Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda

The warm climate of Bermuda today is modulated by the nearby presence of the Gulf Stream current. However, iceberg scours in the Florida Strait and the presence of ice‐rafted debris in Bermuda Rise sediments indicate that, during the last deglaciation, icebergs discharged from the Laurentide Ice She...

Full description

Bibliographic Details
Main Authors: Winkelstern, Ian Z., Rowe, Mark P., Lohmann, Kyger C., Defliese, William F., Petersen, Sierra V., Brewer, Aaron W.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2017
Subjects:
Online Access:http://hdl.handle.net/2027.42/136369
https://doi.org/10.1002/2016PA003014
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/136369
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Bermuda
Last Interglacial
paleoclimate
Heinrich events
clumped isotopes
Atmospheric and Oceanic Sciences
Science
spellingShingle Bermuda
Last Interglacial
paleoclimate
Heinrich events
clumped isotopes
Atmospheric and Oceanic Sciences
Science
Winkelstern, Ian Z.
Rowe, Mark P.
Lohmann, Kyger C.
Defliese, William F.
Petersen, Sierra V.
Brewer, Aaron W.
Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda
topic_facet Bermuda
Last Interglacial
paleoclimate
Heinrich events
clumped isotopes
Atmospheric and Oceanic Sciences
Science
description The warm climate of Bermuda today is modulated by the nearby presence of the Gulf Stream current. However, iceberg scours in the Florida Strait and the presence of ice‐rafted debris in Bermuda Rise sediments indicate that, during the last deglaciation, icebergs discharged from the Laurentide Ice Sheet traveled as far south as subtropical latitudes. We present evidence that an event of similar magnitude affected the subtropics during the Last Interglacial, potentially due to melting of the Greenland Ice Sheet. Using the clumped isotope paleothermometer, we found temperatures ~10°C colder and seawater δ18O values ~2‰ lower than modern in Last Interglacial Cittarium pica shells from Grape Bay, Bermuda. In contrast, Last Interglacial shells from Rocky Bay, Bermuda, record temperatures only slightly colder and seawater δ18O values similar to modern, likely representing more typical Last Interglacial conditions in Bermuda outside of a meltwater event. The significantly colder ocean temperatures observed in Grape Bay samples illustrate the extreme sensitivity of Bermudian climate to broad‐scale ocean circulation changes. They indicate routine meltwater transport in the North Atlantic to near‐equatorial latitudes, which would likely have resulted in disruption of the Atlantic Meridional Overturning Circulation. These data demonstrate that future melting of the Greenland Ice Sheet, a potential source of the Last Interglacial meltwater event, could have dramatic climate effects outside of the high latitudes.Key PointsWe used the clumped isotope thermometer to measure temperature and seawater δ18O in Bermuda during the Last InterglacialAt one locality we found cold temperatures and negative seawater δ18O values indicative of meltwater reaching subtropical latitudesThe source of this meltwater may have been the Greenland Ice Sheet, which is sensitive to future global warming Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/136369/1/palo20392-sup-0001-Supplementary.pdf ...
format Article in Journal/Newspaper
author Winkelstern, Ian Z.
Rowe, Mark P.
Lohmann, Kyger C.
Defliese, William F.
Petersen, Sierra V.
Brewer, Aaron W.
author_facet Winkelstern, Ian Z.
Rowe, Mark P.
Lohmann, Kyger C.
Defliese, William F.
Petersen, Sierra V.
Brewer, Aaron W.
author_sort Winkelstern, Ian Z.
title Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda
title_short Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda
title_full Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda
title_fullStr Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda
title_full_unstemmed Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda
title_sort meltwater pulse recorded in last interglacial mollusk shells from bermuda
publisher Wiley Periodicals, Inc.
publishDate 2017
url http://hdl.handle.net/2027.42/136369
https://doi.org/10.1002/2016PA003014
long_lat ENVELOPE(69.177,69.177,-49.559,-49.559)
geographic Greenland
Rocky Bay
geographic_facet Greenland
Rocky Bay
genre Greenland
Ice Sheet
North Atlantic
genre_facet Greenland
Ice Sheet
North Atlantic
op_relation Winkelstern, Ian Z.; Rowe, Mark P.; Lohmann, Kyger C.; Defliese, William F.; Petersen, Sierra V.; Brewer, Aaron W. (2017). "Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda." Paleoceanography 32(2): 132-145.
0883-8305
1944-9186
http://hdl.handle.net/2027.42/136369
doi:10.1002/2016PA003014
Paleoceanography
Rohling, E. J., K. Grant, C. Hemleben, M. Siddall, B. A. A. Hoogakker, M. Bolshaw, and M. Kucera ( 2008 ), High rates of sea‐level rise during the Last Interglacial period, Nat. Geosci., 1, 38 – 42.
Passey, B. H., and G. A. Henkes ( 2012 ), Carbonate clumped isotope bond reordering and geospeedometry, Earth Planet. Sci. Lett., 351–352, 223 – 236.
Petersen, S. V., and D. P. Schrag ( 2015 ), Antarctic ice growth before and after the Eocene‐Oligocene transition: New estimates from clumped isotope paleothermometry, Paleoceanography, 30, 1305 – 1317, doi:10.1002/2014PA002769.
Petersen, S. V., I. Z. Winkelstern, K. C. Lohmann, and K. W. Meyer ( 2016a ), The effects of Porapak (™) trap temperature on δ 18 O, δ 13 C, and Δ 47 values in preparing samples for clumped isotope analysis, Rapid Commun. Mass Spectrom., 30, 1 – 10, doi:10.1002/rcm.7438.
Petersen, S. V., C. R. Tabor, K. C. Lohmann, C. J. Poulsen, K. W. Meyer, S. J. Carpenter, J. M. Erickson, K. K. S. Matsunaga, S. Y. Smith, and N. D. Sheldon ( 2016b ), Temperature and salinity of the Late Cretaceous Western Interior Seaway, Geology, 44, 903 – 906.
Rahmstorf, S. ( 2002 ), Ocean circulation and climate during the past 120,000 years, Nature, 419, 207 – 214, doi:10.1038/nature01090.
Rowe, M. P., and C. S. Bristow ( 2015 ), Sea‐level controls on carbonate beaches and coastal dunes (eolianite): Lessons from Pleistocene Bermuda, Geol. Soc. Am. Bull., 127, 1645 – 1665, doi:10.1130/B31237.1.
Rowe, M. P., K. A. I. Wainer, C. S. Bristow, and A. L. Thomas ( 2014 ), Anomalous MIS 7 sea level recorded on Bermuda, Quat. Sci. Rev., 90, 47 – 59.
Ruddiman, W. F. ( 1977 ), Late Quaternary depostion of ice‐rafted sand in the subpolar North Atlantic (lat 40° to 65°N), Geol. Soc. Am. Bull., 88, 1813 – 1827.
Schaefer, J. M., R. C. Finkel, G. Balco, R. B. Alley, M. W. Caffee, J. P. Briner, N. E. Young, A. J. Gow, and R. Schwartz ( 2016 ), Greenland was nearly ice‐free for extended periods during the Pleistocene, Nature, 540, 252 – 255.
Schauble, E. A., P. Ghosh, and J. M. Eiler ( 2006 ), Preferential formation of 13 C‐ 18 O bonds in carbonate minerals, estimated using first‐principles lattice dynamics, Geochim. Cosmochim. Acta, 70, 2510 – 2529.
Schmidt, G. A., G. R. Bigg, and E. J. Rohling ( 1999 ), Global Seawater Oxygen‐18 Database v1.21. [Available at http://data.giss.nasa.gov/o18data/.]
Schöne, B. R., and D. M. Surge ( 2012 ), Bivalve sclerochronology and geochemistry, in Part N, Bivalvia, Revised, Treatise Online, vol. 1, edited by P. Seldon and J. Hardesty chap. 14, pp. 1 – 24, Univ. of Kans., Lawrence.
Steinberg, D. K., C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap ( 2001 ), Overview of the US JGOFS Bermuda Atlantic Time‐series Study (BATS): A decade‐scale look at ocean biology and biogeochemistry, Deep Sea Res., Part II, 48 ( 8–9 ), 1405 – 1447, doi:10.1016/S0967-0645(00)00148-X.
Stevenson, S., B. S. Powell, M. A. Merrifeld, K. M. Cobb, J. Nusbaumer, and D. Noone ( 2015 ), Characterizing seawater oxygen isotopic variability in a regional ocean modeling framework: Implications for coral proxy records, Paleoceanography, 30, 1573 – 1593, doi:10.1002/2015PA002824.
Stirling, C. H., T. M. Esat, K. Lambeck, and M. T. McCullock ( 1998 ), Timing and duration of the Last Interglacial: Evience for a restricted interval of widespread coral reef growth, Earth Planet. Sci. Lett., 160, 745 – 762.
Thomson, W. G., H. A. Curran, M. A. Wilson, and B. White ( 2011 ), Sea‐level and ice‐sheet instability during the Last Interglacial: New Bahamas evidence, Nat. Geosci., 4, 684 – 688.
Tripati, A. K., S. Sahany, D. Pittman, R. A. Eagle, J. D. Neelin, J. L. Mitchell, and L. Beaufort ( 2014 ), Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing, Nat. Geosci., 7, 205 – 209.
Turney, C. S. M., and R. T. Jones ( 2010 ), Does the Agulhas Current amplify global temperatures during super‐interglacials?, J. Quat. Sci., 25, 839 – 843.
Vacher, H. L. ( 1978 ), Hydrogeology of Bermuda—Significance of an across‐the‐island variation in permeability, J. Hydrol., 39, 207 – 226.
Vacher, H. L., and P. Hearty ( 1989 ), History of stage 5 sea level in Bermuda: Review with new evidence of a brief rise to present sea level during substage 5a, Quat. Sci. Rev., 8, 159 – 168, doi:10.1016/0277-3791(89)90004-8.
Vacher, H. L., P. J. Hearty, and M. P. Rowe ( 1995 ), Stratigraphy of Bermuda: Nomenclature, concepts and status of multiple systems of classification, Geol. Soc. Spec. Pap., 300, 271 – 294.
Vollbrecht, R. ( 1990 ), Marine and meteoric diagenesis of submarine Pleistocene carbonates from the Bermuda Carbonate Platform, Carbonates Evaporites, 5, 13 – 96.
Welch, J. J. ( 2010 ), The “island rule” and deep‐sea gastropods: Re‐examining the evidence, PLoS One, 5 ( 1 ), e8776, doi:10.1371/journal.pone.0008776.
Winkelstern, I. Z., and K. C. Lohmann ( 2016 ), Shallow burial alteration of dolomite and limestone clumped isotope geochemistry, Geology, 44, 463 – 466.
Zaarur, S., H. P. Affek, and M. T. Brandon ( 2013 ), A revised calibration of the clumped isotope thermometer, Earth Planet. Sci. Lett., 382, 47 – 57.
Adkins, J. F., E. A. Boyle, L. Keigwin, and E. Cortijo ( 1997 ), Variability of the North Atlantic thermohaline circulation during the Last Interglacial period, Nature, 390, 154 – 156.
Alley, R. B. ( 2007 ), Wally was right: Predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change, Annu. Rev. Earth Planet. Sci., 35, 241 – 272, doi:10.1146/annurev.earth.35.081006.131524.
Blanchon, P., A. Eisenhauer, J. Fietzke, and V. Liebetrau ( 2009 ), Rapid sea‐level rise and back‐stepping at the close of the Last Interglacial highstand, Nature, 458, 881 – 884.
Broecker, W. S. ( 1989 ), The salinity contrast between the Atlantic and Pacific Oceans during glacial time, Paleoceanography, 4, 207 – 212, doi:10.1029/PA004i002p00207.
Capron, E., A. Govin, E. J. Stone, V. Masson‐Delmotte, S. Mulitza, B. Otto‐Bliesner, T. L. Rasmussen, L. C. Sime, C. Waelbroeck, and E. W. Wolff ( 2014 ), Temporal and spatial structure of multi‐millennial temperature changes at high latitudes during the Last Interglacial, Quat. Sci. Rev., 103, 116 – 133, doi:10.1016/j.quascirev.2014.08.018.
Colville, E. J., A. E. Carlson, B. L. Beard, R. G. Hatfield, J. S. Stoner, A. V. Reyes, and D. J. Ullman ( 2011 ), Sr‐Nd‐Pb isotope evidence for ice‐sheet presence on southern Greenland during the Last Interglacial, Science, 333, 620 – 623.
Cortijo, E., S. Lehman, L. Keigwin, M. Chapman, D. Paillard, and L. Labeyrie ( 1999 ), Changes in meridional temperature and salinity gradients in the North Atlantic Ocean (30°–72°N) during the Last Interglacial period, Paleoceanography, 14, 23 – 33, doi:10.1029/1998PA900004.
Defliese, W. F., and K. C. Lohmann ( 2016 ), Evaluation of meteoric calcite cements as a proxy material for mass‐47 clumped isotope thermometry, Geochim. Cosmochim. Acta, 173, 126 – 141, doi:10.1016/j.gca.2015.10.022.
Defliese, W. F., M. T. Hren, and K. C. Lohmann ( 2015 ), Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations, Chem. Geol., 396, 51 – 60, doi:10.1016/j.chemgeo.2014.12.018.
Dennis, K. J., and D. P. Schrag ( 2010 ), Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration, Geochim. Cosmochim. Acta, 74, 4110 – 4122.
Dennis, K. J., J. K. Cochran, N. H. Landman, and D. P. Schrag ( 2013 ), The climate of the Late Cretaceous: New insights from the application of othe carbonate clumped isotope thermometer to Western Interior Seaway macrofossil, Earth Planet. Sci. Lett., 362, 51 – 65.
Dennis, K. J., H. P. Affek, B. H. Passey, D. P. Schrag, and J. M. Eiler ( 2011 ), Defining an absolute reference frame for “clumped” isotope studies of CO 2, Geochim. Cosmochim. Acta, 75, 7117 – 7131, doi:10.1016/j.gca.2011.09.025.
Drury, A. J., and C. M. John ( 2013 ), Exploring the potential of clumped isotope thermometry on coccolith‐rich sediments as a sea surface temperature proxy, Geochem. Geophys. Geosyst., 1525 – 2027, doi:10.1002/2016GC006459.
Dutton, A., and K. Lambeck ( 2012 ), Ice volume and sea level during the Last Interglacial, Science, 337, 216 – 219.
Dutton, A., A. E. Carlson, A. J. Long, G. A. Milne, P. U. Clark, R. DeConto, B. P. Horton, S. Rahmstorf, and M. E. Raymo ( 2015 ), Sea level rise due to polar ice‐sheet mass loss during past warm periods, Science, 349 ( 6244 ), 1 – 9, doi:10.1126/science.aaa4019.
Eagle, R. A., et al. ( 2013 ), The influence of temperature and seawater carbonate saturation state on 13 C‐ 18 O bond ordering in bivalve mollusks, Biogeosciences, 10, 4591 – 4606.
Eiler, J. M. ( 2011 ), Paleoclimate reconstruction using carbonate clumped isotope thermometry, Quat. Sci. Rev., 30, 3575 – 3588, doi:10.1016/j.quascirev.2011.09.001.
Fernandez, A., J. Tang, and B. E. Rosenheim ( 2014 ), Siderite “clumped” isotope thermometry: A new paleoclimate proxy for humid continental environments, Geochim. Cosmochim. Acta, 126, 411 – 421.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2016PA00301410.1002/2014PA00276910.1002/rcm.743810.1038/nature0109010.1130/B31237.110.1016/S0967-0645(00)00148-X10.1002/2015PA00282410.1016/0277-3791(89)90004-810.1371/journal.pone.000877610.1146/annurev.earth.35.081006.13152410.10
_version_ 1774718219490164736
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/136369 2023-08-20T04:06:52+02:00 Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda Winkelstern, Ian Z. Rowe, Mark P. Lohmann, Kyger C. Defliese, William F. Petersen, Sierra V. Brewer, Aaron W. 2017-02 application/pdf http://hdl.handle.net/2027.42/136369 https://doi.org/10.1002/2016PA003014 unknown Wiley Periodicals, Inc. NOAA Atlas NESDIS 73 Winkelstern, Ian Z.; Rowe, Mark P.; Lohmann, Kyger C.; Defliese, William F.; Petersen, Sierra V.; Brewer, Aaron W. (2017). "Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda." Paleoceanography 32(2): 132-145. 0883-8305 1944-9186 http://hdl.handle.net/2027.42/136369 doi:10.1002/2016PA003014 Paleoceanography Rohling, E. J., K. Grant, C. Hemleben, M. Siddall, B. A. A. Hoogakker, M. Bolshaw, and M. Kucera ( 2008 ), High rates of sea‐level rise during the Last Interglacial period, Nat. Geosci., 1, 38 – 42. Passey, B. H., and G. A. Henkes ( 2012 ), Carbonate clumped isotope bond reordering and geospeedometry, Earth Planet. Sci. Lett., 351–352, 223 – 236. Petersen, S. V., and D. P. Schrag ( 2015 ), Antarctic ice growth before and after the Eocene‐Oligocene transition: New estimates from clumped isotope paleothermometry, Paleoceanography, 30, 1305 – 1317, doi:10.1002/2014PA002769. Petersen, S. V., I. Z. Winkelstern, K. C. Lohmann, and K. W. Meyer ( 2016a ), The effects of Porapak (™) trap temperature on δ 18 O, δ 13 C, and Δ 47 values in preparing samples for clumped isotope analysis, Rapid Commun. Mass Spectrom., 30, 1 – 10, doi:10.1002/rcm.7438. Petersen, S. V., C. R. Tabor, K. C. Lohmann, C. J. Poulsen, K. W. Meyer, S. J. Carpenter, J. M. Erickson, K. K. S. Matsunaga, S. Y. Smith, and N. D. Sheldon ( 2016b ), Temperature and salinity of the Late Cretaceous Western Interior Seaway, Geology, 44, 903 – 906. Rahmstorf, S. ( 2002 ), Ocean circulation and climate during the past 120,000 years, Nature, 419, 207 – 214, doi:10.1038/nature01090. Rowe, M. P., and C. S. Bristow ( 2015 ), Sea‐level controls on carbonate beaches and coastal dunes (eolianite): Lessons from Pleistocene Bermuda, Geol. Soc. Am. Bull., 127, 1645 – 1665, doi:10.1130/B31237.1. Rowe, M. P., K. A. I. Wainer, C. S. Bristow, and A. L. Thomas ( 2014 ), Anomalous MIS 7 sea level recorded on Bermuda, Quat. Sci. Rev., 90, 47 – 59. Ruddiman, W. F. ( 1977 ), Late Quaternary depostion of ice‐rafted sand in the subpolar North Atlantic (lat 40° to 65°N), Geol. Soc. Am. Bull., 88, 1813 – 1827. Schaefer, J. M., R. C. Finkel, G. Balco, R. B. Alley, M. W. Caffee, J. P. Briner, N. E. Young, A. J. Gow, and R. Schwartz ( 2016 ), Greenland was nearly ice‐free for extended periods during the Pleistocene, Nature, 540, 252 – 255. Schauble, E. A., P. Ghosh, and J. M. Eiler ( 2006 ), Preferential formation of 13 C‐ 18 O bonds in carbonate minerals, estimated using first‐principles lattice dynamics, Geochim. Cosmochim. Acta, 70, 2510 – 2529. Schmidt, G. A., G. R. Bigg, and E. J. Rohling ( 1999 ), Global Seawater Oxygen‐18 Database v1.21. [Available at http://data.giss.nasa.gov/o18data/.] Schöne, B. R., and D. M. Surge ( 2012 ), Bivalve sclerochronology and geochemistry, in Part N, Bivalvia, Revised, Treatise Online, vol. 1, edited by P. Seldon and J. Hardesty chap. 14, pp. 1 – 24, Univ. of Kans., Lawrence. Steinberg, D. K., C. A. Carlson, N. R. Bates, R. J. Johnson, A. F. Michaels, and A. H. Knap ( 2001 ), Overview of the US JGOFS Bermuda Atlantic Time‐series Study (BATS): A decade‐scale look at ocean biology and biogeochemistry, Deep Sea Res., Part II, 48 ( 8–9 ), 1405 – 1447, doi:10.1016/S0967-0645(00)00148-X. Stevenson, S., B. S. Powell, M. A. Merrifeld, K. M. Cobb, J. Nusbaumer, and D. Noone ( 2015 ), Characterizing seawater oxygen isotopic variability in a regional ocean modeling framework: Implications for coral proxy records, Paleoceanography, 30, 1573 – 1593, doi:10.1002/2015PA002824. Stirling, C. H., T. M. Esat, K. Lambeck, and M. T. McCullock ( 1998 ), Timing and duration of the Last Interglacial: Evience for a restricted interval of widespread coral reef growth, Earth Planet. Sci. Lett., 160, 745 – 762. Thomson, W. G., H. A. Curran, M. A. Wilson, and B. White ( 2011 ), Sea‐level and ice‐sheet instability during the Last Interglacial: New Bahamas evidence, Nat. Geosci., 4, 684 – 688. Tripati, A. K., S. Sahany, D. Pittman, R. A. Eagle, J. D. Neelin, J. L. Mitchell, and L. Beaufort ( 2014 ), Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing, Nat. Geosci., 7, 205 – 209. Turney, C. S. M., and R. T. Jones ( 2010 ), Does the Agulhas Current amplify global temperatures during super‐interglacials?, J. Quat. Sci., 25, 839 – 843. Vacher, H. L. ( 1978 ), Hydrogeology of Bermuda—Significance of an across‐the‐island variation in permeability, J. Hydrol., 39, 207 – 226. Vacher, H. L., and P. Hearty ( 1989 ), History of stage 5 sea level in Bermuda: Review with new evidence of a brief rise to present sea level during substage 5a, Quat. Sci. Rev., 8, 159 – 168, doi:10.1016/0277-3791(89)90004-8. Vacher, H. L., P. J. Hearty, and M. P. Rowe ( 1995 ), Stratigraphy of Bermuda: Nomenclature, concepts and status of multiple systems of classification, Geol. Soc. Spec. Pap., 300, 271 – 294. Vollbrecht, R. ( 1990 ), Marine and meteoric diagenesis of submarine Pleistocene carbonates from the Bermuda Carbonate Platform, Carbonates Evaporites, 5, 13 – 96. Welch, J. J. ( 2010 ), The “island rule” and deep‐sea gastropods: Re‐examining the evidence, PLoS One, 5 ( 1 ), e8776, doi:10.1371/journal.pone.0008776. Winkelstern, I. Z., and K. C. Lohmann ( 2016 ), Shallow burial alteration of dolomite and limestone clumped isotope geochemistry, Geology, 44, 463 – 466. Zaarur, S., H. P. Affek, and M. T. Brandon ( 2013 ), A revised calibration of the clumped isotope thermometer, Earth Planet. Sci. Lett., 382, 47 – 57. Adkins, J. F., E. A. Boyle, L. Keigwin, and E. Cortijo ( 1997 ), Variability of the North Atlantic thermohaline circulation during the Last Interglacial period, Nature, 390, 154 – 156. Alley, R. B. ( 2007 ), Wally was right: Predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change, Annu. Rev. Earth Planet. Sci., 35, 241 – 272, doi:10.1146/annurev.earth.35.081006.131524. Blanchon, P., A. Eisenhauer, J. Fietzke, and V. Liebetrau ( 2009 ), Rapid sea‐level rise and back‐stepping at the close of the Last Interglacial highstand, Nature, 458, 881 – 884. Broecker, W. S. ( 1989 ), The salinity contrast between the Atlantic and Pacific Oceans during glacial time, Paleoceanography, 4, 207 – 212, doi:10.1029/PA004i002p00207. Capron, E., A. Govin, E. J. Stone, V. Masson‐Delmotte, S. Mulitza, B. Otto‐Bliesner, T. L. Rasmussen, L. C. Sime, C. Waelbroeck, and E. W. Wolff ( 2014 ), Temporal and spatial structure of multi‐millennial temperature changes at high latitudes during the Last Interglacial, Quat. Sci. Rev., 103, 116 – 133, doi:10.1016/j.quascirev.2014.08.018. Colville, E. J., A. E. Carlson, B. L. Beard, R. G. Hatfield, J. S. Stoner, A. V. Reyes, and D. J. Ullman ( 2011 ), Sr‐Nd‐Pb isotope evidence for ice‐sheet presence on southern Greenland during the Last Interglacial, Science, 333, 620 – 623. Cortijo, E., S. Lehman, L. Keigwin, M. Chapman, D. Paillard, and L. Labeyrie ( 1999 ), Changes in meridional temperature and salinity gradients in the North Atlantic Ocean (30°–72°N) during the Last Interglacial period, Paleoceanography, 14, 23 – 33, doi:10.1029/1998PA900004. Defliese, W. F., and K. C. Lohmann ( 2016 ), Evaluation of meteoric calcite cements as a proxy material for mass‐47 clumped isotope thermometry, Geochim. Cosmochim. Acta, 173, 126 – 141, doi:10.1016/j.gca.2015.10.022. Defliese, W. F., M. T. Hren, and K. C. Lohmann ( 2015 ), Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations, Chem. Geol., 396, 51 – 60, doi:10.1016/j.chemgeo.2014.12.018. Dennis, K. J., and D. P. Schrag ( 2010 ), Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration, Geochim. Cosmochim. Acta, 74, 4110 – 4122. Dennis, K. J., J. K. Cochran, N. H. Landman, and D. P. Schrag ( 2013 ), The climate of the Late Cretaceous: New insights from the application of othe carbonate clumped isotope thermometer to Western Interior Seaway macrofossil, Earth Planet. Sci. Lett., 362, 51 – 65. Dennis, K. J., H. P. Affek, B. H. Passey, D. P. Schrag, and J. M. Eiler ( 2011 ), Defining an absolute reference frame for “clumped” isotope studies of CO 2, Geochim. Cosmochim. Acta, 75, 7117 – 7131, doi:10.1016/j.gca.2011.09.025. Drury, A. J., and C. M. John ( 2013 ), Exploring the potential of clumped isotope thermometry on coccolith‐rich sediments as a sea surface temperature proxy, Geochem. Geophys. Geosyst., 1525 – 2027, doi:10.1002/2016GC006459. Dutton, A., and K. Lambeck ( 2012 ), Ice volume and sea level during the Last Interglacial, Science, 337, 216 – 219. Dutton, A., A. E. Carlson, A. J. Long, G. A. Milne, P. U. Clark, R. DeConto, B. P. Horton, S. Rahmstorf, and M. E. Raymo ( 2015 ), Sea level rise due to polar ice‐sheet mass loss during past warm periods, Science, 349 ( 6244 ), 1 – 9, doi:10.1126/science.aaa4019. Eagle, R. A., et al. ( 2013 ), The influence of temperature and seawater carbonate saturation state on 13 C‐ 18 O bond ordering in bivalve mollusks, Biogeosciences, 10, 4591 – 4606. Eiler, J. M. ( 2011 ), Paleoclimate reconstruction using carbonate clumped isotope thermometry, Quat. Sci. Rev., 30, 3575 – 3588, doi:10.1016/j.quascirev.2011.09.001. Fernandez, A., J. Tang, and B. E. Rosenheim ( 2014 ), Siderite “clumped” isotope thermometry: A new paleoclimate proxy for humid continental environments, Geochim. Cosmochim. Acta, 126, 411 – 421. IndexNoFollow Bermuda Last Interglacial paleoclimate Heinrich events clumped isotopes Atmospheric and Oceanic Sciences Science Article 2017 ftumdeepblue https://doi.org/10.1002/2016PA00301410.1002/2014PA00276910.1002/rcm.743810.1038/nature0109010.1130/B31237.110.1016/S0967-0645(00)00148-X10.1002/2015PA00282410.1016/0277-3791(89)90004-810.1371/journal.pone.000877610.1146/annurev.earth.35.081006.13152410.10 2023-07-31T20:27:07Z The warm climate of Bermuda today is modulated by the nearby presence of the Gulf Stream current. However, iceberg scours in the Florida Strait and the presence of ice‐rafted debris in Bermuda Rise sediments indicate that, during the last deglaciation, icebergs discharged from the Laurentide Ice Sheet traveled as far south as subtropical latitudes. We present evidence that an event of similar magnitude affected the subtropics during the Last Interglacial, potentially due to melting of the Greenland Ice Sheet. Using the clumped isotope paleothermometer, we found temperatures ~10°C colder and seawater δ18O values ~2‰ lower than modern in Last Interglacial Cittarium pica shells from Grape Bay, Bermuda. In contrast, Last Interglacial shells from Rocky Bay, Bermuda, record temperatures only slightly colder and seawater δ18O values similar to modern, likely representing more typical Last Interglacial conditions in Bermuda outside of a meltwater event. The significantly colder ocean temperatures observed in Grape Bay samples illustrate the extreme sensitivity of Bermudian climate to broad‐scale ocean circulation changes. They indicate routine meltwater transport in the North Atlantic to near‐equatorial latitudes, which would likely have resulted in disruption of the Atlantic Meridional Overturning Circulation. These data demonstrate that future melting of the Greenland Ice Sheet, a potential source of the Last Interglacial meltwater event, could have dramatic climate effects outside of the high latitudes.Key PointsWe used the clumped isotope thermometer to measure temperature and seawater δ18O in Bermuda during the Last InterglacialAt one locality we found cold temperatures and negative seawater δ18O values indicative of meltwater reaching subtropical latitudesThe source of this meltwater may have been the Greenland Ice Sheet, which is sensitive to future global warming Peer Reviewed https://deepblue.lib.umich.edu/bitstream/2027.42/136369/1/palo20392-sup-0001-Supplementary.pdf ... Article in Journal/Newspaper Greenland Ice Sheet North Atlantic University of Michigan: Deep Blue Greenland Rocky Bay ENVELOPE(69.177,69.177,-49.559,-49.559)