Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model

A three‐dimensional physical‐biological model has been used to simulate seasonal phytoplankton variations in the Bering and Chukchi Seas with a focus on understanding the physical and biogeochemical mechanisms involved in the formation of the Bering Sea Green Belt (GB) and the Subsurface Chlorophyll...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Hu, Haoguo, Wang, Jia, Liu, Hui, Goes, Joaquim
Format: Article in Journal/Newspaper
Language:unknown
Published: Inst. of Mar. Sci., Univ. of Alaska 2016
Subjects:
Online Access:https://hdl.handle.net/2027.42/133606
https://doi.org/10.1002/2016JC011692
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/133606
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Bering Sea
circulation
sea ice
modeling
ice algae
Atmospheric and Oceanic Sciences
Geological Sciences
Science
spellingShingle Bering Sea
circulation
sea ice
modeling
ice algae
Atmospheric and Oceanic Sciences
Geological Sciences
Science
Hu, Haoguo
Wang, Jia
Liu, Hui
Goes, Joaquim
Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model
topic_facet Bering Sea
circulation
sea ice
modeling
ice algae
Atmospheric and Oceanic Sciences
Geological Sciences
Science
description A three‐dimensional physical‐biological model has been used to simulate seasonal phytoplankton variations in the Bering and Chukchi Seas with a focus on understanding the physical and biogeochemical mechanisms involved in the formation of the Bering Sea Green Belt (GB) and the Subsurface Chlorophyll Maxima (SCM). Model results suggest that the horizontal distribution of the GB is controlled by a combination of light, temperature, and nutrients. Model results indicated that the SCM, frequently seen below the thermocline, exists because of a rich supply of nutrients and sufficient light. The seasonal onset of phytoplankton blooms is controlled by different factors at different locations in the Bering‐Chukchi Sea. In the off‐shelf central region of the Bering Sea, phytoplankton blooms are regulated by available light. On the Bering Sea shelf, sea ice through its influence on light and temperature plays a key role in the formation of blooms, whereas in the Chukchi Sea, bloom formation is largely controlled by ambient seawater temperatures. A numerical experiment conducted as part of this study revealed that plankton sinking is important for simulating the vertical distribution of phytoplankton and the seasonal formation of the SCM. An additional numerical experiment revealed that sea ice algae account for 14.3–36.9% of total phytoplankton production during the melting season, and it cannot be ignored when evaluating primary productivity in the Arctic Ocean.Key PointsSea ice plays a key role in algal bloom in the Bering ShelfSea ice algae account for a signification of phytoplankton biomassPlankton sinking is important for model simulations Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/133606/1/jgrc21750_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/133606/2/jgrc21750.pdf
format Article in Journal/Newspaper
author Hu, Haoguo
Wang, Jia
Liu, Hui
Goes, Joaquim
author_facet Hu, Haoguo
Wang, Jia
Liu, Hui
Goes, Joaquim
author_sort Hu, Haoguo
title Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model
title_short Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model
title_full Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model
title_fullStr Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model
title_full_unstemmed Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model
title_sort simulation of phytoplankton distribution and variation in the bering‐chukchi sea using a 3‐d physical‐biological model
publisher Inst. of Mar. Sci., Univ. of Alaska
publishDate 2016
url https://hdl.handle.net/2027.42/133606
https://doi.org/10.1002/2016JC011692
long_lat ENVELOPE(-57.531,-57.531,51.817,51.817)
geographic Arctic
Bering Sea
Chukchi Sea
The Gib
geographic_facet Arctic
Bering Sea
Chukchi Sea
The Gib
genre Arctic
Arctic
Bering Sea
Chukchi
Chukchi Sea
ice algae
Phytoplankton
Sea ice
genre_facet Arctic
Arctic
Bering Sea
Chukchi
Chukchi Sea
ice algae
Phytoplankton
Sea ice
op_relation Hu, Haoguo; Wang, Jia; Liu, Hui; Goes, Joaquim (2016). "Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model." Journal of Geophysical Research: Oceans 121(6): 4041-4055.
2169-9275
2169-9291
https://hdl.handle.net/2027.42/133606
doi:10.1002/2016JC011692
Journal of Geophysical Research: Oceans
McRoy, C. P., and J. J. Goering ( 1974 ), The influence of ice on the primary productivity of the Bering Sea, in Oceanography of the Bering Sea With Emphasis on Renewable Resource, edited by D. W. Hood and E. J. Kelley, pp. 403 – 421, Inst. of Mar. Sci., Univ. of Alaska, Fairbanks.
Stabeno, P. J., E. Farley, N. Kachel, S. Moore, C. Mordy, J. M. Napp, J. E. Overland, A. I. Pinchuk, and M. F. Sigler ( 2012 ), A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem, Deep Sea Res., Part II, 65–70, 14 – 30, doi:10.1016/j.dsr2.2012.02.019.
Springer, A. M., C. P. McRoy, and M. V. Flint ( 1996 ), The Bering Sea Green Belt: Shelf‐edge processes and ecosystem productivity, Fish. Oceanogr., 35, 205 – 223.
Arrigo, K. R., Z. W. Brown, and M. M. Mills ( 2014 ), Sea ice algal biomass and physiology in the Amundsen Sea, Antarctica, Elementa: Science of the Anthropocene, 2 ( 1 ), 000028.
Cooper, L. W., M. Janout, K. E. Frey, R. Pirtle‐Levy, M. Guarinello, J. M. Grebmeier, and J. R. Lovvorn ( 2012 ), The relationship between sea ice break‐up, water mass variation, chlorophyll biomass, and sedimentation in the northern Bering Sea, Deep Sea Res., Part II, 65–70, 141 – 162.
Eppley, R. W. ( 1972 ), Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 1063 – 1085.
Garrison, D. L., K. R. Buck, and G. A. Fryxell ( 1987 ), Algal assemblages in Antarctic pack ice and ice‐edge plankton, J. Phycol., 23, 564 – 572.
Goes, J., M. Gomes, E. Haugen, K. McKee, E. D’Sa, A. Chekalyuk, D. Stoecker, P. Stabeno, S. Saitoh, and R. Sambrotto ( 2014 ), Fluorescence, pigment and microscopic characterization of Bering Sea phytoplankton community structure and photosynthetic competency in the presence of a Cold Pool during summer, Deep Sea Res., Part II, 109, 84 – 99, doi:10.1016/j.dsr2.2013.12.004.
Hu, H., and J. Wang ( 2010 ), Modeling effects of tidal and wave mixing on circulation and thermohaline structures in the Bering Sea: Process studies, J. Geophys. Res., 115, C01006, doi:10.1029/2008JC005175.
Hu, H., Z. Wan, and Y. Yuan ( 2004 ), Simulation of seasonal variation of phytoplankton in the South Yellow Sea and analysis on its influential factors [in Chinese with English abstract], Acta Oceanol. Sin., 6, 74 – 88.
Hu, H., J. Wang, and D. R. Wang ( 2011 ), A model‐data study of the 1999 St. Lawrence polynya in the Bering Sea, J. Geophys. Res., 116, C12018, doi:10.1029/2011JC007309.
Ivlev, V. S. ( 1945 ), The biological productivity of waters, Usp. Sovremennoi Biol., 19, 98 – 120.
Jin, M., C. J. Deal, J. Wang, N. Tanaka, and M. Ikeda ( 2006 ), Vertical mixing effects on the phytoplankton bloom in the southeastern Bering Sea mid‐shelf, J. Geophys. Res., 111, C03002, doi:10.1029/2005JC002994.
Lomas, M. W., S. B. Moran, J. R. Casey, D. W. Bell, M. Tiahlo, J. Whitefield, R. P. Kelly, J. T. Mathis, and E. D. Cokelet ( 2012 ), Spatial and seasonal variability of primary production on the Eastern Bering Sea shelf, Deep Sea Res., Part II, 65, 126 – 140.
Meguro, H., K. Ito, and H. Fukushima ( 1966 ), Diatoms and the ecological conditions of their growth in sea ice in the Arctic Ocean, Science, 152 ( 3725 ), 1089 – 1090.
NMFS ( 2014 ), COMMERCIAL FISHERIES STATISTICS, Fisheries of the United States. [Available at http://www.st.nmfs.noaa.gov/commercial-fisheries/fus/fus14/index.]
Platt, T., C. L. Gallegos, and W. G. Harrison ( 1980 ), Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38, 687 – 701.
Schandelmeier, L., and V. Alexander ( 1981 ), An analysis of the influence of ice on spring phytoplankton population structure in the southeast Bering Sea, Limnol. Oceanogr., 26, 935 – 943.
Sigler, M., P. Stabeno, L. Eisner, J. Napp, and F. Mueter ( 2014 ), Spring and fall phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea, during 1995‐2011, Deep Sea Res., Part II, 109, 71 – 83, doi:10.1016/j.dsr2.2013.12.007.
Steele, M., R. Rebecca, and W. Ermold ( 2001 ), PHC: A global ocean hydrography with a high‐quality Arctic Ocean, J. Clim., 14, 2079 – 2087.
Stoecker, D., A. Weigel, and J. Goes ( 2014 ), Microzooplankton grazing in the Eastern Bering Sea in summer, Deep Sea Res., Part II, 109, 145 – 156, doi:10.1016/j.dsr2.2013.09.017.
Wang, J., H. Hu, K. Mizobata, and S. Saitoh ( 2009 ), Seasonal variations of sea ice and ocean circulation in the Bering Sea: A model‐data fusion study, J. Geophys. Res., 114, C02011, doi:10.1029/2008JC004727.
Wang, J., H. Hu, J. Goes, J. Miksis‐Olds, C. Mouw, E. D’Sa, H. Gomes, D. R. Wang, K. Mizobata, S. Saitoh, and L. Luo ( 2013 ), A modeling study of seasonal variations of sea ice and plankton in the Bering and Chukchi Seas during 2007–2008, J. Geophys. Res. Oceans, 118, 1 – 14, doi:10.1029/2012JC008322.
Zhang, J., Y. H. Spitz, M. Steele, C. Ashjian, R. Campbell, L. Berline, and P. Matrai ( 2010 ), Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem, J. Geophys. Res., 115, C10015, doi:10.1029/2009JC005387.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2016JC01169210.1016/j.dsr2.2012.02.01910.1016/j.dsr2.2013.12.00410.1029/2008JC00517510.1029/2011JC00730910.1029/2005JC00299410.1016/j.dsr2.2013.12.00710.1016/j.dsr2.2013.09.01710.1029/2008JC00472710.1029/2012JC00832210.1029/2009JC0
container_title Journal of Geophysical Research: Oceans
container_volume 121
container_issue 6
container_start_page 4041
op_container_end_page 4055
_version_ 1774713581641662464
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/133606 2023-08-20T04:03:10+02:00 Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model Hu, Haoguo Wang, Jia Liu, Hui Goes, Joaquim 2016-06 application/pdf https://hdl.handle.net/2027.42/133606 https://doi.org/10.1002/2016JC011692 unknown Inst. of Mar. Sci., Univ. of Alaska Wiley Periodicals, Inc. Hu, Haoguo; Wang, Jia; Liu, Hui; Goes, Joaquim (2016). "Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model." Journal of Geophysical Research: Oceans 121(6): 4041-4055. 2169-9275 2169-9291 https://hdl.handle.net/2027.42/133606 doi:10.1002/2016JC011692 Journal of Geophysical Research: Oceans McRoy, C. P., and J. J. Goering ( 1974 ), The influence of ice on the primary productivity of the Bering Sea, in Oceanography of the Bering Sea With Emphasis on Renewable Resource, edited by D. W. Hood and E. J. Kelley, pp. 403 – 421, Inst. of Mar. Sci., Univ. of Alaska, Fairbanks. Stabeno, P. J., E. Farley, N. Kachel, S. Moore, C. Mordy, J. M. Napp, J. E. Overland, A. I. Pinchuk, and M. F. Sigler ( 2012 ), A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem, Deep Sea Res., Part II, 65–70, 14 – 30, doi:10.1016/j.dsr2.2012.02.019. Springer, A. M., C. P. McRoy, and M. V. Flint ( 1996 ), The Bering Sea Green Belt: Shelf‐edge processes and ecosystem productivity, Fish. Oceanogr., 35, 205 – 223. Arrigo, K. R., Z. W. Brown, and M. M. Mills ( 2014 ), Sea ice algal biomass and physiology in the Amundsen Sea, Antarctica, Elementa: Science of the Anthropocene, 2 ( 1 ), 000028. Cooper, L. W., M. Janout, K. E. Frey, R. Pirtle‐Levy, M. Guarinello, J. M. Grebmeier, and J. R. Lovvorn ( 2012 ), The relationship between sea ice break‐up, water mass variation, chlorophyll biomass, and sedimentation in the northern Bering Sea, Deep Sea Res., Part II, 65–70, 141 – 162. Eppley, R. W. ( 1972 ), Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 1063 – 1085. Garrison, D. L., K. R. Buck, and G. A. Fryxell ( 1987 ), Algal assemblages in Antarctic pack ice and ice‐edge plankton, J. Phycol., 23, 564 – 572. Goes, J., M. Gomes, E. Haugen, K. McKee, E. D’Sa, A. Chekalyuk, D. Stoecker, P. Stabeno, S. Saitoh, and R. Sambrotto ( 2014 ), Fluorescence, pigment and microscopic characterization of Bering Sea phytoplankton community structure and photosynthetic competency in the presence of a Cold Pool during summer, Deep Sea Res., Part II, 109, 84 – 99, doi:10.1016/j.dsr2.2013.12.004. Hu, H., and J. Wang ( 2010 ), Modeling effects of tidal and wave mixing on circulation and thermohaline structures in the Bering Sea: Process studies, J. Geophys. Res., 115, C01006, doi:10.1029/2008JC005175. Hu, H., Z. Wan, and Y. Yuan ( 2004 ), Simulation of seasonal variation of phytoplankton in the South Yellow Sea and analysis on its influential factors [in Chinese with English abstract], Acta Oceanol. Sin., 6, 74 – 88. Hu, H., J. Wang, and D. R. Wang ( 2011 ), A model‐data study of the 1999 St. Lawrence polynya in the Bering Sea, J. Geophys. Res., 116, C12018, doi:10.1029/2011JC007309. Ivlev, V. S. ( 1945 ), The biological productivity of waters, Usp. Sovremennoi Biol., 19, 98 – 120. Jin, M., C. J. Deal, J. Wang, N. Tanaka, and M. Ikeda ( 2006 ), Vertical mixing effects on the phytoplankton bloom in the southeastern Bering Sea mid‐shelf, J. Geophys. Res., 111, C03002, doi:10.1029/2005JC002994. Lomas, M. W., S. B. Moran, J. R. Casey, D. W. Bell, M. Tiahlo, J. Whitefield, R. P. Kelly, J. T. Mathis, and E. D. Cokelet ( 2012 ), Spatial and seasonal variability of primary production on the Eastern Bering Sea shelf, Deep Sea Res., Part II, 65, 126 – 140. Meguro, H., K. Ito, and H. Fukushima ( 1966 ), Diatoms and the ecological conditions of their growth in sea ice in the Arctic Ocean, Science, 152 ( 3725 ), 1089 – 1090. NMFS ( 2014 ), COMMERCIAL FISHERIES STATISTICS, Fisheries of the United States. [Available at http://www.st.nmfs.noaa.gov/commercial-fisheries/fus/fus14/index.] Platt, T., C. L. Gallegos, and W. G. Harrison ( 1980 ), Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38, 687 – 701. Schandelmeier, L., and V. Alexander ( 1981 ), An analysis of the influence of ice on spring phytoplankton population structure in the southeast Bering Sea, Limnol. Oceanogr., 26, 935 – 943. Sigler, M., P. Stabeno, L. Eisner, J. Napp, and F. Mueter ( 2014 ), Spring and fall phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea, during 1995‐2011, Deep Sea Res., Part II, 109, 71 – 83, doi:10.1016/j.dsr2.2013.12.007. Steele, M., R. Rebecca, and W. Ermold ( 2001 ), PHC: A global ocean hydrography with a high‐quality Arctic Ocean, J. Clim., 14, 2079 – 2087. Stoecker, D., A. Weigel, and J. Goes ( 2014 ), Microzooplankton grazing in the Eastern Bering Sea in summer, Deep Sea Res., Part II, 109, 145 – 156, doi:10.1016/j.dsr2.2013.09.017. Wang, J., H. Hu, K. Mizobata, and S. Saitoh ( 2009 ), Seasonal variations of sea ice and ocean circulation in the Bering Sea: A model‐data fusion study, J. Geophys. Res., 114, C02011, doi:10.1029/2008JC004727. Wang, J., H. Hu, J. Goes, J. Miksis‐Olds, C. Mouw, E. D’Sa, H. Gomes, D. R. Wang, K. Mizobata, S. Saitoh, and L. Luo ( 2013 ), A modeling study of seasonal variations of sea ice and plankton in the Bering and Chukchi Seas during 2007–2008, J. Geophys. Res. Oceans, 118, 1 – 14, doi:10.1029/2012JC008322. Zhang, J., Y. H. Spitz, M. Steele, C. Ashjian, R. Campbell, L. Berline, and P. Matrai ( 2010 ), Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem, J. Geophys. Res., 115, C10015, doi:10.1029/2009JC005387. IndexNoFollow Bering Sea circulation sea ice modeling ice algae Atmospheric and Oceanic Sciences Geological Sciences Science Article 2016 ftumdeepblue https://doi.org/10.1002/2016JC01169210.1016/j.dsr2.2012.02.01910.1016/j.dsr2.2013.12.00410.1029/2008JC00517510.1029/2011JC00730910.1029/2005JC00299410.1016/j.dsr2.2013.12.00710.1016/j.dsr2.2013.09.01710.1029/2008JC00472710.1029/2012JC00832210.1029/2009JC0 2023-07-31T20:44:17Z A three‐dimensional physical‐biological model has been used to simulate seasonal phytoplankton variations in the Bering and Chukchi Seas with a focus on understanding the physical and biogeochemical mechanisms involved in the formation of the Bering Sea Green Belt (GB) and the Subsurface Chlorophyll Maxima (SCM). Model results suggest that the horizontal distribution of the GB is controlled by a combination of light, temperature, and nutrients. Model results indicated that the SCM, frequently seen below the thermocline, exists because of a rich supply of nutrients and sufficient light. The seasonal onset of phytoplankton blooms is controlled by different factors at different locations in the Bering‐Chukchi Sea. In the off‐shelf central region of the Bering Sea, phytoplankton blooms are regulated by available light. On the Bering Sea shelf, sea ice through its influence on light and temperature plays a key role in the formation of blooms, whereas in the Chukchi Sea, bloom formation is largely controlled by ambient seawater temperatures. A numerical experiment conducted as part of this study revealed that plankton sinking is important for simulating the vertical distribution of phytoplankton and the seasonal formation of the SCM. An additional numerical experiment revealed that sea ice algae account for 14.3–36.9% of total phytoplankton production during the melting season, and it cannot be ignored when evaluating primary productivity in the Arctic Ocean.Key PointsSea ice plays a key role in algal bloom in the Bering ShelfSea ice algae account for a signification of phytoplankton biomassPlankton sinking is important for model simulations Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/133606/1/jgrc21750_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/133606/2/jgrc21750.pdf Article in Journal/Newspaper Arctic Arctic Bering Sea Chukchi Chukchi Sea ice algae Phytoplankton Sea ice University of Michigan: Deep Blue Arctic Bering Sea Chukchi Sea The Gib ENVELOPE(-57.531,-57.531,51.817,51.817) Journal of Geophysical Research: Oceans 121 6 4041 4055