Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach

The variability in water quality and zooplankton community structure during downstream transport was investigated in the Po river (Italy) using for the first time a Lagrangian sampling approach. Two surveys were conducted, one in spring under relatively high discharge levels, and one at low flows in...

Full description

Bibliographic Details
Published in:River Research and Applications
Main Authors: Bertani, I., Del Longo, M., Pecora, S., Rossetti, G.
Format: Article in Journal/Newspaper
Language:unknown
Published: Museo Nacional de Ciencias Naturales, CSIS 2016
Subjects:
Online Access:http://hdl.handle.net/2027.42/134064
https://doi.org/10.1002/rra.3028
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/134064
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic hydrochemistry
potamoplankton
community dynamics
space–time variability
hydrodynamic forecasting model
Italy
Po river
Transportation
Engineering
spellingShingle hydrochemistry
potamoplankton
community dynamics
space–time variability
hydrodynamic forecasting model
Italy
Po river
Transportation
Engineering
Bertani, I.
Del Longo, M.
Pecora, S.
Rossetti, G.
Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach
topic_facet hydrochemistry
potamoplankton
community dynamics
space–time variability
hydrodynamic forecasting model
Italy
Po river
Transportation
Engineering
description The variability in water quality and zooplankton community structure during downstream transport was investigated in the Po river (Italy) using for the first time a Lagrangian sampling approach. Two surveys were conducted, one in spring under relatively high discharge levels, and one at low flows in summer. Twelve stations along a 332‐km stretch of the river’s lowland reach and four major tributaries were sampled. A hydrodynamic modelling system was used to determine water transport time along the river, with a satisfying fit between simulated and observed discharge values. No clear downstream trend in phosphorus and nitrogen concentrations was found. Conversely, a marked longitudinal decrease in dissolved silica supports the hypothesis of increasing downstream silica limitation during the phytoplankton growing season.In spring, at low residence time, no apparent plankton growth was observed during downstream transport. In summer, higher temperatures and lower turbulence and turbidity associated with longer residence time stimulated algal growth and in‐stream reproduction of fast‐growing rotifer taxa, with the gradual downstream development of a truly potamal assemblage and the increase of the ratio of euplanktonic to littoral/epibenthic rotifer taxa. Crustacean zooplankton density was generally low. The importance of biotic interactions within the zooplankton in driving community abundance and composition appeared to increase in the downstream direction, paralleled by a decrease in the influence of physical forcing. Tributary influence was especially evident where severe anthropogenic alterations of river hydrology and trophic status resulted in enhanced plankton growth, ultimately affecting zooplankton structure in the main river. Copyright © 2016 John Wiley & Sons, Ltd. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/134064/1/rra3028.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/134064/2/rra3028_am.pdf
format Article in Journal/Newspaper
author Bertani, I.
Del Longo, M.
Pecora, S.
Rossetti, G.
author_facet Bertani, I.
Del Longo, M.
Pecora, S.
Rossetti, G.
author_sort Bertani, I.
title Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach
title_short Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach
title_full Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach
title_fullStr Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach
title_full_unstemmed Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach
title_sort longitudinal variability in hydrochemistry and zooplankton community of a large river: a lagrangian‐based approach
publisher Museo Nacional de Ciencias Naturales, CSIS
publishDate 2016
url http://hdl.handle.net/2027.42/134064
https://doi.org/10.1002/rra.3028
genre Polar Biology
Rotifer
genre_facet Polar Biology
Rotifer
op_relation Bertani, I.; Del Longo, M.; Pecora, S.; Rossetti, G. (2016). "Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach." River Research and Applications 32(8): 1740-1754.
1535-1459
1535-1467
http://hdl.handle.net/2027.42/134064
doi:10.1002/rra.3028
River Research and Applications
Segers H. 1994. Redescription of Lecane fadeevi (Neiswestnowa‐Shadina, 1935) (Rotifera, Lecanidae). Bulletin de l’Institut Royal de Sciences Naturelles de Belgique, Biologie 64: 235 – 238.
Rossetti G, Viaroli P, Ferrari I. 2009. Role of abiotic and biotic factors in structuring the metazoan plankton community in a lowland river. River Research and Applications 25: 814 – 835.
Ruttner‐Kolisko A. 1974. Planktonic Rotifers: Biology and Taxonomy Die Binnengewässer (Suppl.) 26. Schweizerbart: Stuttgart.
de Ruyter van Steveninck ED, Admiraal W, Breebaart L, Tubbing GMJ, van Zanten B. 1992. Plankton in the River Rhine: structural and functional changes observed during downstream transport. Journal of Plankton Research 14: 1351 – 1368.
Rzoska J. 1978. On the Nature of Rivers. Dr. W. Junk: The Hague.
Scherwass A, Bergfeld T, Schöl A, Weitere M, Arndt H. 2010. Changes in the plankton community along the length of the River Rhine: Lagrangian sampling during a spring situation. Journal of Plankton Research 32: 491 – 502.
Schiemer F, Keckeis H, Reckendorfer W, Winkler G. 2001. The “inshore retention concept” and its significance for large rivers. Archiv für Hydrobiologie, Supp. 135. Large Rivers 12: 509 – 516.
Segers H. 1995a. Rotifera. Vol. 2: The Lecanidae (Monogononta). SPB Academic Publishing: Amsterdam.
Segers H. 1995b. A reappraisal of the Scaridiidae (Rotifera, Monogononta). Zoologica Scripta 24: 91 – 100.
Segers H, Sarma SSS, Ovie SI, Mbogo DK. 1994. Note on the taxonomy and distribution of Brachionus durgae Dhanapathi, 1974 (Rotifera: Brachionidae). Journal of African Zoology 108: 397 – 400.
Sluss TD, Cobbs GA, Thorp JH. 2008. Impact of turbulence on riverine zooplankton: a mesocosm experiment. Freshwater Biology 53: 1999 – 2010.
Syvitski JPM, Kettner AJ. 2007. On the flux of water and sediment into the Northern Adriatic Sea. Continental Shelf Research 27: 296 – 308.
Tavernini S, Pierobon E, Viaroli P. 2011. Physical factors and dissolved reactive silica affect phytoplankton community structure and dynamics in a lowland eutrophic river (Po river, Italy). Hydrobiologia 669: 213 – 225.
Ueda H, Reid JW. 2003. Copepoda: Cyclopoida. Genera Mesocyclops and Thermocyclops. Backhuys Publishers: Leiden.
Valderrama JC. 1977. Methods used by the hydrographical department of the National Board of Fisheries. In Report of the Baltic Intercalibration Workshop. Annex, Interim Commission for the Protection of the Environment of the Baltic Sea, Grasshof K (ed). Goteborg: Sweden; 13 – 40.
Vezzoli R, Pecora S, Manzi M‐P. 2013 Using a weather generator to simulate daily precipitation scenarios from seasonal weather forecasts. CMCC Research Paper No. 176, 9 pp.
Viaroli P, Bartoli M, Castaldelli G, Naldi M, Nizzoli D, Rossetti G. 2013a. Recent evolution and expected changes of nutrient loads in a heavily exploited watershed: the Po River, Italy. IASH Publication 361: 175 – 182.
Viaroli P, Nizzoli D, Pinardi M, Rossetti G, Bartoli M. 2013b. Factors affecting dissolved silica concentrations, and DSi and DIN stoichiometry in a human impacted watershed (Po river, Italy). Silicon 5: 101 – 114.
Volkmar EC, Dahlgren RA, Stringfellow WT, Henson SS, Borglin SE, Kendall C, Van Nieuwenhuyse EE. 2011. Using Lagrangian sampling to study water quality during downstream transport in the San Luis Drain, California, USA. Chemical Geology 283: 68 – 77.
Weitere M, Arndt H. 2003. Structure of the heterotrophic flagellate community in the water column of the River Rhine (Germany). European Journal of Protistology 39: 287 – 300.
Welker M, Walz N. 1998. Can mussels control the plankton in rivers?—a planktological approach applying a Lagrangian sampling strategy. Limnology and Oceanography 43: 753 – 762.
Writer JH, Keefe SK, Ryan JN, Ferrer I, Thurman ME, Barber LB. 2011. Methods for evaluating in‐stream attenuation of trace organic compounds. Applied Geochemistry 26: S344 – S345.
Zanchettin D, Traverso P, Tomasino M. 2008. Po River discharges: a preliminary analysis of a 200‐year time series. Climatic Change 89: 411 – 433.
Zhou S, Tang T, Wu N, Fu X, Cai Q. 2008. Impact of a small dam on riverine zooplankton. International Review of Hydrobiology 93: 297 – 311.
Zimmermann‐Timm H, Holst H, Kausch H. 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: how important are retentive shoreline habitats for the plankton community? Hydrobiologia 593: 49 – 58.
Alonso M. 1996. Crustacea, Branchiopoda. Fauna Ibérica, vol. 7. Museo Nacional de Ciencias Naturales, CSIS: Madrid.
American Public Health Association, American Water Works Association, Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association: Washington DC.
Anderson MJ. 2001. A new method for non‐parametric multivariate analysis of variance. Austral Ecology 26: 32 – 46.
Bertani I, Ferrari I, Rossetti G. 2012. Role of intra‐community biotic interactions in structuring riverine zooplankton under low‐flow, summer conditions. Journal of Plankton Research 34: 308 – 320.
Bertani I, Leonardi S, Rossetti G. 2013. Antipredator‐induced trait changes in Brachionus and prey selectivity by Asplanchna in a large river under low‐discharge conditions: evidence from a field study. Hydrobiologia 702: 227 – 239.
Bertani I, Del Longo M, Pecora S, Rossetti G. 2014. Longitudinal dynamics of river zooplankton during downstream transport: a Lagrangian sampling approach. Atti dei Convegni Lincei 279: 251 – 258.
Braioni MG, Gelmini D. 1983. Rotiferi Monogononti (Rotatoria: Monogononta). Consiglio Nazionale delle Ricerche AQ/1/200: Roma.
Brown JB, Battaglin WA, Zuellig RE. 2009. Lagrangian sampling for emerging contaminants through an urban stream corridor in Colorado. Journal of the American Water Resources Association 45: 68 – 82.
Casper AF, Thorp JH. 2007. Diel and lateral patterns of zooplankton distribution in the St. Lawrence River. River Research and Applications 23: 73 – 85.
Coupe RH, Goolsby DA, Battaglin WA, Böhlke JK, McMahon PB, Kendall C. 2013. Transport of nitrate in the Mississippi River in July–August 1999. Annals of Environmental Science 7: 31 – 46.
De Leo GA, Ferrari I. 1993. Disturbance and diversity in a river zooplankton community: a neutral model analysis. Coenoses 8: 121 – 129.
De Smet WH. 1996. Rotifera. Vol. 4: The Proalidae (Monogononta). SPB Academic Publishing: Amsterdam.
De Smet WH, Gibson JAE. 2008. Rhinoglena kutikovae n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. Polar Biology 31: 595 – 603.
De Smet WH, Pourriot R. 1997. Rotifera. Vol. 5: The Dicranophoridae (Monogononta). SPB Academic Publishing: Amsterdam.
Deutsch B, Voss M, Fischer H. 2009. Nitrogen transformation processes in the Elbe River: distinguishing between assimilation and denitrification by means of stable isotope ratios in nitrate. Aquatic Sciences 71: 228 – 237.
Doyle MW, Ensign SH. 2009. Alternative reference frames in river system science. BioScience 59: 499 – 510.
Dussart BH. 1969. Les Copépodes des eaux continentales d’Europe occidentale. 1. Calanöides et Harpacticöides; 2. Cyclopöides et Biologie. Boubée & Cie: Paris.
Dussart BH, Defaye D. 1995. Copepoda: Introduction to the Copepoda. SPB Academic Publishing: Amsterdam.
Einsle U. 1996. Copepoda: Cyclopoida. Genera Cyclops, Megacyclops, Acanthocyclops. SPB Academic Publishing: Amsterdam.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/rra.302810.1002/rra.2977
container_title River Research and Applications
container_volume 32
container_issue 8
container_start_page 1740
op_container_end_page 1754
_version_ 1774722263929585664
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/134064 2023-08-20T04:09:22+02:00 Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach Bertani, I. Del Longo, M. Pecora, S. Rossetti, G. 2016-10 application/pdf http://hdl.handle.net/2027.42/134064 https://doi.org/10.1002/rra.3028 unknown Museo Nacional de Ciencias Naturales, CSIS Wiley Periodicals, Inc. Bertani, I.; Del Longo, M.; Pecora, S.; Rossetti, G. (2016). "Longitudinal Variability in Hydrochemistry and Zooplankton Community of a Large River: A Lagrangian‐Based Approach." River Research and Applications 32(8): 1740-1754. 1535-1459 1535-1467 http://hdl.handle.net/2027.42/134064 doi:10.1002/rra.3028 River Research and Applications Segers H. 1994. Redescription of Lecane fadeevi (Neiswestnowa‐Shadina, 1935) (Rotifera, Lecanidae). Bulletin de l’Institut Royal de Sciences Naturelles de Belgique, Biologie 64: 235 – 238. Rossetti G, Viaroli P, Ferrari I. 2009. Role of abiotic and biotic factors in structuring the metazoan plankton community in a lowland river. River Research and Applications 25: 814 – 835. Ruttner‐Kolisko A. 1974. Planktonic Rotifers: Biology and Taxonomy Die Binnengewässer (Suppl.) 26. Schweizerbart: Stuttgart. de Ruyter van Steveninck ED, Admiraal W, Breebaart L, Tubbing GMJ, van Zanten B. 1992. Plankton in the River Rhine: structural and functional changes observed during downstream transport. Journal of Plankton Research 14: 1351 – 1368. Rzoska J. 1978. On the Nature of Rivers. Dr. W. Junk: The Hague. Scherwass A, Bergfeld T, Schöl A, Weitere M, Arndt H. 2010. Changes in the plankton community along the length of the River Rhine: Lagrangian sampling during a spring situation. Journal of Plankton Research 32: 491 – 502. Schiemer F, Keckeis H, Reckendorfer W, Winkler G. 2001. The “inshore retention concept” and its significance for large rivers. Archiv für Hydrobiologie, Supp. 135. Large Rivers 12: 509 – 516. Segers H. 1995a. Rotifera. Vol. 2: The Lecanidae (Monogononta). SPB Academic Publishing: Amsterdam. Segers H. 1995b. A reappraisal of the Scaridiidae (Rotifera, Monogononta). Zoologica Scripta 24: 91 – 100. Segers H, Sarma SSS, Ovie SI, Mbogo DK. 1994. Note on the taxonomy and distribution of Brachionus durgae Dhanapathi, 1974 (Rotifera: Brachionidae). Journal of African Zoology 108: 397 – 400. Sluss TD, Cobbs GA, Thorp JH. 2008. Impact of turbulence on riverine zooplankton: a mesocosm experiment. Freshwater Biology 53: 1999 – 2010. Syvitski JPM, Kettner AJ. 2007. On the flux of water and sediment into the Northern Adriatic Sea. Continental Shelf Research 27: 296 – 308. Tavernini S, Pierobon E, Viaroli P. 2011. Physical factors and dissolved reactive silica affect phytoplankton community structure and dynamics in a lowland eutrophic river (Po river, Italy). Hydrobiologia 669: 213 – 225. Ueda H, Reid JW. 2003. Copepoda: Cyclopoida. Genera Mesocyclops and Thermocyclops. Backhuys Publishers: Leiden. Valderrama JC. 1977. Methods used by the hydrographical department of the National Board of Fisheries. In Report of the Baltic Intercalibration Workshop. Annex, Interim Commission for the Protection of the Environment of the Baltic Sea, Grasshof K (ed). Goteborg: Sweden; 13 – 40. Vezzoli R, Pecora S, Manzi M‐P. 2013 Using a weather generator to simulate daily precipitation scenarios from seasonal weather forecasts. CMCC Research Paper No. 176, 9 pp. Viaroli P, Bartoli M, Castaldelli G, Naldi M, Nizzoli D, Rossetti G. 2013a. Recent evolution and expected changes of nutrient loads in a heavily exploited watershed: the Po River, Italy. IASH Publication 361: 175 – 182. Viaroli P, Nizzoli D, Pinardi M, Rossetti G, Bartoli M. 2013b. Factors affecting dissolved silica concentrations, and DSi and DIN stoichiometry in a human impacted watershed (Po river, Italy). Silicon 5: 101 – 114. Volkmar EC, Dahlgren RA, Stringfellow WT, Henson SS, Borglin SE, Kendall C, Van Nieuwenhuyse EE. 2011. Using Lagrangian sampling to study water quality during downstream transport in the San Luis Drain, California, USA. Chemical Geology 283: 68 – 77. Weitere M, Arndt H. 2003. Structure of the heterotrophic flagellate community in the water column of the River Rhine (Germany). European Journal of Protistology 39: 287 – 300. Welker M, Walz N. 1998. Can mussels control the plankton in rivers?—a planktological approach applying a Lagrangian sampling strategy. Limnology and Oceanography 43: 753 – 762. Writer JH, Keefe SK, Ryan JN, Ferrer I, Thurman ME, Barber LB. 2011. Methods for evaluating in‐stream attenuation of trace organic compounds. Applied Geochemistry 26: S344 – S345. Zanchettin D, Traverso P, Tomasino M. 2008. Po River discharges: a preliminary analysis of a 200‐year time series. Climatic Change 89: 411 – 433. Zhou S, Tang T, Wu N, Fu X, Cai Q. 2008. Impact of a small dam on riverine zooplankton. International Review of Hydrobiology 93: 297 – 311. Zimmermann‐Timm H, Holst H, Kausch H. 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: how important are retentive shoreline habitats for the plankton community? Hydrobiologia 593: 49 – 58. Alonso M. 1996. Crustacea, Branchiopoda. Fauna Ibérica, vol. 7. Museo Nacional de Ciencias Naturales, CSIS: Madrid. American Public Health Association, American Water Works Association, Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association: Washington DC. Anderson MJ. 2001. A new method for non‐parametric multivariate analysis of variance. Austral Ecology 26: 32 – 46. Bertani I, Ferrari I, Rossetti G. 2012. Role of intra‐community biotic interactions in structuring riverine zooplankton under low‐flow, summer conditions. Journal of Plankton Research 34: 308 – 320. Bertani I, Leonardi S, Rossetti G. 2013. Antipredator‐induced trait changes in Brachionus and prey selectivity by Asplanchna in a large river under low‐discharge conditions: evidence from a field study. Hydrobiologia 702: 227 – 239. Bertani I, Del Longo M, Pecora S, Rossetti G. 2014. Longitudinal dynamics of river zooplankton during downstream transport: a Lagrangian sampling approach. Atti dei Convegni Lincei 279: 251 – 258. Braioni MG, Gelmini D. 1983. Rotiferi Monogononti (Rotatoria: Monogononta). Consiglio Nazionale delle Ricerche AQ/1/200: Roma. Brown JB, Battaglin WA, Zuellig RE. 2009. Lagrangian sampling for emerging contaminants through an urban stream corridor in Colorado. Journal of the American Water Resources Association 45: 68 – 82. Casper AF, Thorp JH. 2007. Diel and lateral patterns of zooplankton distribution in the St. Lawrence River. River Research and Applications 23: 73 – 85. Coupe RH, Goolsby DA, Battaglin WA, Böhlke JK, McMahon PB, Kendall C. 2013. Transport of nitrate in the Mississippi River in July–August 1999. Annals of Environmental Science 7: 31 – 46. De Leo GA, Ferrari I. 1993. Disturbance and diversity in a river zooplankton community: a neutral model analysis. Coenoses 8: 121 – 129. De Smet WH. 1996. Rotifera. Vol. 4: The Proalidae (Monogononta). SPB Academic Publishing: Amsterdam. De Smet WH, Gibson JAE. 2008. Rhinoglena kutikovae n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. Polar Biology 31: 595 – 603. De Smet WH, Pourriot R. 1997. Rotifera. Vol. 5: The Dicranophoridae (Monogononta). SPB Academic Publishing: Amsterdam. Deutsch B, Voss M, Fischer H. 2009. Nitrogen transformation processes in the Elbe River: distinguishing between assimilation and denitrification by means of stable isotope ratios in nitrate. Aquatic Sciences 71: 228 – 237. Doyle MW, Ensign SH. 2009. Alternative reference frames in river system science. BioScience 59: 499 – 510. Dussart BH. 1969. Les Copépodes des eaux continentales d’Europe occidentale. 1. Calanöides et Harpacticöides; 2. Cyclopöides et Biologie. Boubée & Cie: Paris. Dussart BH, Defaye D. 1995. Copepoda: Introduction to the Copepoda. SPB Academic Publishing: Amsterdam. Einsle U. 1996. Copepoda: Cyclopoida. Genera Cyclops, Megacyclops, Acanthocyclops. SPB Academic Publishing: Amsterdam. IndexNoFollow hydrochemistry potamoplankton community dynamics space–time variability hydrodynamic forecasting model Italy Po river Transportation Engineering Article 2016 ftumdeepblue https://doi.org/10.1002/rra.302810.1002/rra.2977 2023-07-31T20:54:47Z The variability in water quality and zooplankton community structure during downstream transport was investigated in the Po river (Italy) using for the first time a Lagrangian sampling approach. Two surveys were conducted, one in spring under relatively high discharge levels, and one at low flows in summer. Twelve stations along a 332‐km stretch of the river’s lowland reach and four major tributaries were sampled. A hydrodynamic modelling system was used to determine water transport time along the river, with a satisfying fit between simulated and observed discharge values. No clear downstream trend in phosphorus and nitrogen concentrations was found. Conversely, a marked longitudinal decrease in dissolved silica supports the hypothesis of increasing downstream silica limitation during the phytoplankton growing season.In spring, at low residence time, no apparent plankton growth was observed during downstream transport. In summer, higher temperatures and lower turbulence and turbidity associated with longer residence time stimulated algal growth and in‐stream reproduction of fast‐growing rotifer taxa, with the gradual downstream development of a truly potamal assemblage and the increase of the ratio of euplanktonic to littoral/epibenthic rotifer taxa. Crustacean zooplankton density was generally low. The importance of biotic interactions within the zooplankton in driving community abundance and composition appeared to increase in the downstream direction, paralleled by a decrease in the influence of physical forcing. Tributary influence was especially evident where severe anthropogenic alterations of river hydrology and trophic status resulted in enhanced plankton growth, ultimately affecting zooplankton structure in the main river. Copyright © 2016 John Wiley & Sons, Ltd. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/134064/1/rra3028.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/134064/2/rra3028_am.pdf Article in Journal/Newspaper Polar Biology Rotifer University of Michigan: Deep Blue River Research and Applications 32 8 1740 1754