Retrievals of the Far Infrared Surface Emissivity Over the Greenland Plateau Using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS)
The Tropospheric Airborne Fourier Transform Spectrometer measured near surface upwelling and downwelling radiances within the far infrared (FIR) over Greenland during two flights in March 2015. Here we exploit observations from one of these flights to provide in situ estimates of FIR surface emissiv...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Wiley Periodicals, Inc.
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/2027.42/142162 https://doi.org/10.1002/2017JD027328 |
_version_ | 1835010302166433792 |
---|---|
author | Bellisario, Christophe Brindley, Helen E. Murray, Jonathan E. Last, Alan Pickering, Juliet Harlow, R. Chawn Fox, Stuart Fox, Cathryn Newman, Stuart M. Smith, Maureen Anderson, Doug Huang, Xianglei Chen, Xiuhong |
author_facet | Bellisario, Christophe Brindley, Helen E. Murray, Jonathan E. Last, Alan Pickering, Juliet Harlow, R. Chawn Fox, Stuart Fox, Cathryn Newman, Stuart M. Smith, Maureen Anderson, Doug Huang, Xianglei Chen, Xiuhong |
author_sort | Bellisario, Christophe |
collection | Unknown |
description | The Tropospheric Airborne Fourier Transform Spectrometer measured near surface upwelling and downwelling radiances within the far infrared (FIR) over Greenland during two flights in March 2015. Here we exploit observations from one of these flights to provide in situ estimates of FIR surface emissivity, encompassing the range 80–535 cm−1. The flight campaign and instrumental setup are described as well as the retrieval method, including the quality control performed on the observations. The combination of measurement and atmospheric profile uncertainties means that the retrieved surface emissivity has the smallest estimated error over the range 360–535 cm−1 (18.7–27.8 μm), lying between 0.89 and 1 with an associated error that is of the order ±0.06. Between 80 and 360 cm−1, the increasing opacity of the atmosphere, coupled with the uncertainty in the atmospheric state, means that the associated errors are larger and the emissivity values cannot be said to be distinct from 1. These FIR surface emissivity values are, to the best of our knowledge, the first ever from aircraft‐based measurements. We have compared them to a recently developed theoretical database designed to predict the infrared surface emissivity of frozen surfaces. When considering the FIR alone, we are able to match the retrievals within uncertainties. However, when we include contemporaneous retrievals from the mid‐infrared (MIR), no single theoretical representation is able to capture the FIR and MIR behaviors simultaneously. Our results point toward the need for model improvement and further testing, ideally including in situ characterization of the underlying surface conditions.Key PointsRetrievals of far infrared surface emissivity are reported for the first time, exploiting aircraft observations taken over GreenlandThe retrieved emissivity reaches values as low as 0.89 over the range 360–535 cm−1, where the associated uncertainties are smallestSimulations of the surface emissivity are unable to simultaneously match retrievals in the far and ... |
format | Article in Journal/Newspaper |
genre | Arctic Greenland Journal of Glaciology The Cryosphere |
genre_facet | Arctic Greenland Journal of Glaciology The Cryosphere |
geographic | Greenland |
geographic_facet | Greenland |
id | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/142162 |
institution | Open Polar |
language | unknown |
op_collection_id | ftumdeepblue |
op_relation | http://hdl.handle.net/2027.42/142162 doi:10.1002/2017JD027328 Journal of Geophysical Research: Atmospheres Martin, D. H., & Puplett, E. ( 1969 ). Polarised interferometric spectrometry for the millimeter and submillimeter spectrum. Infrared Physics, 10, 105 – 1097. Cox, C. V., Harries, J. E., Taylor, J. P., Green, P. D., Baran, A. J., Pickering, J. C., … Murray, J. ( 2010 ). Measurement and simulation of mid‐ and far‐infrared spectra in the presence of cirrus. Quarterly Journal of the Royal Meteorological Society, 136, 718 – 739. Cox, C. V., Murray, J. E., Taylor, J. P., Green, P. D., Pickering, J. C., Harries, J. E., & Last, A. E. ( 2007 ). Clear‐sky far‐infrared measurements observed with TAFTS during the EAQUATE campaign, September 2004. Quarterly Journal of the Royal Meteorological Society, 133 ( S3 ), 273 – 283. https://doi.org/10.1002/qj.159 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., … Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597. https://doi.org/10.1002/qj.828 Feldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. ( 2014 ). Far‐infrared surface emissivity and climate. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 46 ), 16,297 – 16,302. https://doi.org/10.1073/pnas.1413640111 Fox, C., Green, P. D., Pickering, J. C., & Humpage, N. ( 2015 ). Analysis of far‐infrared spectral radiance observations of the water vapor continuum in the Arctic. Journal of Quantitative Spectroscopy and Radiative Transfer, 155, 57 – 65. https://doi.org/10.1016/j.jqsrt.2015.01.001 Gallet, J.‐C., Domine, F., Zender, C. S., & Picard, G. ( 2009 ). Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. The Cryosphere, 3 ( 2 ), 167 – 182. https://doi.org/10.5194/tc‐3‐167‐2009 GLOBE Task Team, Hastings, D. A., Dunbar, P. K., Elphingstone, G. M., Bootz, M., Murakami, H., … MacDonald, J. S. ( 1999 ). The Global Land One‐kilometer Base Elevation (GLOBE) digital elevation model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, CO. Digital data base on the World Wide Web. Retrieved from http://www.ngdc.noaa.gov/mgg/topo/globe.html and CDROMs. Green, P. D., Newman, S. M., Beeby, R. J., Murray, J. E., Pickering, J. C., & Harries, J. E. ( 2012 ). Recent advances in measurement of the water vapour continuum in the far‐infrared spectral region. Philosophical Transactions of the Royal Society of London. Series A, 370 ( 1968 ), 2637 – 2655. https://doi.org/10.1098/rsta.2011.0263 Guedj, S., Karbou, F., Rabier, F., & Bouchard, A. ( 2010 ). Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 48 ( 4 ), 1976 – 1985. https://doi.org/10.1109/TGRS.2009.2036254 Hall, D. K., Box, J. E., Casey, K. A., Hook, S. J., Shuman, C. A., & Steffen, K. ( 2008 ). Comparison of satellite‐derived and in‐situ observations of ice and snow surface temperatures over Greenland. Remote Sensing of Environment, 112 ( 10 ), 3739 – 3749. https://doi.org/10.1016/j.rse.2008.05.007 Hapke, B. ( 1993 ). Theory of reflectance and emittance spectroscopy, topics in remote sensing. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511524998 Harlow, R. C. ( 2009 ). Millimeter microwave emissivities and effective temperatures of snow‐covered surfaces: Evidence for Lambertian surface scattering. IEEE Transactions on Geoscience and Remote Sensing, 47 ( 7 ), 1957 – 1970. https://doi.org/10.1109/TGRS.2008.2011893 Harries, J., Carli, B., Rizzi, R., Serio, C., Mlynczak, M., Palchetti, L., … Masiello, G. ( 2008 ). The far‐infrared Earth. Reviews of Geophysics, 46, RG4004. Highwood, E. J., Haywood, J. M., Silverstone, M. D., Newman, S. M., & Taylor, J. P. ( 2003 ). Radiative properties and direct effect of Saharan dust measured by the C‐130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum. Journal of Geophysical Research, 108, 8578. https://doi.org/10.1029/2002JD002552 Hori, M., Aoki, T., Tanikawa, T., Motoyoshi, H., Hachikubo, A., Sugiura, K., … Takahashi, F. ( 2006 ). In‐situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window. Remote Sensing of Environment, 100 ( 4 ), 486 – 502. https://doi.org/10.1016/j.rse.2005.11.001 Huang, X., Chen, X., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band‐by‐band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 – 3555. https://doi.org/10.1175/JAS‐D‐15‐0355.1 Knuteson, R., Best, F., DeSlover, D., Osborne, B., Revercomb, H., & Smith, W. Sr. ( 2004 ). Infrared land surface remote sensing using high spectral resolution aircraft observations. Advances in Space Research, 33 ( 7 ), 1114 – 1119. https://doi.org/10.1016/S0273‐1177(03)00752‐X Li, Z.‐L., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., … Yan, G. ( 2013 ). Land surface emissivity retrieval from satellite data. International Journal of RemoteSensing, 34 ( 9‐10 ), 3084 – 3127. https://doi.org/10.1080/01431161.2012.716540 Mätzler, C. ( 2005 ). On the determination of surface emissivity from satellite observations. IEEE Geoscience and Remote Sensing Letters, 2 ( 2 ), 160 – 163. https://doi.org/10.1109/LGRS.2004.842448 Mishchenko, M. I. ( 1994 ). Asymmetry parameters of the phase function for densely packed scattering grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 52 ( 1 ), 95 – 110. https://doi.org/10.1016/0022‐4073(94)90142‐2 Newman, S. M., Larar, A. M., Smith, W. L., Ptashnik, I. V., Jones, R. L., Mead, M. I., … Taylor, J. P. ( 2012 ). The Joint Airborne IASI Validation Experiment: An evaluation of instrument and algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 113 ( 11 ), 1372 – 1390. https://doi.org/10.1016/j.jqsrt.2012.02.030 Newman, S. M., Smith, J. A., Glew, M. D., Rogers, S. M., & Taylor, J. P. ( 2005 ). Temperature and salinity dependence of sea surface emissivity in the thermal infrared. Quarterly Journal of the Royal Meteorological Society, 131 ( 610 ), 2539 – 2557. https://doi.org/10.1256/qj.04.150 Nolin, A. W. ( 2010 ). Recent advances in remote sensing of seasonal snow. Journal of Glaciology, 56 ( 200 ), 1141 – 1150. https://doi.org/10.3189/002214311796406077 Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., … Wagner, G. ( 2013 ). The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4 – 50. https://doi.org/10.1016/j.jqsrt.2013.07.002 Shupe, M. D., Turner, D. D., Walden, V. P., Bennartz, R., Cadeddu, M. P., Castellani, B. B., … Rowe, P. M. ( 2013 ). High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bulletin of the American Meteorological Society, 94 ( 2 ), 169 – 186. https://doi.org/10.1175/BAMS‐D‐11‐00249.1 Thelen, J.‐C., Havemann, S., Newman, S. M., & Taylor, J. P. ( 2009 ). Hyperspectral retrieval of land surface emissivities using ARIES. Quarterly Journal of the Royal Meteorological Society, 135 ( 645 ), 2110 – 2124. https://doi.org/10.1002/qj.520 Thome, K., Biggar, S., & Takashima, T. ( 1999 ). Algorithm theoretical basis document for ASTER level 2B1, surface radiance, and ASTER level 2B5, surface reflectance, Contract NAS5–31 717 Vance, A. K., Abel, S. J., Cotton, R. J., & Woolley, A. M. ( 2015 ). Performance of WVSS‐II hygrometers on the FAAM research aircraft. Atmospheric Measurement Techniques, 8 ( 3 ), 1617 – 1625. https://doi.org/10.5194/amt‐8‐1617‐2015 Wald, A. E. ( 1994 ). Modeling thermal infrared (2–14 μm) reflectance spectra of frost and snow. Journal of Geophysical Research, 99 ( B12 ), 24,241 – 24,250. https://doi.org/10.1029/94JB01560 Allen, G., Illingworth, S. M., O’Shea, S. J., Newman, S., Vance, A., Bauguitte, S. J.‐B., … Taylor, J. P. ( 2014 ). Atmospheric composition and thermodynamic retrievals from the ARIES airborne TIR‐FTS system—Part 2: Validation and results from aircraft campaigns. Atmospheric Measurement Techniques, 7 ( 12 ), 4401 – 4416. https://doi.org/10.5194/amt‐7‐4401‐2014 Canas, T. A., Murray, J. E., Harries, J. E., & Haigh, J. D. ( 1997 ). Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). Satellite Remote Sensing of Clouds and the Atmosphere II, 3220, 91 – 102. Chen, X., Huang, X., & Flanner, M. G. ( 2014 ). Sensitivity of modeled far‐IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties. Geophysical Research Letters, 41, 6530 – 6537. https://doi.org/10.1002/2014GL061216 Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady‐Pereira, K., … Brown, P. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91 ( 2 ), 233 – 244. https://doi.org/10.1016/j.jqsrt.2004.05.058 |
op_rights | IndexNoFollow |
publishDate | 2017 |
publisher | Wiley Periodicals, Inc. |
record_format | openpolar |
spelling | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/142162 2025-06-15T14:17:48+00:00 Retrievals of the Far Infrared Surface Emissivity Over the Greenland Plateau Using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) Bellisario, Christophe Brindley, Helen E. Murray, Jonathan E. Last, Alan Pickering, Juliet Harlow, R. Chawn Fox, Stuart Fox, Cathryn Newman, Stuart M. Smith, Maureen Anderson, Doug Huang, Xianglei Chen, Xiuhong 2017-11-27 application/pdf http://hdl.handle.net/2027.42/142162 https://doi.org/10.1002/2017JD027328 unknown Wiley Periodicals, Inc. Cambridge University Press http://hdl.handle.net/2027.42/142162 doi:10.1002/2017JD027328 Journal of Geophysical Research: Atmospheres Martin, D. H., & Puplett, E. ( 1969 ). Polarised interferometric spectrometry for the millimeter and submillimeter spectrum. Infrared Physics, 10, 105 – 1097. Cox, C. V., Harries, J. E., Taylor, J. P., Green, P. D., Baran, A. J., Pickering, J. C., … Murray, J. ( 2010 ). Measurement and simulation of mid‐ and far‐infrared spectra in the presence of cirrus. Quarterly Journal of the Royal Meteorological Society, 136, 718 – 739. Cox, C. V., Murray, J. E., Taylor, J. P., Green, P. D., Pickering, J. C., Harries, J. E., & Last, A. E. ( 2007 ). Clear‐sky far‐infrared measurements observed with TAFTS during the EAQUATE campaign, September 2004. Quarterly Journal of the Royal Meteorological Society, 133 ( S3 ), 273 – 283. https://doi.org/10.1002/qj.159 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., … Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597. https://doi.org/10.1002/qj.828 Feldman, D. R., Collins, W. D., Pincus, R., Huang, X., & Chen, X. ( 2014 ). Far‐infrared surface emissivity and climate. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 46 ), 16,297 – 16,302. https://doi.org/10.1073/pnas.1413640111 Fox, C., Green, P. D., Pickering, J. C., & Humpage, N. ( 2015 ). Analysis of far‐infrared spectral radiance observations of the water vapor continuum in the Arctic. Journal of Quantitative Spectroscopy and Radiative Transfer, 155, 57 – 65. https://doi.org/10.1016/j.jqsrt.2015.01.001 Gallet, J.‐C., Domine, F., Zender, C. S., & Picard, G. ( 2009 ). Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. The Cryosphere, 3 ( 2 ), 167 – 182. https://doi.org/10.5194/tc‐3‐167‐2009 GLOBE Task Team, Hastings, D. A., Dunbar, P. K., Elphingstone, G. M., Bootz, M., Murakami, H., … MacDonald, J. S. ( 1999 ). The Global Land One‐kilometer Base Elevation (GLOBE) digital elevation model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, CO. Digital data base on the World Wide Web. Retrieved from http://www.ngdc.noaa.gov/mgg/topo/globe.html and CDROMs. Green, P. D., Newman, S. M., Beeby, R. J., Murray, J. E., Pickering, J. C., & Harries, J. E. ( 2012 ). Recent advances in measurement of the water vapour continuum in the far‐infrared spectral region. Philosophical Transactions of the Royal Society of London. Series A, 370 ( 1968 ), 2637 – 2655. https://doi.org/10.1098/rsta.2011.0263 Guedj, S., Karbou, F., Rabier, F., & Bouchard, A. ( 2010 ). Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 48 ( 4 ), 1976 – 1985. https://doi.org/10.1109/TGRS.2009.2036254 Hall, D. K., Box, J. E., Casey, K. A., Hook, S. J., Shuman, C. A., & Steffen, K. ( 2008 ). Comparison of satellite‐derived and in‐situ observations of ice and snow surface temperatures over Greenland. Remote Sensing of Environment, 112 ( 10 ), 3739 – 3749. https://doi.org/10.1016/j.rse.2008.05.007 Hapke, B. ( 1993 ). Theory of reflectance and emittance spectroscopy, topics in remote sensing. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511524998 Harlow, R. C. ( 2009 ). Millimeter microwave emissivities and effective temperatures of snow‐covered surfaces: Evidence for Lambertian surface scattering. IEEE Transactions on Geoscience and Remote Sensing, 47 ( 7 ), 1957 – 1970. https://doi.org/10.1109/TGRS.2008.2011893 Harries, J., Carli, B., Rizzi, R., Serio, C., Mlynczak, M., Palchetti, L., … Masiello, G. ( 2008 ). The far‐infrared Earth. Reviews of Geophysics, 46, RG4004. Highwood, E. J., Haywood, J. M., Silverstone, M. D., Newman, S. M., & Taylor, J. P. ( 2003 ). Radiative properties and direct effect of Saharan dust measured by the C‐130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum. Journal of Geophysical Research, 108, 8578. https://doi.org/10.1029/2002JD002552 Hori, M., Aoki, T., Tanikawa, T., Motoyoshi, H., Hachikubo, A., Sugiura, K., … Takahashi, F. ( 2006 ). In‐situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window. Remote Sensing of Environment, 100 ( 4 ), 486 – 502. https://doi.org/10.1016/j.rse.2005.11.001 Huang, X., Chen, X., Zhou, D. K., & Liu, X. ( 2016 ). An observationally based global band‐by‐band surface emissivity dataset for climate and weather simulations. Journal of the Atmospheric Sciences, 73 ( 9 ), 3541 – 3555. https://doi.org/10.1175/JAS‐D‐15‐0355.1 Knuteson, R., Best, F., DeSlover, D., Osborne, B., Revercomb, H., & Smith, W. Sr. ( 2004 ). Infrared land surface remote sensing using high spectral resolution aircraft observations. Advances in Space Research, 33 ( 7 ), 1114 – 1119. https://doi.org/10.1016/S0273‐1177(03)00752‐X Li, Z.‐L., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., … Yan, G. ( 2013 ). Land surface emissivity retrieval from satellite data. International Journal of RemoteSensing, 34 ( 9‐10 ), 3084 – 3127. https://doi.org/10.1080/01431161.2012.716540 Mätzler, C. ( 2005 ). On the determination of surface emissivity from satellite observations. IEEE Geoscience and Remote Sensing Letters, 2 ( 2 ), 160 – 163. https://doi.org/10.1109/LGRS.2004.842448 Mishchenko, M. I. ( 1994 ). Asymmetry parameters of the phase function for densely packed scattering grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 52 ( 1 ), 95 – 110. https://doi.org/10.1016/0022‐4073(94)90142‐2 Newman, S. M., Larar, A. M., Smith, W. L., Ptashnik, I. V., Jones, R. L., Mead, M. I., … Taylor, J. P. ( 2012 ). The Joint Airborne IASI Validation Experiment: An evaluation of instrument and algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 113 ( 11 ), 1372 – 1390. https://doi.org/10.1016/j.jqsrt.2012.02.030 Newman, S. M., Smith, J. A., Glew, M. D., Rogers, S. M., & Taylor, J. P. ( 2005 ). Temperature and salinity dependence of sea surface emissivity in the thermal infrared. Quarterly Journal of the Royal Meteorological Society, 131 ( 610 ), 2539 – 2557. https://doi.org/10.1256/qj.04.150 Nolin, A. W. ( 2010 ). Recent advances in remote sensing of seasonal snow. Journal of Glaciology, 56 ( 200 ), 1141 – 1150. https://doi.org/10.3189/002214311796406077 Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., … Wagner, G. ( 2013 ). The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4 – 50. https://doi.org/10.1016/j.jqsrt.2013.07.002 Shupe, M. D., Turner, D. D., Walden, V. P., Bennartz, R., Cadeddu, M. P., Castellani, B. B., … Rowe, P. M. ( 2013 ). High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bulletin of the American Meteorological Society, 94 ( 2 ), 169 – 186. https://doi.org/10.1175/BAMS‐D‐11‐00249.1 Thelen, J.‐C., Havemann, S., Newman, S. M., & Taylor, J. P. ( 2009 ). Hyperspectral retrieval of land surface emissivities using ARIES. Quarterly Journal of the Royal Meteorological Society, 135 ( 645 ), 2110 – 2124. https://doi.org/10.1002/qj.520 Thome, K., Biggar, S., & Takashima, T. ( 1999 ). Algorithm theoretical basis document for ASTER level 2B1, surface radiance, and ASTER level 2B5, surface reflectance, Contract NAS5–31 717 Vance, A. K., Abel, S. J., Cotton, R. J., & Woolley, A. M. ( 2015 ). Performance of WVSS‐II hygrometers on the FAAM research aircraft. Atmospheric Measurement Techniques, 8 ( 3 ), 1617 – 1625. https://doi.org/10.5194/amt‐8‐1617‐2015 Wald, A. E. ( 1994 ). Modeling thermal infrared (2–14 μm) reflectance spectra of frost and snow. Journal of Geophysical Research, 99 ( B12 ), 24,241 – 24,250. https://doi.org/10.1029/94JB01560 Allen, G., Illingworth, S. M., O’Shea, S. J., Newman, S., Vance, A., Bauguitte, S. J.‐B., … Taylor, J. P. ( 2014 ). Atmospheric composition and thermodynamic retrievals from the ARIES airborne TIR‐FTS system—Part 2: Validation and results from aircraft campaigns. Atmospheric Measurement Techniques, 7 ( 12 ), 4401 – 4416. https://doi.org/10.5194/amt‐7‐4401‐2014 Canas, T. A., Murray, J. E., Harries, J. E., & Haigh, J. D. ( 1997 ). Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). Satellite Remote Sensing of Clouds and the Atmosphere II, 3220, 91 – 102. Chen, X., Huang, X., & Flanner, M. G. ( 2014 ). Sensitivity of modeled far‐IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties. Geophysical Research Letters, 41, 6530 – 6537. https://doi.org/10.1002/2014GL061216 Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady‐Pereira, K., … Brown, P. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91 ( 2 ), 233 – 244. https://doi.org/10.1016/j.jqsrt.2004.05.058 IndexNoFollow surface emissivity far infrared Atmospheric and Oceanic Sciences Science Article 2017 ftumdeepblue 2025-06-04T05:59:26Z The Tropospheric Airborne Fourier Transform Spectrometer measured near surface upwelling and downwelling radiances within the far infrared (FIR) over Greenland during two flights in March 2015. Here we exploit observations from one of these flights to provide in situ estimates of FIR surface emissivity, encompassing the range 80–535 cm−1. The flight campaign and instrumental setup are described as well as the retrieval method, including the quality control performed on the observations. The combination of measurement and atmospheric profile uncertainties means that the retrieved surface emissivity has the smallest estimated error over the range 360–535 cm−1 (18.7–27.8 μm), lying between 0.89 and 1 with an associated error that is of the order ±0.06. Between 80 and 360 cm−1, the increasing opacity of the atmosphere, coupled with the uncertainty in the atmospheric state, means that the associated errors are larger and the emissivity values cannot be said to be distinct from 1. These FIR surface emissivity values are, to the best of our knowledge, the first ever from aircraft‐based measurements. We have compared them to a recently developed theoretical database designed to predict the infrared surface emissivity of frozen surfaces. When considering the FIR alone, we are able to match the retrievals within uncertainties. However, when we include contemporaneous retrievals from the mid‐infrared (MIR), no single theoretical representation is able to capture the FIR and MIR behaviors simultaneously. Our results point toward the need for model improvement and further testing, ideally including in situ characterization of the underlying surface conditions.Key PointsRetrievals of far infrared surface emissivity are reported for the first time, exploiting aircraft observations taken over GreenlandThe retrieved emissivity reaches values as low as 0.89 over the range 360–535 cm−1, where the associated uncertainties are smallestSimulations of the surface emissivity are unable to simultaneously match retrievals in the far and ... Article in Journal/Newspaper Arctic Greenland Journal of Glaciology The Cryosphere Unknown Greenland |
spellingShingle | surface emissivity far infrared Atmospheric and Oceanic Sciences Science Bellisario, Christophe Brindley, Helen E. Murray, Jonathan E. Last, Alan Pickering, Juliet Harlow, R. Chawn Fox, Stuart Fox, Cathryn Newman, Stuart M. Smith, Maureen Anderson, Doug Huang, Xianglei Chen, Xiuhong Retrievals of the Far Infrared Surface Emissivity Over the Greenland Plateau Using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) |
title | Retrievals of the Far Infrared Surface Emissivity Over the Greenland Plateau Using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) |
title_full | Retrievals of the Far Infrared Surface Emissivity Over the Greenland Plateau Using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) |
title_fullStr | Retrievals of the Far Infrared Surface Emissivity Over the Greenland Plateau Using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) |
title_full_unstemmed | Retrievals of the Far Infrared Surface Emissivity Over the Greenland Plateau Using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) |
title_short | Retrievals of the Far Infrared Surface Emissivity Over the Greenland Plateau Using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) |
title_sort | retrievals of the far infrared surface emissivity over the greenland plateau using the tropospheric airborne fourier transform spectrometer (tafts) |
topic | surface emissivity far infrared Atmospheric and Oceanic Sciences Science |
topic_facet | surface emissivity far infrared Atmospheric and Oceanic Sciences Science |
url | http://hdl.handle.net/2027.42/142162 https://doi.org/10.1002/2017JD027328 |