Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes

In this study, a one‐dimensional (1‐D) thermal diffusion lake model within the Weather Research and Forecasting (WRF) model was investigated for the Laurentian Great Lakes. In the default 10‐layer lake model, the albedos of water and ice are specified with constant values, 0.08 and 0.6, respectively...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Xiao, Chuliang, Lofgren, Brent M., Wang, Jia, Chu, Philip Y.
Format: Article in Journal/Newspaper
Language:unknown
Published: Natl. Cent. for Atmos. Res 2016
Subjects:
WRF
Online Access:https://hdl.handle.net/2027.42/135995
https://doi.org/10.1002/2016MS000717
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/135995
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Great Lakes
lake model
WRF
Geological Sciences
Science
spellingShingle Great Lakes
lake model
WRF
Geological Sciences
Science
Xiao, Chuliang
Lofgren, Brent M.
Wang, Jia
Chu, Philip Y.
Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes
topic_facet Great Lakes
lake model
WRF
Geological Sciences
Science
description In this study, a one‐dimensional (1‐D) thermal diffusion lake model within the Weather Research and Forecasting (WRF) model was investigated for the Laurentian Great Lakes. In the default 10‐layer lake model, the albedos of water and ice are specified with constant values, 0.08 and 0.6, respectively, ignoring shortwave partitioning and zenith angle, ice melting, and snow effect. Some modifications, including a dynamic lake surface albedo, tuned vertical diffusivities, and a sophisticated treatment of snow cover over lake ice, have been added to the lake model. A set of comparison experiments have been carried out to evaluate the performances of different lake schemes in the coupled WRF‐lake modeling system. Results show that the 1‐D lake model is able to capture the seasonal variability of lake surface temperature (LST) and lake ice coverage (LIC). However, it produces an early warming and quick cooling of LST in deep lakes, and excessive and early persistent LIC in all lakes. Increasing vertical diffusivity can reduce the bias in the 1‐D lake but only in a limited way. After incorporating a sophisticated treatment of lake surface albedo, the new lake model produces a more reasonable LST and LIC than the default lake model, indicating that the processes of ice melting and snow accumulation are important to simulate lake ice in the Great Lakes. Even though substantial efforts have been devoted to improving the 1‐D lake model, it still remains considerably challenging to adequately capture the full dynamics and thermodynamics in deep lakes.Key PointsA dynamic lake surface albedo scheme is added to the lake modelThe new lake model produces a more reasonable LST and LIC than the default lake modelIce melting and snow accumulation are important to simulating lake ice in the Great Lakes Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/135995/1/jame20346_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/135995/2/jame20346.pdf
format Article in Journal/Newspaper
author Xiao, Chuliang
Lofgren, Brent M.
Wang, Jia
Chu, Philip Y.
author_facet Xiao, Chuliang
Lofgren, Brent M.
Wang, Jia
Chu, Philip Y.
author_sort Xiao, Chuliang
title Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes
title_short Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes
title_full Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes
title_fullStr Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes
title_full_unstemmed Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes
title_sort improving the lake scheme within a coupled wrf‐lake model in the laurentian great lakes
publisher Natl. Cent. for Atmos. Res
publishDate 2016
url https://hdl.handle.net/2027.42/135995
https://doi.org/10.1002/2016MS000717
long_lat ENVELOPE(-109.468,-109.468,62.684,62.684)
geographic New Lake
geographic_facet New Lake
genre Boreal Environment Research
genre_facet Boreal Environment Research
op_relation Xiao, Chuliang; Lofgren, Brent M.; Wang, Jia; Chu, Philip Y. (2016). "Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes." Journal of Advances in Modeling Earth Systems 8(4): 1969-1985.
1942-2466
https://hdl.handle.net/2027.42/135995
doi:10.1002/2016MS000717
Journal of Advances in Modeling Earth Systems
Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington ( 2013 ), Influence of the Laurentian Great Lakes on regional climate, J. Clim., 26, 789 – 804.
Mallard, M. S., C. G. Nolte, O. R. Bullock, T. L. Spero, and J. Gula ( 2014 ), Using a coupled lake model with WRF for dynamical downscaling, J. Geophys. Res. Atmos., 119, 7193 – 7208, doi:10.1002/2014JD021785.
Mallard, M. S., C. G. Nolte, T. L. Spero, O. R. Bullock, K. Alapaty, J. A. Herwehe, J. Gula, and J. H. Bowden ( 2015 ), Technical challenges and solutions in representing lakes when using WRF in downscaling applications, Geosci. Model Dev., 8, 1085 – 1096, doi:10.5194/gmd-8-1085-2015.
Martynov, A., L. Sushama, and R. Laprise ( 2010 ), Simulation of temperate freezing lakes by one‐dimensional lake models: Performance assessment for interactive coupling with regional climate models, Boreal Environ. Res., 15, 143 – 164.
McCormick, M. J., and J. D. Pazdalski ( 1993 ), Monitoring midlake water temperature in southern Lake Michigan for climate change studies, Clim. Change, 25, 119 – 125, doi:10.1007/BF01661201.
Mesinger, F., et al. ( 2006 ), North American regional reanalysis, Bull. Am. Meteorol. Soc., 87, 343 – 360, doi:10.1175/BAMS-87-3-343.
Mironov, D., L. Rontu, E. Kourzeneva, and A. Terzhevik ( 2010 ), Towards improved representation of lakes in numerical weather prediction and climate models: Introduction to the special issue of Boreal Environment Research, Boreal Environ. Res., 15, 97 – 99.
Oleson, K. W., et al. ( 2013 ), Technical description of version 4.5 of the Community Land Model (CLM), NCAR Tech. Note NCAR/TN‐503+STR, 422 pp., Natl. Cent. for Atmos. Res., Boulder, Colo., doi:10.5065/D6RR1W7M.
Pivovarov, A. A. ( 1972 ), Thermal Conditions in Freezing Lakes and Reservoirs, John Wiley, New York.
San Jose, R., J. L. Perez, and R. M. Gonzalez ( 2011 ), Sensitivity analysis of two different shadow models implemented into EULAG CFD model Madrid experiment, Res. J. Chem. Environ., 15, 1 – 8.
Schwab, D., G. Leshkevich, and G. Muhr ( 1992 ), Satellite measurements of surface water temperature in the Great Lakes: Great Lakes Coastwatch, J. Great Lakes Res., 18, 247 – 258, doi:10.1016/S0380-1330(92)71292-1.
Scott, R. W., and F. A. Huff ( 1996 ), Impacts of the Great Lakes on regional climate conditions, J. Great Lakes Res., 22, 845 – 863.
Skamarock, W., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X.‐Y. Huang, and W. Wang ( 2008 ), A description of the advanced research WRF version 3, NCAR Tech. Note NCAR/TN‐475+STR, Mesoscale and Microscale Meteorology Division of the Natl. Cent. for Atmos. Res., Boulder, Colo., doi:10.5065/D68S4MVH.
Spero, T. L., C. G. Nolte, J. H. Bowden, M. S. Mallard, and J. A. Herwehe ( 2016 ), The impact of incongruous lake temperatures on regional climate extremes downscaled from the CMIP5 archive using the WRF model, J. Clim., 29, 839 – 853.
Stepanenko, V. M., S. Goyette, A. Martynov, M. Perroud, X. Fang, and D. Mironov ( 2010 ), First steps of a Lake Model Intercomparison Project: LakeMIP, Boreal Environ. Res., 15, 191 – 202.
Subin, Z. M., W. J. Riley, and D. V. Mironov ( 2012 ), An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1, J. Adv. Model. Earth Syst., 4, M02001, doi:10.1029/2011MS000072.
Thornton, P. E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B. Cook ( 2016 ), Daymet: Daily surface weather data on a 1‐km grid for North America, Version 3, report, ORNL DAAC, Oak Ridge, Tenn., doi:10.3334/ORNLDAAC/1328.
Wang, J., X. Bai, H. Hu, A. Clites, M. Colton, and B. Lofgren ( 2012 ), Temporal and spatial variability of Great Lakes ice cover, 1973–2010, J. Clim., 25, 1318 – 1329, doi:10.1175/2011JCLI4066.1.
Wright, D. M., D. J. Posselt, and A. L. Steiner ( 2013 ), Sensitivity of lake‐effect snowfall to lake ice cover and temperature in the Great Lakes region, Mon. Weather Rev., 141, 670 – 689.
Xie, P., and P. A. Arkin ( 1997 ), Global precipitation: A 17‐year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bull. Am. Meteorol. Soc., 78, 2539 – 2558.
Xue, P., D. J. Schwab, and S. Hu ( 2015 ), An investigation of the thermal response to meteorological forcing in a hydrodynamic model of Lake Superior, J. Geophys. Res. Oceans, 120, 5233 – 5253, doi:10.1002/2015JC010740.
Goyette, S., N. A. McFarlane, and G. M. Flato ( 2000 ), Application of the Canadian Regional Climate Model to the Laurentian Great Lakes region: Implementation of a lake model, Atmos. Ocean, 38, 481 – 503.
Gu, H., J. Jin, Y. Wu, M. B. Ek, and Z. M. Subin ( 2015 ), Calibration and validation of lake surface temperature simulations with the coupled WRF‐lake model, Clim. Change, 129, 471 – 485, doi:10.1007/s10584-013-0978-y.
Adler, R. F., et al. ( 2003 ), The version‐2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol, 4, 1147 – 1167.
Andreadis, K. M., P. Storck, and D. P. Lettenmaier ( 2009 ), Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, doi:10.1029/2008WR007042.
Bai, X. Z., J. Wang, D. J. Schwab, Y. Yang, L. Luo, G. A. Leshkevich, and S. Z. Liu ( 2013 ), Modeling 1993–2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM, Ocean Modell., 65, 40 – 63, doi:10.1016/J.Ocemod.2013.02.003.
Bates, G. T., F. Giorgi, and S. W. Hostetler ( 1993 ), Toward the simulation of the effects of the Great Lakes on regional climate, Mon. Weather Rev., 121, 1373 – 1387.
Beletsky, D., D. Schwab, and M. McCormick ( 2006 ), Modeling the 1998–2003 summer circulation and thermal structure in Lake Michigan, J. Geophys. Res., 111, C10010, doi:10.1029/2005JC003222.
Beletsky, D., N. Hawley, and Y. R. Rao ( 2013 ), Modeling summer circulation and thermal structure of Lake Erie, J. Geophys. Res. Oceans, 118, 6238 – 6252, doi:10.1002/2013JC008854.
Bennington, V., M. Notaro, and K. D. Holman ( 2014 ), Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate, J. Clim., 27, 2886 – 2911.
Changnon, S. A., and D. M. A. Jones ( 1972 ), Review of the influences of the Great Lakes on weather, Water Resour. Res., 8, 360 – 371.
Chen, F., et al. ( 2011 ), The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems, Int. J. Climatol., 31, 273 – 288, doi:10.1002/joc.2158.
Chen, F., C. Liu, J. Dudhia, and M. Chen ( 2014 ), A sensitivity study of high‐resolution regional climate simulations to three land surface models over the western United States, J. Geophys. Res. Atmos., 119, 7271 – 7291, doi:10.1002/2014JD021827.
Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, and B. Briegleb ( 2004 ), Description of the NCAR Community Atmosphere Model (CAM 3.0), Tech. Rep. NCAR TN‐464+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.
Cox, H. J. ( 1917 ), Influence of the Great Lakes upon movement of high and low pressure areas, in Proceedings of the Second Pan American Scientific Congress, vol. 2, edited by G. L. Swiggert, pp. 432 – 459, Gov. Print. Off., Washington, D. C.
Croley, T. E., II ( 1989 ), Verifiable evaporation modeling on the Laurentian Great Lakes, Water Resour. Res., 25 ( 5 ), 781 – 792.
Dupont, F., P. Chittibabu, V. Fortin, Y. R. Rao, and Y. Lu ( 2012 ), Assessment of a NEMO‐based hydrodynamic modeling system for the Great Lakes, Water Qual. Res. J. Can., 47, 198 – 214, doi:10.2166/wqrjc.2012.014.
Fang, X., and H. G. Stefan ( 1996 ), Long‐term lake water temperature and ice cover simulations/measurements, Cold Reg. Sci. Technol., 24, 289 – 304, doi:10.1016/0165?232X(95)00022?4.
Fujisaki, A., J. Wang, X. Bai, G. Leshkevich, and B. Lofgren ( 2013 ), Model‐simulated interannual variability of Lake Erie ice cover, circulation, and thermal structure in response to atmospheric forcing, 2003–2012, J. Geophys. Res. Oceans, 118, 4286 – 4304, doi:10.1002/jgrc.20312.
Gula, J., and W. R. Peltier ( 2012 ), Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model: The impact of the Great Lakes system on regional greenhouse warming, J. Clim., 25, 7723 – 7742.
Henderson‐Sellers, B. ( 1985 ), New formulation of eddy diffusion thermocline models, Appl. Math. Modell., 9, 441 – 446.
Hong, S.‐Y., and J.‐O. J. Lim ( 2006 ), The WRF single‐moment 6‐class microphysics scheme (WSM6), J. Korean Meteorol. Soc., 42, 129 – 151.
Hong, S.‐Y., Y. Noh, and J. Dudhia ( 2006 ), A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134 ( 9 ), 2318 – 2341, doi:10.1175/MWR3199.1.
Hostetler, S. W., and P. J. Bartlein ( 1990 ), Simulation of lake evaporation with application to modeling lake level variations of Harney‐Malheur Lake, Oregon, Water Resour. Res., 26 ( 10 ), 2603 – 2612.
Hostetler, S. W., G. T. Bates, and F. Giorgi ( 1993 ), Interactive coupling of a lake thermal model with a regional climate model, J. Geophys. Res., 98 ( D3 ), 5045 – 5057, doi:10.1029/92JD02843.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2016MS00071710.1002/2014JD02178510.5194/gmd-8-1085-201510.1007/BF0166120110.1175/BAMS-87-3-34310.5065/D6RR1W7M10.1016/S0380-1330(92)71292-110.5065/D68S4MVH10.1029/2011MS00007210.3334/ORNLDAAC/132810.1175/2011JCLI4066.110.1002/2015J
container_title Journal of Advances in Modeling Earth Systems
container_volume 8
container_issue 4
container_start_page 1969
op_container_end_page 1985
_version_ 1774716346926366720
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/135995 2023-08-20T04:05:40+02:00 Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes Xiao, Chuliang Lofgren, Brent M. Wang, Jia Chu, Philip Y. 2016-12 application/pdf https://hdl.handle.net/2027.42/135995 https://doi.org/10.1002/2016MS000717 unknown Natl. Cent. for Atmos. Res Wiley Periodicals, Inc. Xiao, Chuliang; Lofgren, Brent M.; Wang, Jia; Chu, Philip Y. (2016). "Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes." Journal of Advances in Modeling Earth Systems 8(4): 1969-1985. 1942-2466 https://hdl.handle.net/2027.42/135995 doi:10.1002/2016MS000717 Journal of Advances in Modeling Earth Systems Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington ( 2013 ), Influence of the Laurentian Great Lakes on regional climate, J. Clim., 26, 789 – 804. Mallard, M. S., C. G. Nolte, O. R. Bullock, T. L. Spero, and J. Gula ( 2014 ), Using a coupled lake model with WRF for dynamical downscaling, J. Geophys. Res. Atmos., 119, 7193 – 7208, doi:10.1002/2014JD021785. Mallard, M. S., C. G. Nolte, T. L. Spero, O. R. Bullock, K. Alapaty, J. A. Herwehe, J. Gula, and J. H. Bowden ( 2015 ), Technical challenges and solutions in representing lakes when using WRF in downscaling applications, Geosci. Model Dev., 8, 1085 – 1096, doi:10.5194/gmd-8-1085-2015. Martynov, A., L. Sushama, and R. Laprise ( 2010 ), Simulation of temperate freezing lakes by one‐dimensional lake models: Performance assessment for interactive coupling with regional climate models, Boreal Environ. Res., 15, 143 – 164. McCormick, M. J., and J. D. Pazdalski ( 1993 ), Monitoring midlake water temperature in southern Lake Michigan for climate change studies, Clim. Change, 25, 119 – 125, doi:10.1007/BF01661201. Mesinger, F., et al. ( 2006 ), North American regional reanalysis, Bull. Am. Meteorol. Soc., 87, 343 – 360, doi:10.1175/BAMS-87-3-343. Mironov, D., L. Rontu, E. Kourzeneva, and A. Terzhevik ( 2010 ), Towards improved representation of lakes in numerical weather prediction and climate models: Introduction to the special issue of Boreal Environment Research, Boreal Environ. Res., 15, 97 – 99. Oleson, K. W., et al. ( 2013 ), Technical description of version 4.5 of the Community Land Model (CLM), NCAR Tech. Note NCAR/TN‐503+STR, 422 pp., Natl. Cent. for Atmos. Res., Boulder, Colo., doi:10.5065/D6RR1W7M. Pivovarov, A. A. ( 1972 ), Thermal Conditions in Freezing Lakes and Reservoirs, John Wiley, New York. San Jose, R., J. L. Perez, and R. M. Gonzalez ( 2011 ), Sensitivity analysis of two different shadow models implemented into EULAG CFD model Madrid experiment, Res. J. Chem. Environ., 15, 1 – 8. Schwab, D., G. Leshkevich, and G. Muhr ( 1992 ), Satellite measurements of surface water temperature in the Great Lakes: Great Lakes Coastwatch, J. Great Lakes Res., 18, 247 – 258, doi:10.1016/S0380-1330(92)71292-1. Scott, R. W., and F. A. Huff ( 1996 ), Impacts of the Great Lakes on regional climate conditions, J. Great Lakes Res., 22, 845 – 863. Skamarock, W., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X.‐Y. Huang, and W. Wang ( 2008 ), A description of the advanced research WRF version 3, NCAR Tech. Note NCAR/TN‐475+STR, Mesoscale and Microscale Meteorology Division of the Natl. Cent. for Atmos. Res., Boulder, Colo., doi:10.5065/D68S4MVH. Spero, T. L., C. G. Nolte, J. H. Bowden, M. S. Mallard, and J. A. Herwehe ( 2016 ), The impact of incongruous lake temperatures on regional climate extremes downscaled from the CMIP5 archive using the WRF model, J. Clim., 29, 839 – 853. Stepanenko, V. M., S. Goyette, A. Martynov, M. Perroud, X. Fang, and D. Mironov ( 2010 ), First steps of a Lake Model Intercomparison Project: LakeMIP, Boreal Environ. Res., 15, 191 – 202. Subin, Z. M., W. J. Riley, and D. V. Mironov ( 2012 ), An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1, J. Adv. Model. Earth Syst., 4, M02001, doi:10.1029/2011MS000072. Thornton, P. E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B. Cook ( 2016 ), Daymet: Daily surface weather data on a 1‐km grid for North America, Version 3, report, ORNL DAAC, Oak Ridge, Tenn., doi:10.3334/ORNLDAAC/1328. Wang, J., X. Bai, H. Hu, A. Clites, M. Colton, and B. Lofgren ( 2012 ), Temporal and spatial variability of Great Lakes ice cover, 1973–2010, J. Clim., 25, 1318 – 1329, doi:10.1175/2011JCLI4066.1. Wright, D. M., D. J. Posselt, and A. L. Steiner ( 2013 ), Sensitivity of lake‐effect snowfall to lake ice cover and temperature in the Great Lakes region, Mon. Weather Rev., 141, 670 – 689. Xie, P., and P. A. Arkin ( 1997 ), Global precipitation: A 17‐year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bull. Am. Meteorol. Soc., 78, 2539 – 2558. Xue, P., D. J. Schwab, and S. Hu ( 2015 ), An investigation of the thermal response to meteorological forcing in a hydrodynamic model of Lake Superior, J. Geophys. Res. Oceans, 120, 5233 – 5253, doi:10.1002/2015JC010740. Goyette, S., N. A. McFarlane, and G. M. Flato ( 2000 ), Application of the Canadian Regional Climate Model to the Laurentian Great Lakes region: Implementation of a lake model, Atmos. Ocean, 38, 481 – 503. Gu, H., J. Jin, Y. Wu, M. B. Ek, and Z. M. Subin ( 2015 ), Calibration and validation of lake surface temperature simulations with the coupled WRF‐lake model, Clim. Change, 129, 471 – 485, doi:10.1007/s10584-013-0978-y. Adler, R. F., et al. ( 2003 ), The version‐2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol, 4, 1147 – 1167. Andreadis, K. M., P. Storck, and D. P. Lettenmaier ( 2009 ), Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, doi:10.1029/2008WR007042. Bai, X. Z., J. Wang, D. J. Schwab, Y. Yang, L. Luo, G. A. Leshkevich, and S. Z. Liu ( 2013 ), Modeling 1993–2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM, Ocean Modell., 65, 40 – 63, doi:10.1016/J.Ocemod.2013.02.003. Bates, G. T., F. Giorgi, and S. W. Hostetler ( 1993 ), Toward the simulation of the effects of the Great Lakes on regional climate, Mon. Weather Rev., 121, 1373 – 1387. Beletsky, D., D. Schwab, and M. McCormick ( 2006 ), Modeling the 1998–2003 summer circulation and thermal structure in Lake Michigan, J. Geophys. Res., 111, C10010, doi:10.1029/2005JC003222. Beletsky, D., N. Hawley, and Y. R. Rao ( 2013 ), Modeling summer circulation and thermal structure of Lake Erie, J. Geophys. Res. Oceans, 118, 6238 – 6252, doi:10.1002/2013JC008854. Bennington, V., M. Notaro, and K. D. Holman ( 2014 ), Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate, J. Clim., 27, 2886 – 2911. Changnon, S. A., and D. M. A. Jones ( 1972 ), Review of the influences of the Great Lakes on weather, Water Resour. Res., 8, 360 – 371. Chen, F., et al. ( 2011 ), The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems, Int. J. Climatol., 31, 273 – 288, doi:10.1002/joc.2158. Chen, F., C. Liu, J. Dudhia, and M. Chen ( 2014 ), A sensitivity study of high‐resolution regional climate simulations to three land surface models over the western United States, J. Geophys. Res. Atmos., 119, 7271 – 7291, doi:10.1002/2014JD021827. Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, and B. Briegleb ( 2004 ), Description of the NCAR Community Atmosphere Model (CAM 3.0), Tech. Rep. NCAR TN‐464+STR, Natl. Cent. for Atmos. Res., Boulder, Colo. Cox, H. J. ( 1917 ), Influence of the Great Lakes upon movement of high and low pressure areas, in Proceedings of the Second Pan American Scientific Congress, vol. 2, edited by G. L. Swiggert, pp. 432 – 459, Gov. Print. Off., Washington, D. C. Croley, T. E., II ( 1989 ), Verifiable evaporation modeling on the Laurentian Great Lakes, Water Resour. Res., 25 ( 5 ), 781 – 792. Dupont, F., P. Chittibabu, V. Fortin, Y. R. Rao, and Y. Lu ( 2012 ), Assessment of a NEMO‐based hydrodynamic modeling system for the Great Lakes, Water Qual. Res. J. Can., 47, 198 – 214, doi:10.2166/wqrjc.2012.014. Fang, X., and H. G. Stefan ( 1996 ), Long‐term lake water temperature and ice cover simulations/measurements, Cold Reg. Sci. Technol., 24, 289 – 304, doi:10.1016/0165?232X(95)00022?4. Fujisaki, A., J. Wang, X. Bai, G. Leshkevich, and B. Lofgren ( 2013 ), Model‐simulated interannual variability of Lake Erie ice cover, circulation, and thermal structure in response to atmospheric forcing, 2003–2012, J. Geophys. Res. Oceans, 118, 4286 – 4304, doi:10.1002/jgrc.20312. Gula, J., and W. R. Peltier ( 2012 ), Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model: The impact of the Great Lakes system on regional greenhouse warming, J. Clim., 25, 7723 – 7742. Henderson‐Sellers, B. ( 1985 ), New formulation of eddy diffusion thermocline models, Appl. Math. Modell., 9, 441 – 446. Hong, S.‐Y., and J.‐O. J. Lim ( 2006 ), The WRF single‐moment 6‐class microphysics scheme (WSM6), J. Korean Meteorol. Soc., 42, 129 – 151. Hong, S.‐Y., Y. Noh, and J. Dudhia ( 2006 ), A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134 ( 9 ), 2318 – 2341, doi:10.1175/MWR3199.1. Hostetler, S. W., and P. J. Bartlein ( 1990 ), Simulation of lake evaporation with application to modeling lake level variations of Harney‐Malheur Lake, Oregon, Water Resour. Res., 26 ( 10 ), 2603 – 2612. Hostetler, S. W., G. T. Bates, and F. Giorgi ( 1993 ), Interactive coupling of a lake thermal model with a regional climate model, J. Geophys. Res., 98 ( D3 ), 5045 – 5057, doi:10.1029/92JD02843. IndexNoFollow Great Lakes lake model WRF Geological Sciences Science Article 2016 ftumdeepblue https://doi.org/10.1002/2016MS00071710.1002/2014JD02178510.5194/gmd-8-1085-201510.1007/BF0166120110.1175/BAMS-87-3-34310.5065/D6RR1W7M10.1016/S0380-1330(92)71292-110.5065/D68S4MVH10.1029/2011MS00007210.3334/ORNLDAAC/132810.1175/2011JCLI4066.110.1002/2015J 2023-07-31T21:16:42Z In this study, a one‐dimensional (1‐D) thermal diffusion lake model within the Weather Research and Forecasting (WRF) model was investigated for the Laurentian Great Lakes. In the default 10‐layer lake model, the albedos of water and ice are specified with constant values, 0.08 and 0.6, respectively, ignoring shortwave partitioning and zenith angle, ice melting, and snow effect. Some modifications, including a dynamic lake surface albedo, tuned vertical diffusivities, and a sophisticated treatment of snow cover over lake ice, have been added to the lake model. A set of comparison experiments have been carried out to evaluate the performances of different lake schemes in the coupled WRF‐lake modeling system. Results show that the 1‐D lake model is able to capture the seasonal variability of lake surface temperature (LST) and lake ice coverage (LIC). However, it produces an early warming and quick cooling of LST in deep lakes, and excessive and early persistent LIC in all lakes. Increasing vertical diffusivity can reduce the bias in the 1‐D lake but only in a limited way. After incorporating a sophisticated treatment of lake surface albedo, the new lake model produces a more reasonable LST and LIC than the default lake model, indicating that the processes of ice melting and snow accumulation are important to simulate lake ice in the Great Lakes. Even though substantial efforts have been devoted to improving the 1‐D lake model, it still remains considerably challenging to adequately capture the full dynamics and thermodynamics in deep lakes.Key PointsA dynamic lake surface albedo scheme is added to the lake modelThe new lake model produces a more reasonable LST and LIC than the default lake modelIce melting and snow accumulation are important to simulating lake ice in the Great Lakes Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/135995/1/jame20346_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/135995/2/jame20346.pdf Article in Journal/Newspaper Boreal Environment Research University of Michigan: Deep Blue New Lake ENVELOPE(-109.468,-109.468,62.684,62.684) Journal of Advances in Modeling Earth Systems 8 4 1969 1985