Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica

Pine Island Glacier has undergone several major iceberg calving events over the past decades. These typically occurred when a rift at the heavily fractured shear margin propagated across the width of the ice shelf. This type of calving is common on polar ice shelves, with no clear connection to ocea...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Jeong, Seongsu, Howat, Ian M., Bassis, Jeremy N.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2016
Subjects:
Online Access:https://hdl.handle.net/2027.42/135693
https://doi.org/10.1002/2016GL071360
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/135693
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic basal crevasse
Landsat
calving
rifting
Pine Island Glacier
Geological Sciences
Science
spellingShingle basal crevasse
Landsat
calving
rifting
Pine Island Glacier
Geological Sciences
Science
Jeong, Seongsu
Howat, Ian M.
Bassis, Jeremy N.
Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica
topic_facet basal crevasse
Landsat
calving
rifting
Pine Island Glacier
Geological Sciences
Science
description Pine Island Glacier has undergone several major iceberg calving events over the past decades. These typically occurred when a rift at the heavily fractured shear margin propagated across the width of the ice shelf. This type of calving is common on polar ice shelves, with no clear connection to ocean‐ice dynamic forcing. In contrast, we report on the recent development of multiple rifts initiating from basal crevasses in the center of the ice shelf, resulted in calving further upglacier than previously observed. Coincident with rift formation was the sudden disintegration of the ice mélange that filled the northern shear margin, resulting in ice sheet detachment from this margin. Examination of ice velocity suggests that this internal rifting resulted from the combination of a change in ice shelf stress regime caused by disintegration of the mélange and intensified melting within basal crevasses, both of which may be linked to ocean forcing.Key PointsThe 2015 calving event from Pine Island Glacier, West Antarctica, resulted from rifts that initiated from the center of the ice shelfThe calving event coincided with disintegration of mélange and rotation of the ice shelfWe attribute the increased rifting and calving to ice‐ocean interaction associated with basal crevasse development Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/135693/1/grl55204.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/135693/2/grl55204_am.pdf
format Article in Journal/Newspaper
author Jeong, Seongsu
Howat, Ian M.
Bassis, Jeremy N.
author_facet Jeong, Seongsu
Howat, Ian M.
Bassis, Jeremy N.
author_sort Jeong, Seongsu
title Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica
title_short Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica
title_full Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica
title_fullStr Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica
title_full_unstemmed Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica
title_sort accelerated ice shelf rifting and retreat at pine island glacier, west antarctica
publisher Wiley Periodicals, Inc.
publishDate 2016
url https://hdl.handle.net/2027.42/135693
https://doi.org/10.1002/2016GL071360
long_lat ENVELOPE(-101.000,-101.000,-75.000,-75.000)
geographic West Antarctica
Pine Island Glacier
geographic_facet West Antarctica
Pine Island Glacier
genre Antarc*
Antarctica
Ice Sheet
Ice Shelf
Ice Shelves
Pine Island
Pine Island Glacier
West Antarctica
genre_facet Antarc*
Antarctica
Ice Sheet
Ice Shelf
Ice Shelves
Pine Island
Pine Island Glacier
West Antarctica
op_relation Jeong, Seongsu; Howat, Ian M.; Bassis, Jeremy N. (2016). "Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica." Geophysical Research Letters 43(22): 11,720-11,725.
0094-8276
1944-8007
https://hdl.handle.net/2027.42/135693
doi:10.1002/2016GL071360
Geophysical Research Letters
Rignot, E. J. ( 1998 ), Fast recession of a West Antarctic Glacier, Science, 281 ( 5376 ), 549 – 551, doi:10.1126/science.281.5376.549.
Falkner, K. K., et al. ( 2011 ), Context for the recent massive Petermann Glacier calving event, Eos Trans. AGU, 92 ( 14 ), 117 – 118, doi:10.1029/2011EO140001.
Howat, I. M., J. E. Box, Y. Ahn, A. Herrington, and E. M. McFadden ( 2010 ), Seasonal variability in the dynamics of marine‐terminating outlet glaciers in Greenland, J. Glaciol., 56 ( 198 ), 601 – 613, doi:10.3189/002214310793146232.
Howat, I. M., K. Jezek, M. Studinger, J. A. MacGregor, J. Paden, D. Floricioiu, R. Russell, M. Linkswiler, and R. T. Dominguez ( 2012 ), Rift in Antarctic Glacier: A unique chance to study ice shelf retreat, Eos Trans. AGU, 93 ( 8 ), 77 – 78, doi:10.1029/2012EO080001.
Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux ( 2011 ), Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf, Nat. Geosci., 4 ( 8 ), 519 – 523, doi:10.1038/ngeo1188.
Jeong, S., and I. M. Howat ( 2016 ), Performance of Landsat 8 Operational Land Imager for mapping ice sheet velocity, Remote Sens. Environ., 170, 90 – 101, doi:10.1016/j.rse.2015.08.023.
Joughin, I., B. E. Smith, and B. Medley ( 2014 ), Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica, Science, 344 ( 6185 ), 735 – 738, doi:10.1126/science.1249055.
Joughin, I., D. Shean, B. E. Smith, and P. Dutrieux ( 2016 ), Grounding line variability and subglacial lake drainage on Pine Island Glacier, Antarctica, Geophys. Res. Lett., 43, 9093 – 9102, doi:10.1002/2016GL070259.
Lee, H., C. K. Shum, I. M. Howat, A. Monaghan, Y. Ahn, J. Duan, J.‐Y. Guo, C.‐Y. Kuo, and L. Wang ( 2012 ), Continuously accelerating ice loss over Amundsen Sea catchment, West Antarctica, revealed by integrating altimetry and GRACE data, Earth Planet Sci. Lett., 321‐322, 74 – 80, doi:10.1016/j.epsl.2011.12.040.
Liu, Y., J. C. Moore, X. Cheng, R. M. Gladstone, J. N. Bassis, H. Liu, J. Wen, and F. Hui ( 2015 ), Ocean‐driven thinning enhances iceberg calving and retreat of Antarctic ice shelves, Proc. Natl. Acad. Sci. U.S.A., 112 ( 11 ), 3263 – 3268, doi:10.1073/pnas.1415137112.
Luckman, A., D. Jansen, B. Kulessa, E. C. King, P. Sammonds, and D. I. Benn ( 2012 ), Basal crevasses in Larsen C Ice Shelf and implications for their global abundance, Cryosphere, 6 ( 1 ), 113 – 123, doi:10.5194/tc-6-113-2012.
MacGregor, J. A., G. A. Catania, M. S. Markowski, and A. G. Andrews ( 2012 ), Widespread rifting and retreat of ice‐shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011, J. Glaciol., 58 ( 209 ), 458 – 466, doi:10.3189/2012JoG11J262.
McGrath, D., K. Steffen, H. Rajaram, T. Scambos, W. Abdalati, and E. Rignot ( 2012 ), Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture, Geophys. Res. Lett., 39, L16504, doi:10.1029/2012GL052413.
Rignot, E., J. Mouginot, and B. Scheuchl ( 2011 ), Ice flow of the Antarctic Ice Sheet, Science, 333 ( 6048 ), 1427 – 1430, doi:10.1126/Science.1208336.
Rignot, E., J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl ( 2014 ), Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502 – 3509, doi:10.1002/2014GL060140.
Scambos, T. A., M. J. Dutkiewicz, J. C. Wilson, and R. A. Bindschadler ( 1992 ), Application of image cross‐correlation to the measurement of glacier velocity using satellite image data, Remote Sens. Environ., 42, 177 – 186, doi:10.1016/0034-4257(92)90101-O.
Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki ( 2014 ), Multidecadal warming of Antarctic waters, Science, 346 ( 6214 ), 1227 – 1231.
Shepherd, A., D. Wingham, and E. Rignot ( 2004 ), Warm ocean is eroding West Antarctic Ice Sheet, Geophys. Res. Lett., 31, L23402, doi:10.1029/2004GL021106.
Vaughan, D. G., H. F. J. Corr, R. A. Bindschadler, P. Dutrieux, G. H. Gudmundsson, A. Jenkins, T. Newman, P. Vornberger, and D. J. Wingham ( 2012 ), Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica, J. Geophys. Res., 117, F03012, doi:10.1029/2012JF002360.
Walker, C. C., J. N. Bassis, H. A. Fricker, and R. J. Czerwinski ( 2013 ), Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring, J. Geophys. Res. Earth Surf., 118, 2354 – 2364, doi:10.1002/2013JF002742.
Walker, C. C., J. N. Bassis, H. A. Fricker, and R. J. Czerwinski ( 2015 ), Observations of interannual and spatial variability in rift propagation in the Amery Ice Shelf, Antarctica, 2002–14, J. Glaciol., 61 ( 226 ), 243 – 252, doi:10.3189/2015JoG14J151.
Ahn, Y., and I. M. Howat ( 2011 ), Efficient automated glacier surface velocity measurement from repeat images using multi‐image/multichip and null exclusion feature tracking, IEEE Trans. Geosci. Remote Sens., 49 ( 8 ), 2838 – 2846, doi:10.1109/TGRS.2011.2114891.
Amundson, J. M., M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. J. Motyka ( 2010 ), Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, doi:10.1029/2009JF001405.
Bassis, J. N., H. A. Fricker, R. Coleman, and J.‐B. Minster ( 2008 ), An investigation into the forces that drive ice‐shelf rift propagation on the Amery Ice Shelf, East Antarctica, J. Glaciol., 54 ( 184 ), 17 – 27, doi:10.3189/002214308784409116.
Bassis, J. N., and Y. Ma ( 2015 ), Evolution of basal crevasses links ice shelf stability to ocean forcing, Earth Planet Sci. Lett., 409, 203 – 211, doi:10.1016/j.epsl.2014.11.003.
Bindschadler, R., and E. Rignot ( 2001 ), “Crack!” in the polar night, Eos Trans. AGU, 82 ( 43 ), 497 – 505, doi:10.1029/01EO00294.
Bindschadler, R. A. ( 2002 ), History of lower Pine Island Glacier, West Antarctica, from Landsat imagery, J. Glaciol., 48 ( 163 ), 536 – 544, doi:10.3189/172756502781831052.
Bindschadler, R., D. G. Vaughan, and P. Vornberger ( 2011 ), Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica, J. Glaciol., 57 ( 204 ), 581 – 595, doi:10.3189/002214311797409802.
Dutrieux, P., J. De Rydt, A. Jenkins, P. R. Holland, H. K. Ha, S. H. Lee, E. J. Steig, Q. Ding, E. P. Abrahamsen, and M. Schröder ( 2014 ), Strong sensitivity of Pine Island Ice‐Shelf melting to climatic variability, Science, 343 ( 6167 ), 174 – 178, doi:10.1126/science.1244341.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2016GL07136010.1126/science.281.5376.54910.1029/2011EO14000110.3189/00221431079314623210.1029/2012EO08000110.1038/ngeo118810.1016/j.rse.2015.08.02310.1126/science.124905510.1002/2016GL07025910.1016/j.epsl.2011.12.04010.1073/pnas.14
container_title Geophysical Research Letters
container_volume 43
container_issue 22
_version_ 1774724721736155136
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/135693 2023-08-20T04:01:27+02:00 Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica Jeong, Seongsu Howat, Ian M. Bassis, Jeremy N. 2016-11-28 application/pdf https://hdl.handle.net/2027.42/135693 https://doi.org/10.1002/2016GL071360 unknown Wiley Periodicals, Inc. Jeong, Seongsu; Howat, Ian M.; Bassis, Jeremy N. (2016). "Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica." Geophysical Research Letters 43(22): 11,720-11,725. 0094-8276 1944-8007 https://hdl.handle.net/2027.42/135693 doi:10.1002/2016GL071360 Geophysical Research Letters Rignot, E. J. ( 1998 ), Fast recession of a West Antarctic Glacier, Science, 281 ( 5376 ), 549 – 551, doi:10.1126/science.281.5376.549. Falkner, K. K., et al. ( 2011 ), Context for the recent massive Petermann Glacier calving event, Eos Trans. AGU, 92 ( 14 ), 117 – 118, doi:10.1029/2011EO140001. Howat, I. M., J. E. Box, Y. Ahn, A. Herrington, and E. M. McFadden ( 2010 ), Seasonal variability in the dynamics of marine‐terminating outlet glaciers in Greenland, J. Glaciol., 56 ( 198 ), 601 – 613, doi:10.3189/002214310793146232. Howat, I. M., K. Jezek, M. Studinger, J. A. MacGregor, J. Paden, D. Floricioiu, R. Russell, M. Linkswiler, and R. T. Dominguez ( 2012 ), Rift in Antarctic Glacier: A unique chance to study ice shelf retreat, Eos Trans. AGU, 93 ( 8 ), 77 – 78, doi:10.1029/2012EO080001. Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux ( 2011 ), Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf, Nat. Geosci., 4 ( 8 ), 519 – 523, doi:10.1038/ngeo1188. Jeong, S., and I. M. Howat ( 2016 ), Performance of Landsat 8 Operational Land Imager for mapping ice sheet velocity, Remote Sens. Environ., 170, 90 – 101, doi:10.1016/j.rse.2015.08.023. Joughin, I., B. E. Smith, and B. Medley ( 2014 ), Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica, Science, 344 ( 6185 ), 735 – 738, doi:10.1126/science.1249055. Joughin, I., D. Shean, B. E. Smith, and P. Dutrieux ( 2016 ), Grounding line variability and subglacial lake drainage on Pine Island Glacier, Antarctica, Geophys. Res. Lett., 43, 9093 – 9102, doi:10.1002/2016GL070259. Lee, H., C. K. Shum, I. M. Howat, A. Monaghan, Y. Ahn, J. Duan, J.‐Y. Guo, C.‐Y. Kuo, and L. Wang ( 2012 ), Continuously accelerating ice loss over Amundsen Sea catchment, West Antarctica, revealed by integrating altimetry and GRACE data, Earth Planet Sci. Lett., 321‐322, 74 – 80, doi:10.1016/j.epsl.2011.12.040. Liu, Y., J. C. Moore, X. Cheng, R. M. Gladstone, J. N. Bassis, H. Liu, J. Wen, and F. Hui ( 2015 ), Ocean‐driven thinning enhances iceberg calving and retreat of Antarctic ice shelves, Proc. Natl. Acad. Sci. U.S.A., 112 ( 11 ), 3263 – 3268, doi:10.1073/pnas.1415137112. Luckman, A., D. Jansen, B. Kulessa, E. C. King, P. Sammonds, and D. I. Benn ( 2012 ), Basal crevasses in Larsen C Ice Shelf and implications for their global abundance, Cryosphere, 6 ( 1 ), 113 – 123, doi:10.5194/tc-6-113-2012. MacGregor, J. A., G. A. Catania, M. S. Markowski, and A. G. Andrews ( 2012 ), Widespread rifting and retreat of ice‐shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011, J. Glaciol., 58 ( 209 ), 458 – 466, doi:10.3189/2012JoG11J262. McGrath, D., K. Steffen, H. Rajaram, T. Scambos, W. Abdalati, and E. Rignot ( 2012 ), Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture, Geophys. Res. Lett., 39, L16504, doi:10.1029/2012GL052413. Rignot, E., J. Mouginot, and B. Scheuchl ( 2011 ), Ice flow of the Antarctic Ice Sheet, Science, 333 ( 6048 ), 1427 – 1430, doi:10.1126/Science.1208336. Rignot, E., J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl ( 2014 ), Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502 – 3509, doi:10.1002/2014GL060140. Scambos, T. A., M. J. Dutkiewicz, J. C. Wilson, and R. A. Bindschadler ( 1992 ), Application of image cross‐correlation to the measurement of glacier velocity using satellite image data, Remote Sens. Environ., 42, 177 – 186, doi:10.1016/0034-4257(92)90101-O. Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki ( 2014 ), Multidecadal warming of Antarctic waters, Science, 346 ( 6214 ), 1227 – 1231. Shepherd, A., D. Wingham, and E. Rignot ( 2004 ), Warm ocean is eroding West Antarctic Ice Sheet, Geophys. Res. Lett., 31, L23402, doi:10.1029/2004GL021106. Vaughan, D. G., H. F. J. Corr, R. A. Bindschadler, P. Dutrieux, G. H. Gudmundsson, A. Jenkins, T. Newman, P. Vornberger, and D. J. Wingham ( 2012 ), Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica, J. Geophys. Res., 117, F03012, doi:10.1029/2012JF002360. Walker, C. C., J. N. Bassis, H. A. Fricker, and R. J. Czerwinski ( 2013 ), Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring, J. Geophys. Res. Earth Surf., 118, 2354 – 2364, doi:10.1002/2013JF002742. Walker, C. C., J. N. Bassis, H. A. Fricker, and R. J. Czerwinski ( 2015 ), Observations of interannual and spatial variability in rift propagation in the Amery Ice Shelf, Antarctica, 2002–14, J. Glaciol., 61 ( 226 ), 243 – 252, doi:10.3189/2015JoG14J151. Ahn, Y., and I. M. Howat ( 2011 ), Efficient automated glacier surface velocity measurement from repeat images using multi‐image/multichip and null exclusion feature tracking, IEEE Trans. Geosci. Remote Sens., 49 ( 8 ), 2838 – 2846, doi:10.1109/TGRS.2011.2114891. Amundson, J. M., M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. J. Motyka ( 2010 ), Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, doi:10.1029/2009JF001405. Bassis, J. N., H. A. Fricker, R. Coleman, and J.‐B. Minster ( 2008 ), An investigation into the forces that drive ice‐shelf rift propagation on the Amery Ice Shelf, East Antarctica, J. Glaciol., 54 ( 184 ), 17 – 27, doi:10.3189/002214308784409116. Bassis, J. N., and Y. Ma ( 2015 ), Evolution of basal crevasses links ice shelf stability to ocean forcing, Earth Planet Sci. Lett., 409, 203 – 211, doi:10.1016/j.epsl.2014.11.003. Bindschadler, R., and E. Rignot ( 2001 ), “Crack!” in the polar night, Eos Trans. AGU, 82 ( 43 ), 497 – 505, doi:10.1029/01EO00294. Bindschadler, R. A. ( 2002 ), History of lower Pine Island Glacier, West Antarctica, from Landsat imagery, J. Glaciol., 48 ( 163 ), 536 – 544, doi:10.3189/172756502781831052. Bindschadler, R., D. G. Vaughan, and P. Vornberger ( 2011 ), Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica, J. Glaciol., 57 ( 204 ), 581 – 595, doi:10.3189/002214311797409802. Dutrieux, P., J. De Rydt, A. Jenkins, P. R. Holland, H. K. Ha, S. H. Lee, E. J. Steig, Q. Ding, E. P. Abrahamsen, and M. Schröder ( 2014 ), Strong sensitivity of Pine Island Ice‐Shelf melting to climatic variability, Science, 343 ( 6167 ), 174 – 178, doi:10.1126/science.1244341. IndexNoFollow basal crevasse Landsat calving rifting Pine Island Glacier Geological Sciences Science Article 2016 ftumdeepblue https://doi.org/10.1002/2016GL07136010.1126/science.281.5376.54910.1029/2011EO14000110.3189/00221431079314623210.1029/2012EO08000110.1038/ngeo118810.1016/j.rse.2015.08.02310.1126/science.124905510.1002/2016GL07025910.1016/j.epsl.2011.12.04010.1073/pnas.14 2023-07-31T20:48:27Z Pine Island Glacier has undergone several major iceberg calving events over the past decades. These typically occurred when a rift at the heavily fractured shear margin propagated across the width of the ice shelf. This type of calving is common on polar ice shelves, with no clear connection to ocean‐ice dynamic forcing. In contrast, we report on the recent development of multiple rifts initiating from basal crevasses in the center of the ice shelf, resulted in calving further upglacier than previously observed. Coincident with rift formation was the sudden disintegration of the ice mélange that filled the northern shear margin, resulting in ice sheet detachment from this margin. Examination of ice velocity suggests that this internal rifting resulted from the combination of a change in ice shelf stress regime caused by disintegration of the mélange and intensified melting within basal crevasses, both of which may be linked to ocean forcing.Key PointsThe 2015 calving event from Pine Island Glacier, West Antarctica, resulted from rifts that initiated from the center of the ice shelfThe calving event coincided with disintegration of mélange and rotation of the ice shelfWe attribute the increased rifting and calving to ice‐ocean interaction associated with basal crevasse development Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/135693/1/grl55204.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/135693/2/grl55204_am.pdf Article in Journal/Newspaper Antarc* Antarctica Ice Sheet Ice Shelf Ice Shelves Pine Island Pine Island Glacier West Antarctica University of Michigan: Deep Blue West Antarctica Pine Island Glacier ENVELOPE(-101.000,-101.000,-75.000,-75.000) Geophysical Research Letters 43 22