Disparity, diversity, and duplications in the Caryophyllales

Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/141874/1/nph14772_am.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/141874/2/nph14772.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/141874/3/nph14772-sup-0001-SupInfo.pdf

Bibliographic Details
Published in:American Journal of Physical Anthropology
Main Authors: Smith, Stephen A., Brown, Joseph W., Yang, Ya, Bruenn, Riva, Drummond, Chloe P., Brockington, Samuel F., Walker, Joseph F., Last, Noah, Douglas, Norman A., Moore, Michael J.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2018
Subjects:
Online Access:https://hdl.handle.net/2027.42/141874
https://doi.org/10.1111/nph.14772
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/141874
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Caryophyllales
phylogenomics
duplications
diversification rates
climatic occupancy
Natural Resources and Environment
Science
spellingShingle Caryophyllales
phylogenomics
duplications
diversification rates
climatic occupancy
Natural Resources and Environment
Science
Smith, Stephen A.
Brown, Joseph W.
Yang, Ya
Bruenn, Riva
Drummond, Chloe P.
Brockington, Samuel F.
Walker, Joseph F.
Last, Noah
Douglas, Norman A.
Moore, Michael J.
Disparity, diversity, and duplications in the Caryophyllales
topic_facet Caryophyllales
phylogenomics
duplications
diversification rates
climatic occupancy
Natural Resources and Environment
Science
description Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/141874/1/nph14772_am.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/141874/2/nph14772.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/141874/3/nph14772-sup-0001-SupInfo.pdf
format Article in Journal/Newspaper
author Smith, Stephen A.
Brown, Joseph W.
Yang, Ya
Bruenn, Riva
Drummond, Chloe P.
Brockington, Samuel F.
Walker, Joseph F.
Last, Noah
Douglas, Norman A.
Moore, Michael J.
author_facet Smith, Stephen A.
Brown, Joseph W.
Yang, Ya
Bruenn, Riva
Drummond, Chloe P.
Brockington, Samuel F.
Walker, Joseph F.
Last, Noah
Douglas, Norman A.
Moore, Michael J.
author_sort Smith, Stephen A.
title Disparity, diversity, and duplications in the Caryophyllales
title_short Disparity, diversity, and duplications in the Caryophyllales
title_full Disparity, diversity, and duplications in the Caryophyllales
title_fullStr Disparity, diversity, and duplications in the Caryophyllales
title_full_unstemmed Disparity, diversity, and duplications in the Caryophyllales
title_sort disparity, diversity, and duplications in the caryophyllales
publisher Wiley Periodicals, Inc.
publishDate 2018
url https://hdl.handle.net/2027.42/141874
https://doi.org/10.1111/nph.14772
genre Arctic
genre_facet Arctic
op_relation Smith, Stephen A.; Brown, Joseph W.; Yang, Ya; Bruenn, Riva; Drummond, Chloe P.; Brockington, Samuel F.; Walker, Joseph F.; Last, Noah; Douglas, Norman A.; Moore, Michael J. (2018). "Disparity, diversity, and duplications in the Caryophyllales." New Phytologist 217(2): 836-854.
0028-646X
1469-8137
https://hdl.handle.net/2027.42/141874
doi:10.1111/nph.14772
New Phytologist
Smith SA, Beaulieu JM, Donoghue MJ. 2009. Mega‐phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary Biology 9: 37.
Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401 – 437.
Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, Fitzjohn RG, Alfaro ME, Harmon LJ. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30: 2216 – 2218.
Puttick MN, Clark J, Donoghue P. 2015. Size is not everything: rates of genome size evolution, not C‐value, correlate with speciation in angiosperms. Proceedings of the Royal Society of London B: Biological sciences 282: 20152289.
Sanderson MJ. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301 – 302.
Schranz E, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD radiation lag‐time model. Current Opinion in Plant Biology 15: 147 – 153.
Schubert I, Vu GTH. 2016. Genome stability and evolution: attempting a holistic view. Trends in Plant Sciences 21: 749 – 757.
Schuster TM, Setaro SD, Kron KA. 2013. Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi‐pacific Muehlenbeckia. PLoS ONE 8: e61261.
Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ. 2011. Understanding angiosperm diversification using small and large phylogenetic trees. American Journal of Botany 98: 404 – 414.
Smith SA, Donoghue MJ. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86 – 89.
Smith SA, Moore MJ, Brown JW, Yang Y. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology 15: 150.
Smith SA, O’Meara BC. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689 – 2690.
Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. 2014. Polyploidy and novelty: Gottlieb’s legacy. Philosophical Transactions of the Royal Society of London B: Biological Sciences 369: 20130351.
Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio‐Rodriguez NF, Walker JB, Moore MJ, Carlsward BS et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 – 730.
Soltis PS, Soltis DS. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, USA 97: 7051 – 7057.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics 30: 1312 – 1313.
Storchová Z, Breneman A, Cande J, Dunn J, Burbank K, O’toole E, Pellman D. 2006. Genome‐wide genetic analysis of polyploidy in yeast. Nature 443: 541.
Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34: W609 – W612.
Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytologist 207: 454 – 467.
Thulin M, Moore AJ, El‐Seedi H, Larsson A, Christin P‐A, Edwards EJ. 2016. Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. Taxon 65: 775 – 793.
Valente LM, Britton AW, Powell MP, Papadopulos AST, Burgoyne PM, Savolainen V. 2014. Correlates of hyperdiversity in southern African ice plants (Aizoaceae). Botanical Journal of the Linnean Society 174: 110 – 129.
Walker JF, Yang Y, Moore MJ, Mikenas J, Timoneda A, Brockington SF, Smith SA. 2017. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. American Journal of Botany 104: 858 – 867.
Weiss H, Dobes C, Schneeweiss GM, Greimler J. 2002. Occurrence of tetraploid and hexaploid cytotypes between and within populations in Dianthus sect. Plumaria (Caryophyllaceae). New Phytologist 156: 85 – 94.
Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875 – 13879.
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586 – 1591.
Yang Y, Moore MJ, Brockington SF, Mikenas J, Olivieri J, Walker JF, Smith SA. 2017. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. bioRxiv doi:10.1101/143529.
Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK‐S, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y et al. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Molecular Biology and Evolution 32: 2001 – 2014.
Zetter R, Hofmann CC, Draxler I, Durango de Cabrera J, Del MVergel M, Vervoorst F. 1999. A rich middle Eocene microflora at Arroyo de los Mineros, near Cañadón Beta, NE Tierra del Fuego province, Argentina. Abhandlungen der Geologischen Bundesanstalt 56: 439 – 460.
Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences, USA 106: 13410 – 13414.
Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proceedings of the National Academy of Sciences, USA 108: 8379 – 8384.
Arrigo N, Barker MS. 2012. Rarely successful polyploids and their legacy in plants genomes. Current Opinion in Plant Biology 15: 140 – 146.
Barker MS, Husband BC, Pires JC. 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. American Journal of Botany 103: 1139 – 1145.
Barker MS, Vogel H, Schranz ME. 2009. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biology and Evolution 1: 391 – 399.
Bell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re‐revisited. American Journal of Botany 97: 1296 – 1303.
Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R. 2004. Polyploidy in arctic plants. Biological Journal of the Linnean Society 82: 521 – 536.
Levin DA. 1983. Polyploidy and novelty in flowering plants. American Naturalist 122: 1 – 25.
Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS. 2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. International Journal of Plant Sciences 170: 627 – 643.
Brockington SF, Yang Y, Gandia‐Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GK, Moore MJ, Smith SA. 2015. Lineage‐specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist 207: 1170 – 1180.
Brown JW, Walker JF, Smith SA. 2017. phyx: phylogenetic tools for Unix. Bioinformatics 33: 1886 – 1888.
Burnham KP, Anderson DR. 2002. Model selection and multimodel inference. New York, NY, USA: Springer.
Carolin RC. 1954. Stomatal size, density and morphology in the genus Dianthus. Kew Bulletin 9: 251 – 258.
Cevallos‐Ferriz SRS, Estrada‐Ruiz E, Perez‐Hernandez BR. 2008. Phytolaccaceae infructescence from Cerro del Pueblo formation, upper Cretaceous (late Campanian), Coahuila, Mexico. American Journal of Botany 95: 77 – 83.
Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 – 20.
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H et al. 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research 27: 885 – 896.
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/nph.1477210.1101/143529
container_title American Journal of Physical Anthropology
container_volume 156
container_start_page 98
op_container_end_page 115
_version_ 1774713603611426816
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/141874 2023-08-20T04:03:12+02:00 Disparity, diversity, and duplications in the Caryophyllales Smith, Stephen A. Brown, Joseph W. Yang, Ya Bruenn, Riva Drummond, Chloe P. Brockington, Samuel F. Walker, Joseph F. Last, Noah Douglas, Norman A. Moore, Michael J. 2018-01 application/pdf https://hdl.handle.net/2027.42/141874 https://doi.org/10.1111/nph.14772 unknown Wiley Periodicals, Inc. Springer Smith, Stephen A.; Brown, Joseph W.; Yang, Ya; Bruenn, Riva; Drummond, Chloe P.; Brockington, Samuel F.; Walker, Joseph F.; Last, Noah; Douglas, Norman A.; Moore, Michael J. (2018). "Disparity, diversity, and duplications in the Caryophyllales." New Phytologist 217(2): 836-854. 0028-646X 1469-8137 https://hdl.handle.net/2027.42/141874 doi:10.1111/nph.14772 New Phytologist Smith SA, Beaulieu JM, Donoghue MJ. 2009. Mega‐phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary Biology 9: 37. Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401 – 437. Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, Fitzjohn RG, Alfaro ME, Harmon LJ. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30: 2216 – 2218. Puttick MN, Clark J, Donoghue P. 2015. Size is not everything: rates of genome size evolution, not C‐value, correlate with speciation in angiosperms. Proceedings of the Royal Society of London B: Biological sciences 282: 20152289. Sanderson MJ. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301 – 302. Schranz E, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD radiation lag‐time model. Current Opinion in Plant Biology 15: 147 – 153. Schubert I, Vu GTH. 2016. Genome stability and evolution: attempting a holistic view. Trends in Plant Sciences 21: 749 – 757. Schuster TM, Setaro SD, Kron KA. 2013. Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi‐pacific Muehlenbeckia. PLoS ONE 8: e61261. Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ. 2011. Understanding angiosperm diversification using small and large phylogenetic trees. American Journal of Botany 98: 404 – 414. Smith SA, Donoghue MJ. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86 – 89. Smith SA, Moore MJ, Brown JW, Yang Y. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology 15: 150. Smith SA, O’Meara BC. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689 – 2690. Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. 2014. Polyploidy and novelty: Gottlieb’s legacy. Philosophical Transactions of the Royal Society of London B: Biological Sciences 369: 20130351. Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio‐Rodriguez NF, Walker JB, Moore MJ, Carlsward BS et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 – 730. Soltis PS, Soltis DS. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, USA 97: 7051 – 7057. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics 30: 1312 – 1313. Storchová Z, Breneman A, Cande J, Dunn J, Burbank K, O’toole E, Pellman D. 2006. Genome‐wide genetic analysis of polyploidy in yeast. Nature 443: 541. Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34: W609 – W612. Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytologist 207: 454 – 467. Thulin M, Moore AJ, El‐Seedi H, Larsson A, Christin P‐A, Edwards EJ. 2016. Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. Taxon 65: 775 – 793. Valente LM, Britton AW, Powell MP, Papadopulos AST, Burgoyne PM, Savolainen V. 2014. Correlates of hyperdiversity in southern African ice plants (Aizoaceae). Botanical Journal of the Linnean Society 174: 110 – 129. Walker JF, Yang Y, Moore MJ, Mikenas J, Timoneda A, Brockington SF, Smith SA. 2017. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. American Journal of Botany 104: 858 – 867. Weiss H, Dobes C, Schneeweiss GM, Greimler J. 2002. Occurrence of tetraploid and hexaploid cytotypes between and within populations in Dianthus sect. Plumaria (Caryophyllaceae). New Phytologist 156: 85 – 94. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875 – 13879. Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586 – 1591. Yang Y, Moore MJ, Brockington SF, Mikenas J, Olivieri J, Walker JF, Smith SA. 2017. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. bioRxiv doi:10.1101/143529. Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK‐S, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y et al. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Molecular Biology and Evolution 32: 2001 – 2014. Zetter R, Hofmann CC, Draxler I, Durango de Cabrera J, Del MVergel M, Vervoorst F. 1999. A rich middle Eocene microflora at Arroyo de los Mineros, near Cañadón Beta, NE Tierra del Fuego province, Argentina. Abhandlungen der Geologischen Bundesanstalt 56: 439 – 460. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences, USA 106: 13410 – 13414. Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proceedings of the National Academy of Sciences, USA 108: 8379 – 8384. Arrigo N, Barker MS. 2012. Rarely successful polyploids and their legacy in plants genomes. Current Opinion in Plant Biology 15: 140 – 146. Barker MS, Husband BC, Pires JC. 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. American Journal of Botany 103: 1139 – 1145. Barker MS, Vogel H, Schranz ME. 2009. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biology and Evolution 1: 391 – 399. Bell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re‐revisited. American Journal of Botany 97: 1296 – 1303. Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R. 2004. Polyploidy in arctic plants. Biological Journal of the Linnean Society 82: 521 – 536. Levin DA. 1983. Polyploidy and novelty in flowering plants. American Naturalist 122: 1 – 25. Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS. 2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. International Journal of Plant Sciences 170: 627 – 643. Brockington SF, Yang Y, Gandia‐Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GK, Moore MJ, Smith SA. 2015. Lineage‐specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist 207: 1170 – 1180. Brown JW, Walker JF, Smith SA. 2017. phyx: phylogenetic tools for Unix. Bioinformatics 33: 1886 – 1888. Burnham KP, Anderson DR. 2002. Model selection and multimodel inference. New York, NY, USA: Springer. Carolin RC. 1954. Stomatal size, density and morphology in the genus Dianthus. Kew Bulletin 9: 251 – 258. Cevallos‐Ferriz SRS, Estrada‐Ruiz E, Perez‐Hernandez BR. 2008. Phytolaccaceae infructescence from Cerro del Pueblo formation, upper Cretaceous (late Campanian), Coahuila, Mexico. American Journal of Botany 95: 77 – 83. Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 – 20. Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H et al. 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research 27: 885 – 896. IndexNoFollow Caryophyllales phylogenomics duplications diversification rates climatic occupancy Natural Resources and Environment Science Article 2018 ftumdeepblue https://doi.org/10.1111/nph.1477210.1101/143529 2023-07-31T20:38:30Z Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/141874/1/nph14772_am.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/141874/2/nph14772.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/141874/3/nph14772-sup-0001-SupInfo.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue American Journal of Physical Anthropology 156 98 115