( 2014 ). How wide is a stream? Spatial extent of the potential “stream signature” in terrestrial food webs using meta‐analysis. Ecology, 95, 44 – 55. https://doi.org/10.1890/12-1628.1 National Research Council. ( 2007 ). Sediment dredging at Superfund Megasites: Assessing the effectiveness. Washington, DC: The National Academies Press. Polis, G. A., Holt, B. A., Menge, B. A., & Winemiller, K. O. ( 1997 ). Toward an integration of landscape and foodweb ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289 – 316. https://doi.org/10.1146/annurev.ecolsys.28.1.289 Relyea, R., & Hoverman, J. ( 2006 ). Assessing the ecology in ecotoxicology: A review and synthesis in freshwater systems. Ecology Letters, 9, 1157 – 1171. https://doi.org/10.1111/j.1461-0248.2006.00966.x Rohr, J. R., Kerby, J. L., & Sih, A. ( 2006 ). Community ecology as a framework for predicting contaminant effects. Trends in Ecology and Evolution, 21, 606 – 613. https://doi.org/10.1016/j.tree.2006.07.002 Runck, C. ( 2007 ). Macroinvertebrate production and food web energetics in an industrially contaminated stream. Ecological Applications, 17, 740 – 753. https://doi.org/10.1890/05-1026 Sarica, J., Amyot, M., Hare, L., Doyon, M.‐R., & Stanfield, L. W. ( 2004 ). Salmon‐derived mercury and nutrients in a Lake Ontario spawning stream. Limnology and Oceanography, 49, 891 – 899. https://doi.org/10.4319/lo.2004.49.4.0891 Scholtz, A. T., Horrall, R. M., Cooper, J. C., & Hasler, A. D. ( 1976 ). Imprinting to chemical cues: The basis for home stream selection in salmon. Science, 192, 1247 – 1249. https://doi.org/10.1126/science.1273590 Scholz, N. L., Truelove, N. K., French, B. L., Berejikian, B. A., Quinn, T. P., Casillas, E., & Collier, T. K. ( 2000 ). Diazinon disrupts antipredator and homing behaviors in chinook salmon ( Oncorhynchus tshawytscha ). Canadian Journal of Fisheries and Aquatic Sciences, 57, 1911 – 1918. https://doi.org/10.1139/f00-147 State of Colorado, Natural Resource Trustees. ( 2007 ). Natural resource damage assessment plan for the Rocky Mountain Arsenal, Commerce City, Colorado. Retrieved from https://www.colorado.gov/pacific/sites/default/files/HM_RMA-Assess-Plan-Table-of-Contents-List-of-Figures-Tables-Acronyms-and-Abbreviations.pdf (accessed 27 November 2017). Suhring, R., Diamond, M. L., Scheringer, M., Wong, F., Pucko, M., Stern, G., … Jantunen, L. M. ( 2016 ). Organophosphate esters in the Canadian Arctic: Occurrence, levels and trends. Environmental Science and Technology, 50, 7409 – 7415. https://doi.org/10.1021/acs.est.6b00365 Texas Commission on Environmental Quality. ( 2008 ). The interagency pesticide database ad pesticide occurrence in the state′s aquifers. Retrieved from http://www.tceq.com/assets/public/permitting/watersupply/groundwater/pesticides/ipd_report.pdf (accessed 27 November 2017). Texas Commission on Environmental Quality. ( 2011 ). Trophic classification of Texas reservoirs. 2010 Texas Water Quality Inventory and 303(d) List. Tierney, K. B., Baldwin, D. H., Hara, T. J., Ross, P. S., Scholz, N. L., & Kennedy, C. J. ( 2010 ). Olfactory toxicity in fishes. Aquatic Toxicology, 96, 2 – 26. https://doi.org/10.1016/j.aquatox.2009.09.019 Tweedy, B. N., Drenner, R. W., Chumchal, M. M., & Kennedy, J. H. ( 2013 ). Effects of fish on emergent insect‐mediated flux of methyl mercury across a gradient of contamination. Environmental Science and Technology, 47, 1614 – 1619. US EPA. ( 2015 ). ATTAINS: Water quality reporting database. http://www.epa.gov/waters/ir/; http://ofmpub.epa.gov/waters10/attains_nation_cy.control (accessed 24 January 2015). Vanderploeg, H. A., Nalepa, T. F., Jude, D. J., Mills, E. L., Holeck, K. T., Liebig, J. R., … Ojaveer, H. ( 2002 ). Dispersal and emerging ecological impacts of Ponto‐Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1209 – 1228. https://doi.org/10.1139/f02-087 Vonesh, J. R., & Buck, J. C. ( 2007 ). Pesticide alters oviposition site selection in gray treefrogs. Oecologia, 154, 219 – 226. https://doi.org/10.1007/s00442-007-0811-2 Walters, D. M., Fritz, K. M., & Otter, R. R. ( 2008 ). The dark side of subsidies: Adult stream insects export organic contaminants to riparian predators. Ecological Applications, 18, 1835 – 1841. https://doi.org/10.1890/08-0354.1 Williamson, S. M., Willis, S. J., & Wright, G. A. ( 2014 ). Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology, 23, 1409 – 1418. https://doi.org/10.1007/s10646-014-1283-x Wilson, K. A., Magnuson, J. J., Lodge, D. M., Hill, A. M., Kratz, T. K., Perry, W. L., & Willis, T. V. ( 2004 ). A long‐term rusty crayfish ( Orconectes rusticus ) invasion: Dispersal patterns and community change in a north temperate lake. Canadian Journal of Fisheries and Aquatic Sciences, 61, 2255 – 2266. https://doi.org/10.1139/f04-170 Arnot, J. A., Mackay, D., Parkerton, T. F., Zaleski, R. T., & Warren, C. S. ( 2010 ). Multimedia modeling of human exposure to chemical substances: The roles of food web biomagnification and biotransformation. Environmental Toxicolology and Chemistry, 29, 45 – 55. https://doi.org/10.1002/etc.15 Baldwin, D. H., Sandahl, J. F., Labenia, J. S., & Scholz, N. L. ( 2003 ). Sublethal effects of copper on coho salmon: Impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environmental Toxicology and Chemistry, 22, 2266 – 2274. https://doi.org/10.1897/02-428 Blais, J. M., MacDonald, R. W., Mackay, D., Webster, E., Harvey, C., & Smol, J. P. ( 2007 ). Biologically mediated transport of contaminants to aquatic systems. Environmental Science and Technology, 41, 1075 – 1084. https://doi.org/10.1021/es061314a Bodelier, P. L. E., Stomp, M., Santamaria, L., Klaassen, M., & Laanbroek, H. J. ( 2006 ). Animal‐plant‐microbe interactions: Direct and indirect effects of swan foraging behavior modulate methane cycling in temperate shallow wetlands. Oecologia, 149, 233 – 244. https://doi.org/10.1007/s00442-006-0445-9 Bruner, K. A., Fischer, S. W., & Landrum, P. F. ( 1994 ). The role of the Zebra Mussel, Dreissena polymorpha, in contaminant cycling: II. Zebra Mussel contaminant accumulation from algae and suspended particles, and transfer to the benthic invertebrate, Gammarus fasciatus. Journal of Great Lakes Research, 20, 735 – 750. https://doi.org/10.1016/S0380-1330(94)71191-6 Buckland‐Nicks, A., Hillier, K. N., Avery, T. S., & O′Driscoll, N. J. ( 2014 ). Mercury bioaccumulation in dragonflies (Odonata: Anisoptera): Examination of life stages and body regions. Environmental Toxicology and Chemistry, 33, 2047 – 2054. https://doi.org/10.1002/etc.2653 Burton, G. A. Jr., Giulio, R. D., Costello, D., & Rohr, J. R. ( 2017 ). Slipping through the cracks: Why is the U.S. Environmental Protection Agency not funding extramural research on chemicals in our environment? Environmental Science and Technology, 51, 755 – 756. https://doi.org/10.1021/acs.est.6b05877 Chumchal, M. M., & Drenner, R. W. ( 2015 ). An environmental problem hidden in plain sight? Small human‐made ponds, emergent insects, and mercury contamination in the Great Plains. Environmental Toxicology and Chemistry, 34, 1197 – 1205. https://doi.org/10.1002/etc.2954 Clements, W. H., & Rohr, J. R. ( 2009 ). Community responses to contaminants: Using basic ecological principles to predict ecotoxicological effects. Environmental Toxicology and Chemistry, 28, 1789 – 1800. https://doi.org/10.1897/09-140.1 Compton, J. E., Andersen, C. P., Phillips, D. L., Brooks, J. R., Johnson, M. G., Church, M. R., … Shaff, C. D. ( 2006 ). Ecological and water quality consequences of nutrient addition for salmon restoration in the Pacific Northwest. Frontiers in Ecology and the Environment, 4, 18 – 26. https://doi.org/10.1890/1540-9295(2006)004[0018:EAWQCO]2.0.CO;2 Cristol, D. A., Brasso, R. L., Condon, A. M., Fovargue, R. E., Friedman, S. L., Hallinger, K. K., … White, A. E. ( 2008 ). The movement of aquatic mercury through terrestrial food webs. Science, 320, 335. https://doi.org/10.1126/science.1154082 Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., & Dickinson, R. E., … Zhang, X. ( 2007 ). Couplings between changes in the climate system and biogeochemistry. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. Dew, W. A., Wood, C. M., & Pyle, G. G. ( 2012 ). Effects of continuous copper exposure and calcium on the olfactory response of fathead minnows. Environmental Science and Technology, 46, 9019 – 9026. https://doi.org/10.1021/es300670p Diamond, M. L., Mackay, D., & Welbourn, P. M. ( 1992 ). Models of multi‐media partitioning of multi‐species chemicals: The fugacity/equivalence approach. Chemosphere, 25, 1907 – 1921. https://doi.org/10.1016/0045-6535(92)90030-U Dingemans, B. J. J., Bakker, E. S., & Bodelier, P. L. E. ( 2011 ). Aquatic herbivores facilitate the emission of methane from wetlands. Ecology, 92, 1166 – 1173. https://doi.org/10.1890/10-1297.1 Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., … Middelburg, J. J. ( 2006 ). The global abundance and size distribution of lakes, ponds and impoundments. Limnology and Oceanography, 51, 2388 – 2397. https://doi.org/10.4319/lo.2006.51.5.2388 Elliott, J. E., & Bishop, C. A. ( 2011 ). Cyclodienes and other organochlorine pesticides in birds. In W. N. Beyer, & J. Meador (Eds.), Environmental contaminants in wildlife – interpreting tissue concentrations (pp. 447 – 476 ). Boca Raton, FL: CRC Press. IndexNoFollow metaecosystems pollution migration biotransport biovector dispersal ecosystem function ecotoxicology keystone species metacommunities Ecology and Evolutionary Biology Science Article 2018 ftumdeepblue https://doi.org/10.1111/1365-2664.1305410.1890/05-102610.1021/acs.est.6b0036510.1139/f02-08710.1890/1540-9295(2006)004[0018:EAWQCO]2.0.CO;210.1126/science.115408210.4319/lo.2006.51.5.238810.1093/aob/mcp20110.1111/j.1461-0248.2004.00608.x 2023-07-31T20:38:42Z Although pollution is a major driver of ecosystem change, models predicting the environmental fate of contaminants suffer from critical uncertainties related to oversimplifying the dynamics of the biological compartment.It is increasingly recognized that contaminant processing is an outcome of ecosystem functioning, that ecosystem functioning is contingent on community structure and that community structure is influenced by organismal dispersal. We propose a conceptual organization of the contribution of organismal dispersal to local contaminant fate. Direct dispersal effects occur when the dispersing organism directly couples contaminant stocks in spatially separate ecosystems by transporting contaminants in its biomass. Indirect dispersal effects occur when the dispersing organism indirectly influences contaminant fate via community assembly. This can occur either when the dispersing organism is a contaminant processor or when the dispersing organism alters, via species interactions, the abundance of contaminant biotransporters or processors already established in the ecosystem. The magnitude of direct and indirect dispersal effects is modulated by many factors, including other contaminants. These will influence population growth rates of the dispersing species in the donor ecosystem, or the probability that a dispersing individual reaches the recipient ecosystem.We provide a review of pertinent literature demonstrating that these two mechanisms, and their chemical modulation, are well supported or likely to occur in many natural and human‐modified landscapes. The literature also demonstrates that they can operate in concert with each other.Synthesis and applications. Managed ecosystems thought to be important contaminant and nutrient sinks, such as artificial ponds and constructed wetlands, should be monitored and controlled for in‐and‐out animal movement if contaminant export is found to be relevant. Uncontaminated fishing grounds linked to contaminated sites via movement of dispersing species should be ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Journal of Applied Ecology 55 3 1553 1563