Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT

Using quasiâ simultaneous lineâ ofâ sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al....

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Sarno‐smith, Lois K., Kosch, Michael J., Yeoman, Timothy, Rietveld, Michael, Nel, Amore’, Liemohn, Michael W.
Format: Article in Journal/Newspaper
Language:unknown
Published: National Committee for Radio Science 2016
Subjects:
Online Access:https://hdl.handle.net/2027.42/134143
https://doi.org/10.1002/2016JA022788
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/134143
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic ionospheric number density
SuperDARN
EISCAT
dual frequency
CUTLASS
Astronomy and Astrophysics
Science
spellingShingle ionospheric number density
SuperDARN
EISCAT
dual frequency
CUTLASS
Astronomy and Astrophysics
Science
Sarno‐smith, Lois K.
Kosch, Michael J.
Yeoman, Timothy
Rietveld, Michael
Nel, Amore’
Liemohn, Michael W.
Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT
topic_facet ionospheric number density
SuperDARN
EISCAT
dual frequency
CUTLASS
Astronomy and Astrophysics
Science
description Using quasiâ simultaneous lineâ ofâ sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dualâ frequency capability on CUTLASS and compare lineâ ofâ sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.Key PointsDirection comparison of EISCAT and SuperDARN derived electron densitiesTest of multiple methods with SuperDARN dataSuperDARN and EISCAT disagree by large margins Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/134143/1/jgra52841_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/134143/2/jgra52841.pdf
format Article in Journal/Newspaper
author Sarno‐smith, Lois K.
Kosch, Michael J.
Yeoman, Timothy
Rietveld, Michael
Nel, Amore’
Liemohn, Michael W.
author_facet Sarno‐smith, Lois K.
Kosch, Michael J.
Yeoman, Timothy
Rietveld, Michael
Nel, Amore’
Liemohn, Michael W.
author_sort Sarno‐smith, Lois K.
title Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT
title_short Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT
title_full Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT
title_fullStr Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT
title_full_unstemmed Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT
title_sort ionospheric electron number densities from cutlass dualâ frequency velocity measurements using artificial backscatter over eiscat
publisher National Committee for Radio Science
publishDate 2016
url https://hdl.handle.net/2027.42/134143
https://doi.org/10.1002/2016JA022788
geographic Norway
geographic_facet Norway
genre EISCAT
genre_facet EISCAT
op_relation Sarno‐smith, Lois K.
Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore’; Liemohn, Michael W. (2016). "Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT." Journal of Geophysical Research: Space Physics 121(8): 8066-8076.
2169-9380
2169-9402
https://hdl.handle.net/2027.42/134143
doi:10.1002/2016JA022788
Journal of Geophysical Research: Space Physics
Pryse, S., K. Dewis, R. Balthazor, H. Middleton, and M. Denton ( 2005 ), The dayside highâ latitude trough under quiet geomagnetic conditions: Radio tomography and the CTIP model, Ann. Geophys., 23, 1199 â 1206.
Hooke, W. H. ( 1968 ), Ionospheric irregularities produced by internal atmospheric gravity waves, J. Atmos. Terr. Phys., 30 ( 5 ), 795 â 823.
Hosokawa, K., K. Shiokawa, Y. Otsuka, T. Ogawa, J.â P. Stâ Maurice, G. Sofko, and D. Andre ( 2009 ), Relationship between polar cap patches and fieldâ aligned irregularities as observed with an allâ sky airglow imager at resolute bay and the PolarDARN radar at Rankin Inlet, J. Geophys. Res., 114, A03306, doi:10.1029/2008JA013707.
Kelley, M. C., T. L. Arce, J. Salowey, M. Sulzer, W. T. Armstrong, M. Carter, and L. Duncan ( 1995 ), Density depletions at the 10â m scale induced by the Arecibo heater, J. Geophys. Res., 100 ( A9 ), 17,367 â 17,376, doi:10.1029/95JA00063.
Kosch, M. J., and E. Nielsen ( 1995 ), Coherent radar estimates of average highâ latitude ionospheric Joule heating, J. Geophys. Res., 100 ( A7 ), 12,201 â 12,215.
Kosch, M. J., M. Rietveld, A. Kavanagh, C. Davis, T. Yeoman, F. Honary, and T. Hagfors ( 2002 ), Highâ latitude pumpâ induced optical emissions for frequencies close to the third electron gyroâ harmonic, Geophys. Res. Lett., 29 ( 23 ), 2112, doi:10.1029/2002GL015744.
Kosch, M. J., M. Rietveld, A. Senior, I. McCrea, A. Kavanagh, B. Isham, and F. Honary ( 2004 ), Novel artificial optical annular structures in the high latitude ionosphere over EISCAT, Geophys. Res. Lett., 31 ( 12 ), L12805, doi:10.1029/2004GL019713.
Lehtinen, M. S., and A. Huuskonen ( 1996 ), General incoherent scatter analysis and GUISDAP, J. Atmos. Terr. Phys., 58 ( 1 ), 435 â 452.
Lester, M., et al. ( 2004 ), STEREO CUTLASSâ A new capability for the SuperDARN HF radars, Ann. Geophys., 22, 459 â 473.
Leyser, T., B. Thidé, H. Derblom, à . Hedberg, B. Lundborg, P. Stubbe, and H. Kopka ( 1990 ), Dependence of stimulated electromagnetic emission on the ionosphere and pump wave, J. Geophys. Res., 95 ( A10 ), 17,233 â 17,244.
Moen, J., N. Gulbrandsen, D. Lorentzen, and H. Carlson ( 2007 ), On the MLT distribution of F region polar cap patches at night, Geophys. Res. Lett., 34, L14113, doi:10.1029/2007GL029632.
Norman, R., et al. ( 2004 ), Comparing HF radar backscatter from the southern ocean with rayâ tracing results using the IRI model, in Proceedings of the Workshop on the Applications of Radio Science, pp. 18 â 20, National Committee for Radio Science, Hobart, Tasmania.
Ponomarenko, P., C. Waters, and F. Menk ( 2008 ), Effects of mixed scatter on SuperDARN convection maps, Ann. Geophys., 26, 1517 â 1523.
Rietveld, M., H. Kohl, H. Kopka, and P. Stubbe ( 1993 ), Introduction to ionospheric heating at Tromsø. Experimental overview, J. Atmos. Terr. Phys., 55 ( 4 ), 577 â 599.
Rietveld, M., M. J. Kosch, N. Blagoveshchenskaya, V. Kornienko, T. Leyser, and T. Yeoman ( 2003 ), Ionospheric electron heating, optical emissions, and striations induced by powerful HF radio waves at high latitudes: Aspect angle dependence, J. Geophys. Res., 108, 1141.
Rishbeth, H., and A. Van Eyken ( 1993 ), EISCAT: Early history and the first ten years of operation, J. Atmos. Terr. Phys., 55 ( 4 ), 525 â 542.
Robinson, R., R. Vondrak, K. Miller, T. Dabbs, and D. Hardy ( 1987 ), On calculating ionospheric conductances from the flux and energy of precipitating electrons, J. Geophys. Res., 92 ( A3 ), 2565 â 2569.
Senior, A., M. T. Rietveld, N. Borisov, M. Kosch, and T. Yeoman ( 2004 ), Multiâ frequency HF radar measurements of artificial Fâ region fieldâ aligned irregularities, Ann. Geophys., 22 ( 10 ), 3503 â 3511.
Sojka, J. J., R. W. Schunk, and J. Whalen ( 1990 ), The longitude dependence of the dayside F region trough: A detailed modelâ observation comparison, J. Geophys. Res., 95 ( A9 ), 15,275 â 15,280.
Thomas, E., J. Baker, J. Ruohoniemi, L. Clausen, A. Coster, J. Foster, and P. Erickson ( 2013 ), Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density, J. Geophys. Res. Space Physics, 118 ( 3 ), 1180 â 1189.
Weber, E., J. Klobuchar, J. Buchau, H. Carlson, R. Livingston, O. Beaujardiere, M. McCready, J. Moore, and G. Bishop ( 1986 ), Polar cap F layer patches: Structure and dynamics, J. Geophys. Res., 91 ( A11 ), 12,121 â 12,129.
Wright, D., J. Davies, T. K. Yeoman, T. Robinson, and H. Shergill ( 2006 ), Saturation and hysteresis effects in ionospheric modification experiments observed by the CUTLASS and EISCAT radars, Ann. Geophys., 24, 543 â 553.
Xu, L., A. Koustov, J. Thayer, and M. McCready ( 2001 ), SuperDARN convection and Sondrestrom plasma drift, Ann. Geophys., 19, 749 â 759.
Yeoman, T. K., G. Chisham, L. Baddeley, R. Dhillon, T. Karhunen, T. Robinson, A. Senior, and D. Wright ( 2008 ), Mapping ionospheric backscatter measured by the SuperDARN HF radarsâ Part 2: Assessing SuperDARN virtual height models, Ann. Geophys., 26 ( 4 ), 843 â 852.
Zhang, Q.â H., et al. ( 2013 ), Direct observations of the evolution of polar cap ionization patches, Science, 339 ( 6127 ), 1597 â 1600.
André, D., G. J. Sofko, K. Baker, and J. MacDougall ( 1998 ), SuperDARN interferometry: Meteor echoes and electron densities from ground scatter, J. Geophys. Res., 103 ( A4 ), 7003 â 7015.
Baker, J. B., J. M. Ruohoniemi, A. J. Ribeiro, L. B. Clausen, R. A. Greenwald, N. A. Frissell, and K. A. Sterne ( 2011 ), SuperDARN ionospheric space weather, IEEE Aerosp. Electron. Syst. Mag., 26 ( 10 ), 30 â 34.
Bilitza, D. ( 2001 ), International Reference Ionosphere 2000, Radio Sci., 36 ( 2 ), 261 â 275.
Chisham, G., et al. ( 2007 ), A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions, Surv. Geophys., 28 ( 1 ), 33 â 109.
Cierpka, K., M. J. Kosch, M. Rietveld, K. Schlegel, and T. Hagfors ( 2000 ), Ionâ neutral coupling in the highâ latitude Fâ layer from incoherent scatter and Fabry Perot interferometer measurements, Ann. Geophys., 18 ( 9 ), 1145 â 1153.
Davies, J., M. Lester, S. E. Milan, and T. Yeoman ( 1999 ), A comparison of velocity measurements from the CUTLASS Finland radar and the EISCAT UHF system, Ann. Geophys., 17, 892 â 902.
de Larquier, S., J. Ruohoniemi, J. Baker, N. Ravindran Varrier, and M. Lester ( 2011 ), First observations of the midlatitude evening anomaly using Super Dual Auroral Radar Network (SuperDARN) radars, J. Geophys. Res., 116, A10321, doi:10.1029/2011JA016787.
Dhillon, R. S. ( 2002 ), Radar studies of natural and artificial waves and instabilities in the auroral ionosphere, PhD thesis, Univ. of Leicester, U. K.
Drell, S., H. Foley, and M. Ruderman ( 1965 ), Drag and propulsion of large satellites in the ionosphere: An Alfvén propulsion engine in space, J. Geophys. Res., 70 ( 13 ), 3131 â 3145.
Eglitis, P., T. Robinson, M. Rietveld, D. Wright, and G. Bond ( 1998 ), The phase speed of artificial fieldâ aligned irregularities observed by CUTLASS during HF modification of the auroral ionosphere, J. Geophys. Res., 103 ( A2 ), 2253 â 2259.
Gillies, R., G. Hussey, G. Sofko, K. McWilliams, R. Fiori, P. Ponomarenko, and J.â P. Stâ Maurice ( 2009 ), Improvement of SuperDARN velocity measurements by estimating the index of refraction in the scattering region using interferometry, J. Geophys. Res., 114, A07305, doi:10.1029/2008JA013967.
Gillies, R., G. Hussey, G. Sofko, D. Wright, and J. Davies ( 2010 ), A comparison of EISCAT and SuperDARN Fâ region measurements with consideration of the refractive index in the scattering volume, J. Geophys. Res., 115, A06319, doi:10.1029/2009JA014694.
Gillies, R., G. Hussey, G. Sofko, P. Ponomarenko, and K. McWilliams ( 2011 ), Improvement of HF coherent radar lineâ ofâ sight velocities by estimating the refractive index in the scattering volume using radar frequency shifting, J. Geophys. Res., 116, A01302, doi:10.1029/2010JA016043.
Gillies, R., G. Hussey, G. Sofko, and K. McWilliams ( 2012 ), A statistical analysis of SuperDARN scattering volume electron densities and velocity corrections using a radar frequency shifting technique, J. Geophys. Res., 117, A08320, doi:10.1029/2012JA017866.
Greenwald, R., et al. ( 1995 ), Darn/SuperDARN, Space Sci. Rev., 71 ( 1â 4 ), 761 â 796.
Gurevich, A., K. Zybin, and A. Lukyanov ( 1995 ), Stationary striations developed in the ionospheric modification, Phys. Rev. Lett., 75 ( 13 ), 2622.
Gurevich, A., H. Carlson, M. Kelley, T. Hagfors, A. Karashtin, and K. Zybin ( 1999 ), Nonlinear structuring of the ionosphere modified by powerful radio waves at low latitudes, Phys. Lett. A, 251 ( 5 ), 311 â 321.
Gurevich, A., E. Fremouw, J. Secan, and K. Zybin ( 2002 ), Large scale structuring of plasma density perturbations in ionospheric modifications, Phys. Lett. A, 301 ( 3 ), 307 â 314.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2016JA02278810.1029/2008JA01370710.1029/95JA0006310.1029/2002GL01574410.1029/2004GL01971310.1029/2007GL02963210.1029/2011JA01678710.1029/2008JA01396710.1029/2009JA01469410.1029/2010JA01604310.1029/2012JA017866
container_title Journal of Geophysical Research: Space Physics
container_volume 121
container_issue 8
container_start_page 8066
op_container_end_page 8076
_version_ 1774717193496297472
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/134143 2023-08-20T04:06:14+02:00 Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT Sarno‐smith, Lois K. Kosch, Michael J. Yeoman, Timothy Rietveld, Michael Nel, Amore’ Liemohn, Michael W. 2016-08 application/pdf https://hdl.handle.net/2027.42/134143 https://doi.org/10.1002/2016JA022788 unknown National Committee for Radio Science Wiley Periodicals, Inc. Sarno‐smith, Lois K. Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore’; Liemohn, Michael W. (2016). "Ionospheric electron number densities from CUTLASS dualâ frequency velocity measurements using artificial backscatter over EISCAT." Journal of Geophysical Research: Space Physics 121(8): 8066-8076. 2169-9380 2169-9402 https://hdl.handle.net/2027.42/134143 doi:10.1002/2016JA022788 Journal of Geophysical Research: Space Physics Pryse, S., K. Dewis, R. Balthazor, H. Middleton, and M. Denton ( 2005 ), The dayside highâ latitude trough under quiet geomagnetic conditions: Radio tomography and the CTIP model, Ann. Geophys., 23, 1199 â 1206. Hooke, W. H. ( 1968 ), Ionospheric irregularities produced by internal atmospheric gravity waves, J. Atmos. Terr. Phys., 30 ( 5 ), 795 â 823. Hosokawa, K., K. Shiokawa, Y. Otsuka, T. Ogawa, J.â P. Stâ Maurice, G. Sofko, and D. Andre ( 2009 ), Relationship between polar cap patches and fieldâ aligned irregularities as observed with an allâ sky airglow imager at resolute bay and the PolarDARN radar at Rankin Inlet, J. Geophys. Res., 114, A03306, doi:10.1029/2008JA013707. Kelley, M. C., T. L. Arce, J. Salowey, M. Sulzer, W. T. Armstrong, M. Carter, and L. Duncan ( 1995 ), Density depletions at the 10â m scale induced by the Arecibo heater, J. Geophys. Res., 100 ( A9 ), 17,367 â 17,376, doi:10.1029/95JA00063. Kosch, M. J., and E. Nielsen ( 1995 ), Coherent radar estimates of average highâ latitude ionospheric Joule heating, J. Geophys. Res., 100 ( A7 ), 12,201 â 12,215. Kosch, M. J., M. Rietveld, A. Kavanagh, C. Davis, T. Yeoman, F. Honary, and T. Hagfors ( 2002 ), Highâ latitude pumpâ induced optical emissions for frequencies close to the third electron gyroâ harmonic, Geophys. Res. Lett., 29 ( 23 ), 2112, doi:10.1029/2002GL015744. Kosch, M. J., M. Rietveld, A. Senior, I. McCrea, A. Kavanagh, B. Isham, and F. Honary ( 2004 ), Novel artificial optical annular structures in the high latitude ionosphere over EISCAT, Geophys. Res. Lett., 31 ( 12 ), L12805, doi:10.1029/2004GL019713. Lehtinen, M. S., and A. Huuskonen ( 1996 ), General incoherent scatter analysis and GUISDAP, J. Atmos. Terr. Phys., 58 ( 1 ), 435 â 452. Lester, M., et al. ( 2004 ), STEREO CUTLASSâ A new capability for the SuperDARN HF radars, Ann. Geophys., 22, 459 â 473. Leyser, T., B. Thidé, H. Derblom, à . Hedberg, B. Lundborg, P. Stubbe, and H. Kopka ( 1990 ), Dependence of stimulated electromagnetic emission on the ionosphere and pump wave, J. Geophys. Res., 95 ( A10 ), 17,233 â 17,244. Moen, J., N. Gulbrandsen, D. Lorentzen, and H. Carlson ( 2007 ), On the MLT distribution of F region polar cap patches at night, Geophys. Res. Lett., 34, L14113, doi:10.1029/2007GL029632. Norman, R., et al. ( 2004 ), Comparing HF radar backscatter from the southern ocean with rayâ tracing results using the IRI model, in Proceedings of the Workshop on the Applications of Radio Science, pp. 18 â 20, National Committee for Radio Science, Hobart, Tasmania. Ponomarenko, P., C. Waters, and F. Menk ( 2008 ), Effects of mixed scatter on SuperDARN convection maps, Ann. Geophys., 26, 1517 â 1523. Rietveld, M., H. Kohl, H. Kopka, and P. Stubbe ( 1993 ), Introduction to ionospheric heating at Tromsø. Experimental overview, J. Atmos. Terr. Phys., 55 ( 4 ), 577 â 599. Rietveld, M., M. J. Kosch, N. Blagoveshchenskaya, V. Kornienko, T. Leyser, and T. Yeoman ( 2003 ), Ionospheric electron heating, optical emissions, and striations induced by powerful HF radio waves at high latitudes: Aspect angle dependence, J. Geophys. Res., 108, 1141. Rishbeth, H., and A. Van Eyken ( 1993 ), EISCAT: Early history and the first ten years of operation, J. Atmos. Terr. Phys., 55 ( 4 ), 525 â 542. Robinson, R., R. Vondrak, K. Miller, T. Dabbs, and D. Hardy ( 1987 ), On calculating ionospheric conductances from the flux and energy of precipitating electrons, J. Geophys. Res., 92 ( A3 ), 2565 â 2569. Senior, A., M. T. Rietveld, N. Borisov, M. Kosch, and T. Yeoman ( 2004 ), Multiâ frequency HF radar measurements of artificial Fâ region fieldâ aligned irregularities, Ann. Geophys., 22 ( 10 ), 3503 â 3511. Sojka, J. J., R. W. Schunk, and J. Whalen ( 1990 ), The longitude dependence of the dayside F region trough: A detailed modelâ observation comparison, J. Geophys. Res., 95 ( A9 ), 15,275 â 15,280. Thomas, E., J. Baker, J. Ruohoniemi, L. Clausen, A. Coster, J. Foster, and P. Erickson ( 2013 ), Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density, J. Geophys. Res. Space Physics, 118 ( 3 ), 1180 â 1189. Weber, E., J. Klobuchar, J. Buchau, H. Carlson, R. Livingston, O. Beaujardiere, M. McCready, J. Moore, and G. Bishop ( 1986 ), Polar cap F layer patches: Structure and dynamics, J. Geophys. Res., 91 ( A11 ), 12,121 â 12,129. Wright, D., J. Davies, T. K. Yeoman, T. Robinson, and H. Shergill ( 2006 ), Saturation and hysteresis effects in ionospheric modification experiments observed by the CUTLASS and EISCAT radars, Ann. Geophys., 24, 543 â 553. Xu, L., A. Koustov, J. Thayer, and M. McCready ( 2001 ), SuperDARN convection and Sondrestrom plasma drift, Ann. Geophys., 19, 749 â 759. Yeoman, T. K., G. Chisham, L. Baddeley, R. Dhillon, T. Karhunen, T. Robinson, A. Senior, and D. Wright ( 2008 ), Mapping ionospheric backscatter measured by the SuperDARN HF radarsâ Part 2: Assessing SuperDARN virtual height models, Ann. Geophys., 26 ( 4 ), 843 â 852. Zhang, Q.â H., et al. ( 2013 ), Direct observations of the evolution of polar cap ionization patches, Science, 339 ( 6127 ), 1597 â 1600. André, D., G. J. Sofko, K. Baker, and J. MacDougall ( 1998 ), SuperDARN interferometry: Meteor echoes and electron densities from ground scatter, J. Geophys. Res., 103 ( A4 ), 7003 â 7015. Baker, J. B., J. M. Ruohoniemi, A. J. Ribeiro, L. B. Clausen, R. A. Greenwald, N. A. Frissell, and K. A. Sterne ( 2011 ), SuperDARN ionospheric space weather, IEEE Aerosp. Electron. Syst. Mag., 26 ( 10 ), 30 â 34. Bilitza, D. ( 2001 ), International Reference Ionosphere 2000, Radio Sci., 36 ( 2 ), 261 â 275. Chisham, G., et al. ( 2007 ), A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions, Surv. Geophys., 28 ( 1 ), 33 â 109. Cierpka, K., M. J. Kosch, M. Rietveld, K. Schlegel, and T. Hagfors ( 2000 ), Ionâ neutral coupling in the highâ latitude Fâ layer from incoherent scatter and Fabry Perot interferometer measurements, Ann. Geophys., 18 ( 9 ), 1145 â 1153. Davies, J., M. Lester, S. E. Milan, and T. Yeoman ( 1999 ), A comparison of velocity measurements from the CUTLASS Finland radar and the EISCAT UHF system, Ann. Geophys., 17, 892 â 902. de Larquier, S., J. Ruohoniemi, J. Baker, N. Ravindran Varrier, and M. Lester ( 2011 ), First observations of the midlatitude evening anomaly using Super Dual Auroral Radar Network (SuperDARN) radars, J. Geophys. Res., 116, A10321, doi:10.1029/2011JA016787. Dhillon, R. S. ( 2002 ), Radar studies of natural and artificial waves and instabilities in the auroral ionosphere, PhD thesis, Univ. of Leicester, U. K. Drell, S., H. Foley, and M. Ruderman ( 1965 ), Drag and propulsion of large satellites in the ionosphere: An Alfvén propulsion engine in space, J. Geophys. Res., 70 ( 13 ), 3131 â 3145. Eglitis, P., T. Robinson, M. Rietveld, D. Wright, and G. Bond ( 1998 ), The phase speed of artificial fieldâ aligned irregularities observed by CUTLASS during HF modification of the auroral ionosphere, J. Geophys. Res., 103 ( A2 ), 2253 â 2259. Gillies, R., G. Hussey, G. Sofko, K. McWilliams, R. Fiori, P. Ponomarenko, and J.â P. Stâ Maurice ( 2009 ), Improvement of SuperDARN velocity measurements by estimating the index of refraction in the scattering region using interferometry, J. Geophys. Res., 114, A07305, doi:10.1029/2008JA013967. Gillies, R., G. Hussey, G. Sofko, D. Wright, and J. Davies ( 2010 ), A comparison of EISCAT and SuperDARN Fâ region measurements with consideration of the refractive index in the scattering volume, J. Geophys. Res., 115, A06319, doi:10.1029/2009JA014694. Gillies, R., G. Hussey, G. Sofko, P. Ponomarenko, and K. McWilliams ( 2011 ), Improvement of HF coherent radar lineâ ofâ sight velocities by estimating the refractive index in the scattering volume using radar frequency shifting, J. Geophys. Res., 116, A01302, doi:10.1029/2010JA016043. Gillies, R., G. Hussey, G. Sofko, and K. McWilliams ( 2012 ), A statistical analysis of SuperDARN scattering volume electron densities and velocity corrections using a radar frequency shifting technique, J. Geophys. Res., 117, A08320, doi:10.1029/2012JA017866. Greenwald, R., et al. ( 1995 ), Darn/SuperDARN, Space Sci. Rev., 71 ( 1â 4 ), 761 â 796. Gurevich, A., K. Zybin, and A. Lukyanov ( 1995 ), Stationary striations developed in the ionospheric modification, Phys. Rev. Lett., 75 ( 13 ), 2622. Gurevich, A., H. Carlson, M. Kelley, T. Hagfors, A. Karashtin, and K. Zybin ( 1999 ), Nonlinear structuring of the ionosphere modified by powerful radio waves at low latitudes, Phys. Lett. A, 251 ( 5 ), 311 â 321. Gurevich, A., E. Fremouw, J. Secan, and K. Zybin ( 2002 ), Large scale structuring of plasma density perturbations in ionospheric modifications, Phys. Lett. A, 301 ( 3 ), 307 â 314. IndexNoFollow ionospheric number density SuperDARN EISCAT dual frequency CUTLASS Astronomy and Astrophysics Science Article 2016 ftumdeepblue https://doi.org/10.1002/2016JA02278810.1029/2008JA01370710.1029/95JA0006310.1029/2002GL01574410.1029/2004GL01971310.1029/2007GL02963210.1029/2011JA01678710.1029/2008JA01396710.1029/2009JA01469410.1029/2010JA01604310.1029/2012JA017866 2023-07-31T20:21:57Z Using quasiâ simultaneous lineâ ofâ sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dualâ frequency capability on CUTLASS and compare lineâ ofâ sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.Key PointsDirection comparison of EISCAT and SuperDARN derived electron densitiesTest of multiple methods with SuperDARN dataSuperDARN and EISCAT disagree by large margins Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/134143/1/jgra52841_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/134143/2/jgra52841.pdf Article in Journal/Newspaper EISCAT University of Michigan: Deep Blue Norway Journal of Geophysical Research: Space Physics 121 8 8066 8076