Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data

This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high‐resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclone...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Zarzycki, Colin M., Thatcher, Diana R., Jablonowski, Christiane
Format: Article in Journal/Newspaper
Language:unknown
Published: Météo‐France 2017
Subjects:
Online Access:https://hdl.handle.net/2027.42/136754
https://doi.org/10.1002/2016MS000775
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/136754
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic detection
high resolution
tracking
tropical cyclones
modeling
Geological Sciences
Science
spellingShingle detection
high resolution
tracking
tropical cyclones
modeling
Geological Sciences
Science
Zarzycki, Colin M.
Thatcher, Diana R.
Jablonowski, Christiane
Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data
topic_facet detection
high resolution
tracking
tropical cyclones
modeling
Geological Sciences
Science
description This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high‐resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable‐resolution Community Atmosphere Model (CAM) at two different resolutions (ΔX∼55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, ΔX∼38 km), and the ERA‐Interim Reanalysis (ERA‐I, ΔX∼80 km). The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA‐I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High‐resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold‐core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.Key PointsAn objective detection technique for tracking tropical cyclone extratropical transition in gridded climate data is describedObjectively calculated extratropical transition climatology in high‐resolution reanalyses closely match observational studiesTropical cyclones in CAM take too long to undergo extratropical transition highlighting model biases requiring further investigation Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/136754/1/jame20355_am.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/136754/2/jame20355.pdf
format Article in Journal/Newspaper
author Zarzycki, Colin M.
Thatcher, Diana R.
Jablonowski, Christiane
author_facet Zarzycki, Colin M.
Thatcher, Diana R.
Jablonowski, Christiane
author_sort Zarzycki, Colin M.
title Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data
title_short Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data
title_full Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data
title_fullStr Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data
title_full_unstemmed Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data
title_sort objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data
publisher Météo‐France
publishDate 2017
url https://hdl.handle.net/2027.42/136754
https://doi.org/10.1002/2016MS000775
genre North Atlantic
genre_facet North Atlantic
op_relation Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane (2017). "Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data." Journal of Advances in Modeling Earth Systems 9(1): 130-148.
1942-2466
https://hdl.handle.net/2027.42/136754
doi:10.1002/2016MS000775
Journal of Advances in Modeling Earth Systems
Taylor, M., J. Tribbia, and M. Iskandarani ( 1997 ), The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130 ( 1 ), 92 – 108, doi:10.1006/jcph.1996.5554.
Sinclair, M. R. ( 1993 ), Synoptic‐scale diagnosis of the extratropical transition of a southwest Pacific tropical cyclone, Mon. Weather Rev., 121 ( 4 ), 941 – 960, doi:10.1175/1520-0493(1993)121<0941:SSDOTE>2.0.CO;2.
Sinclair, M. R. ( 2002 ), Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes, Mon. Weather Rev., 130 ( 3 ), 590 – 609, doi:10.1175/1520-0493(2002)130<0590:ETOSPT>2.0.CO;2.
Song, J., J. Han, and Y. Wang ( 2011 ), Cyclone phase space characteristics of the extratropical transitioning tropical cyclones over the western North Pacific, Acta Meteorol. Sin., 25 ( 1 ), 78 – 90, doi:10.1007/s13351-011-0006-y.
Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.‐E. Demory ( 2013 ), Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution, J. Clim., 26 ( 1 ), 133 – 152, doi:10.1175/JCLI-D-12-00012.1.
Studholme, J., K. I. Hodges, and C. M. Brierley ( 2015 ), Objective determination of the extratropical transition of tropical cyclones in the Northern Hemisphere, Tellus, Ser. A, 67, doi:10.3402/tellusa.v67.24474.
Taylor, M. A., and A. Fournier ( 2010 ), A compatible and conservative spectral element method on unstructured grids, J. Comput. Phys., 229 ( 17 ), 5879 – 5895, doi:10.1016/j.jcp.2010.04.008.
Ullrich, P. A., and M. A. Taylor ( 2015 ), Arbitrary‐order conservative and consistent remapping and a theory of linear maps: Part I, Mon. Weather Rev., 143 ( 6 ), 2419 – 2440, doi:10.1175/MWR-D-14-00343.1.
Ullrich, P. A., and C. M. Zarzycki ( 2016 ), Tempestextremes: A framework for scale‐insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-217, in press.
Ullrich, P. A., D. Devendran, and H. Johansen ( 2016 ), Arbitrary‐order conservative and consistent remapping and a theory of linear maps: Part II, Mon. Weather Rev., 144 ( 4 ), 1529 – 1549, doi:10.1175/MWR-D-15-0301.1.
Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes ( 2007 ), Objectively determined resolution‐dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses, J. Clim., 20 ( 10 ), 2307 – 2314, doi:10.1175/JCLI4074.1.
Walsh, K. J. E., et al. ( 2015 ), Hurricanes and climate: The U.S. CLIVAR working group on hurricanes, Bull. Am. Meteorol. Soc., 96 ( 6 ), 997 – 1017, doi:10.1175/BAMS-D-13-00242.1.
Wehner, M. F., et al. ( 2014 ), The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1, J. Adv. Model. Earth Syst., 6, 980 – 997, doi:10.1002/2013MS000276.
Wood, K. M., and E. A. Ritchie ( 2014 ), A 40‐year climatology of extratropical transition in the eastern North Pacific, J. Clim., 27 ( 15 ), 5999 – 6015, doi:10.1175/JCLI-D-13-00645.1.
Zarzycki, C. M. ( 2016 ), Tropical cyclone climatology biases associated with prescribed sea surface temperatures in high‐resolution global atmospheric experiments, J. Clim., 29, 8589 – 8610, doi:10.1175/JCLI-D-16-0273.1.
Zarzycki, C. M., and C. Jablonowski ( 2014 ), A multidecadal simulation of Atlantic tropical cyclones using a variable‐resolution global atmospheric general circulation model, J. Adv. Model. Earth Syst., 6, 805 – 828, doi:10.1002/2014MS000352.
Zarzycki, C. M., C. Jablonowski, and M. A. Taylor ( 2014a ), Using variable‐resolution meshes to model tropical cyclones in the Community Atmosphere Model, Mon. Weather Rev., 142 ( 3 ), 1221 – 1239, doi:10.1175/MWR-D-13-00179.1.
Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich ( 2014b ), Aquaplanet experiments using CAM’s variable‐resolution dynamical core, J. Clim., 27, 5481 – 5503, doi:10.1175/JCLI-D-14-00004.1.
Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor ( 2015 ), Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model, J. Clim., 28 ( 7 ), 2777 – 2803, doi:10.1175/JCLI-D-14-00599.1.
Zarzycki, C. M., K. A. Reed, J. T. Bacmeister, A. P. Craig, S. C. Bates, and N. A. Rosenbloom ( 2016 ), Impact of surface coupling grids on tropical cyclone extremes in high‐resolution atmospheric simulations, Geosci. Model Dev., 9 ( 2 ), 779 – 788, doi:10.5194/gmd-9-779-2016.
Zhao, M., I. M. Held, S.‐J. Lin, and G. A. Vecchi ( 2009 ), Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50‐km resolution GCM, J. Clim., 22 ( 24 ), 6653 – 6678, doi:10.1175/2009JCLI3049.1.
Zhao, M., I. M. Held, and S.‐J. Lin ( 2012 ), Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM, J. Atmos. Sci., 69 ( 7 ), 2272 – 2283, doi:10.1175/JAS-D-11-0238.1.
Anwender, D., P. A. Harr, and S. C. Jones ( 2008 ), Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies, Mon. Weather Rev., 136 ( 9 ), 3226 – 3247, doi:10.1175/2008MWR2249.1.
Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale ( 2014 ), Exploratory high‐resolution climate simulations using the Community Atmosphere Model (CAM), J. Clim., 27 ( 9 ), 3073 – 3099, doi:10.1175/JCLI-D-13-00387.1.
Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.‐J. Luo, and T. Yamagata ( 2007 ), How may tropical cyclones change in a warmer climate?, Tellus, Ser. A, 59 ( 4 ), 539 – 561, doi:10.1111/j.1600-0870.2007.00251.x.
Brown, D. P. ( 2013 ), Tropical cyclone report: Hurricane Nadine, Tech. Rep. #AL142012, Natl. Hurricane Cent., 19, Miami, Fla.
Dee, D. P., et al. ( 2011 ), The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137 ( 656 ), 553 – 597, doi:10.1002/qj.828.
Dennis, J. M., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St‐Cyr, M. A. Taylor, and P. H. Worley ( 2012 ), CAM‐SE: A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Performance Comput. Appl., 26 ( 1 ), 74 – 89, doi:10.1177/1094342011428142.
DiMego, G. J., and L. F. Bosart ( 1982 ), The transformation of Tropical Storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations, Mon. Weather Rev., 110 ( 5 ), 385 – 411, doi:10.1175/1520-0493(1982)110<0385:TTOTSA>2.0.CO;2.
Evans, C., and R. E. Hart ( 2008 ), Analysis of the wind field evolution associated with the Extratropical Transition of Bonnie (1998), Mon. Weather Rev., 136 ( 6 ), 2047 – 2065, doi:10.1175/2007MWR2051.1.
Evans, J. L., and R. E. Hart ( 2003 ), Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones, Mon. Weather Rev., 131 ( 5 ), 909 – 925, doi:10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.
Foley, G., and B. Hanstrum ( 1994 ), The capture of tropical cyclones by cold fronts off the west coast of Australia, Weather Forecast., 9 ( 4 ), 577 – 592, doi:10.1175/1520-0434(1994)009<0577:TCOTCB>2.0.CO;2.
Gates, W. L. ( 1992 ), AMIP: The atmospheric model intercomparison project, Bull. Am. Meteorol. Soc., 73 ( 12 ), 1962 – 1970, doi:10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.
Gleckler, P. J. (Ed.) ( 2004 ), The Second Phase of the Atmospheric Model Intercomparison Project (AMIP2): Toward Innovative Model Diagnostics, 253 pp., Météo‐France, Toulouse, France.
Goldenberg, S. B., and L. J. Shapiro ( 1996 ), Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity, J. Clim., 9 ( 6 ), 1169 – 1187, doi:10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.
Harr, P. A., and R. L. Elsberry ( 2000 ), Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process, Mon. Weather Rev., 128 ( 8 ), 2613 – 2633, doi:10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2.
Harr, P. A., R. L. Elsberry, and T. F. Hogan ( 2000 ), Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics, Mon. Weather Rev., 128 ( 8 ), 2634 – 2653, doi:10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2.
Hart, R. E. ( 2003 ), A cyclone phase space derived from thermal wind and thermal asymmetry, Mon. Weather Rev., 131 ( 4 ), 585 – 616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.
Hart, R. E., and J. L. Evans ( 2001 ), A climatology of the extratropical transition of Atlantic tropical cyclones, J. Clim., 14 ( 4 ), 546 – 564, doi:10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.
Hart, R. E., J. L. Evans, and C. Evans ( 2006 ), Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution, Mon. Weather Rev., 134 ( 2 ), 553 – 578, doi:10.1175/MWR3082.1.
Holton, J. R. ( 2004 ), An Introduction to Dynamic Meteorology, 535 pp., Elsevier, New York.
Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski ( 2008 ), A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model, J. Clim., 21 ( 19 ), 5145 – 5153, doi:10.1175/2008JCLI2292.1.
Jarvinen, B., C. Neumann, and M. Davis ( 1984 ), A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses, Tech. Memo. NWS NHC 22, Natl. Oceanic Atmos. Admin., Miama, Fla.
Jones, S. C., et al. ( 2003 ), The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions, Weather Forecast., 18 ( 6 ), 1052 – 1092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.
Kitabatake, N. ( 2011 ), Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space, J. Meteorol. Soc. Jpn., 89 ( 4 ), 309 – 325, doi:10.2151/jmsj.2011-402.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2016MS00077510.1006/jcph.1996.555410.1175/1520-0493(1993)121<0941:SSDOTE>2.0.CO;210.1175/1520-0493(2002)130<0590:ETOSPT>2.0.CO;210.1007/s13351-011-0006-y10.1175/JCLI-D-12-00012.110.3402/tellusa.v67.2447410.1016/j.jcp.2010.04.00810.
container_title Journal of Advances in Modeling Earth Systems
container_volume 9
container_issue 1
container_start_page 130
op_container_end_page 148
_version_ 1774720774630801408
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/136754 2023-08-20T04:08:29+02:00 Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data Zarzycki, Colin M. Thatcher, Diana R. Jablonowski, Christiane 2017-03 application/pdf https://hdl.handle.net/2027.42/136754 https://doi.org/10.1002/2016MS000775 unknown Météo‐France Wiley Periodicals, Inc. Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane (2017). "Objective tropical cyclone extratropical transition detection in high‐resolution reanalysis and climate model data." Journal of Advances in Modeling Earth Systems 9(1): 130-148. 1942-2466 https://hdl.handle.net/2027.42/136754 doi:10.1002/2016MS000775 Journal of Advances in Modeling Earth Systems Taylor, M., J. Tribbia, and M. Iskandarani ( 1997 ), The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130 ( 1 ), 92 – 108, doi:10.1006/jcph.1996.5554. Sinclair, M. R. ( 1993 ), Synoptic‐scale diagnosis of the extratropical transition of a southwest Pacific tropical cyclone, Mon. Weather Rev., 121 ( 4 ), 941 – 960, doi:10.1175/1520-0493(1993)121<0941:SSDOTE>2.0.CO;2. Sinclair, M. R. ( 2002 ), Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes, Mon. Weather Rev., 130 ( 3 ), 590 – 609, doi:10.1175/1520-0493(2002)130<0590:ETOSPT>2.0.CO;2. Song, J., J. Han, and Y. Wang ( 2011 ), Cyclone phase space characteristics of the extratropical transitioning tropical cyclones over the western North Pacific, Acta Meteorol. Sin., 25 ( 1 ), 78 – 90, doi:10.1007/s13351-011-0006-y. Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.‐E. Demory ( 2013 ), Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution, J. Clim., 26 ( 1 ), 133 – 152, doi:10.1175/JCLI-D-12-00012.1. Studholme, J., K. I. Hodges, and C. M. Brierley ( 2015 ), Objective determination of the extratropical transition of tropical cyclones in the Northern Hemisphere, Tellus, Ser. A, 67, doi:10.3402/tellusa.v67.24474. Taylor, M. A., and A. Fournier ( 2010 ), A compatible and conservative spectral element method on unstructured grids, J. Comput. Phys., 229 ( 17 ), 5879 – 5895, doi:10.1016/j.jcp.2010.04.008. Ullrich, P. A., and M. A. Taylor ( 2015 ), Arbitrary‐order conservative and consistent remapping and a theory of linear maps: Part I, Mon. Weather Rev., 143 ( 6 ), 2419 – 2440, doi:10.1175/MWR-D-14-00343.1. Ullrich, P. A., and C. M. Zarzycki ( 2016 ), Tempestextremes: A framework for scale‐insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-217, in press. Ullrich, P. A., D. Devendran, and H. Johansen ( 2016 ), Arbitrary‐order conservative and consistent remapping and a theory of linear maps: Part II, Mon. Weather Rev., 144 ( 4 ), 1529 – 1549, doi:10.1175/MWR-D-15-0301.1. Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes ( 2007 ), Objectively determined resolution‐dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses, J. Clim., 20 ( 10 ), 2307 – 2314, doi:10.1175/JCLI4074.1. Walsh, K. J. E., et al. ( 2015 ), Hurricanes and climate: The U.S. CLIVAR working group on hurricanes, Bull. Am. Meteorol. Soc., 96 ( 6 ), 997 – 1017, doi:10.1175/BAMS-D-13-00242.1. Wehner, M. F., et al. ( 2014 ), The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1, J. Adv. Model. Earth Syst., 6, 980 – 997, doi:10.1002/2013MS000276. Wood, K. M., and E. A. Ritchie ( 2014 ), A 40‐year climatology of extratropical transition in the eastern North Pacific, J. Clim., 27 ( 15 ), 5999 – 6015, doi:10.1175/JCLI-D-13-00645.1. Zarzycki, C. M. ( 2016 ), Tropical cyclone climatology biases associated with prescribed sea surface temperatures in high‐resolution global atmospheric experiments, J. Clim., 29, 8589 – 8610, doi:10.1175/JCLI-D-16-0273.1. Zarzycki, C. M., and C. Jablonowski ( 2014 ), A multidecadal simulation of Atlantic tropical cyclones using a variable‐resolution global atmospheric general circulation model, J. Adv. Model. Earth Syst., 6, 805 – 828, doi:10.1002/2014MS000352. Zarzycki, C. M., C. Jablonowski, and M. A. Taylor ( 2014a ), Using variable‐resolution meshes to model tropical cyclones in the Community Atmosphere Model, Mon. Weather Rev., 142 ( 3 ), 1221 – 1239, doi:10.1175/MWR-D-13-00179.1. Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich ( 2014b ), Aquaplanet experiments using CAM’s variable‐resolution dynamical core, J. Clim., 27, 5481 – 5503, doi:10.1175/JCLI-D-14-00004.1. Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor ( 2015 ), Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model, J. Clim., 28 ( 7 ), 2777 – 2803, doi:10.1175/JCLI-D-14-00599.1. Zarzycki, C. M., K. A. Reed, J. T. Bacmeister, A. P. Craig, S. C. Bates, and N. A. Rosenbloom ( 2016 ), Impact of surface coupling grids on tropical cyclone extremes in high‐resolution atmospheric simulations, Geosci. Model Dev., 9 ( 2 ), 779 – 788, doi:10.5194/gmd-9-779-2016. Zhao, M., I. M. Held, S.‐J. Lin, and G. A. Vecchi ( 2009 ), Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50‐km resolution GCM, J. Clim., 22 ( 24 ), 6653 – 6678, doi:10.1175/2009JCLI3049.1. Zhao, M., I. M. Held, and S.‐J. Lin ( 2012 ), Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM, J. Atmos. Sci., 69 ( 7 ), 2272 – 2283, doi:10.1175/JAS-D-11-0238.1. Anwender, D., P. A. Harr, and S. C. Jones ( 2008 ), Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies, Mon. Weather Rev., 136 ( 9 ), 3226 – 3247, doi:10.1175/2008MWR2249.1. Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale ( 2014 ), Exploratory high‐resolution climate simulations using the Community Atmosphere Model (CAM), J. Clim., 27 ( 9 ), 3073 – 3099, doi:10.1175/JCLI-D-13-00387.1. Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.‐J. Luo, and T. Yamagata ( 2007 ), How may tropical cyclones change in a warmer climate?, Tellus, Ser. A, 59 ( 4 ), 539 – 561, doi:10.1111/j.1600-0870.2007.00251.x. Brown, D. P. ( 2013 ), Tropical cyclone report: Hurricane Nadine, Tech. Rep. #AL142012, Natl. Hurricane Cent., 19, Miami, Fla. Dee, D. P., et al. ( 2011 ), The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137 ( 656 ), 553 – 597, doi:10.1002/qj.828. Dennis, J. M., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St‐Cyr, M. A. Taylor, and P. H. Worley ( 2012 ), CAM‐SE: A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Performance Comput. Appl., 26 ( 1 ), 74 – 89, doi:10.1177/1094342011428142. DiMego, G. J., and L. F. Bosart ( 1982 ), The transformation of Tropical Storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations, Mon. Weather Rev., 110 ( 5 ), 385 – 411, doi:10.1175/1520-0493(1982)110<0385:TTOTSA>2.0.CO;2. Evans, C., and R. E. Hart ( 2008 ), Analysis of the wind field evolution associated with the Extratropical Transition of Bonnie (1998), Mon. Weather Rev., 136 ( 6 ), 2047 – 2065, doi:10.1175/2007MWR2051.1. Evans, J. L., and R. E. Hart ( 2003 ), Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones, Mon. Weather Rev., 131 ( 5 ), 909 – 925, doi:10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2. Foley, G., and B. Hanstrum ( 1994 ), The capture of tropical cyclones by cold fronts off the west coast of Australia, Weather Forecast., 9 ( 4 ), 577 – 592, doi:10.1175/1520-0434(1994)009<0577:TCOTCB>2.0.CO;2. Gates, W. L. ( 1992 ), AMIP: The atmospheric model intercomparison project, Bull. Am. Meteorol. Soc., 73 ( 12 ), 1962 – 1970, doi:10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2. Gleckler, P. J. (Ed.) ( 2004 ), The Second Phase of the Atmospheric Model Intercomparison Project (AMIP2): Toward Innovative Model Diagnostics, 253 pp., Météo‐France, Toulouse, France. Goldenberg, S. B., and L. J. Shapiro ( 1996 ), Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity, J. Clim., 9 ( 6 ), 1169 – 1187, doi:10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2. Harr, P. A., and R. L. Elsberry ( 2000 ), Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process, Mon. Weather Rev., 128 ( 8 ), 2613 – 2633, doi:10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2. Harr, P. A., R. L. Elsberry, and T. F. Hogan ( 2000 ), Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics, Mon. Weather Rev., 128 ( 8 ), 2634 – 2653, doi:10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2. Hart, R. E. ( 2003 ), A cyclone phase space derived from thermal wind and thermal asymmetry, Mon. Weather Rev., 131 ( 4 ), 585 – 616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2. Hart, R. E., and J. L. Evans ( 2001 ), A climatology of the extratropical transition of Atlantic tropical cyclones, J. Clim., 14 ( 4 ), 546 – 564, doi:10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2. Hart, R. E., J. L. Evans, and C. Evans ( 2006 ), Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution, Mon. Weather Rev., 134 ( 2 ), 553 – 578, doi:10.1175/MWR3082.1. Holton, J. R. ( 2004 ), An Introduction to Dynamic Meteorology, 535 pp., Elsevier, New York. Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski ( 2008 ), A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model, J. Clim., 21 ( 19 ), 5145 – 5153, doi:10.1175/2008JCLI2292.1. Jarvinen, B., C. Neumann, and M. Davis ( 1984 ), A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses, Tech. Memo. NWS NHC 22, Natl. Oceanic Atmos. Admin., Miama, Fla. Jones, S. C., et al. ( 2003 ), The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions, Weather Forecast., 18 ( 6 ), 1052 – 1092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2. Kitabatake, N. ( 2011 ), Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space, J. Meteorol. Soc. Jpn., 89 ( 4 ), 309 – 325, doi:10.2151/jmsj.2011-402. IndexNoFollow detection high resolution tracking tropical cyclones modeling Geological Sciences Science Article 2017 ftumdeepblue https://doi.org/10.1002/2016MS00077510.1006/jcph.1996.555410.1175/1520-0493(1993)121<0941:SSDOTE>2.0.CO;210.1175/1520-0493(2002)130<0590:ETOSPT>2.0.CO;210.1007/s13351-011-0006-y10.1175/JCLI-D-12-00012.110.3402/tellusa.v67.2447410.1016/j.jcp.2010.04.00810. 2023-07-31T21:12:32Z This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high‐resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable‐resolution Community Atmosphere Model (CAM) at two different resolutions (ΔX∼55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, ΔX∼38 km), and the ERA‐Interim Reanalysis (ERA‐I, ΔX∼80 km). The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA‐I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High‐resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold‐core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.Key PointsAn objective detection technique for tracking tropical cyclone extratropical transition in gridded climate data is describedObjectively calculated extratropical transition climatology in high‐resolution reanalyses closely match observational studiesTropical cyclones in CAM take too long to undergo extratropical transition highlighting model biases requiring further investigation Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/136754/1/jame20355_am.pdf https://deepblue.lib.umich.edu/bitstream/2027.42/136754/2/jame20355.pdf Article in Journal/Newspaper North Atlantic University of Michigan: Deep Blue Journal of Advances in Modeling Earth Systems 9 1 130 148