id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/117103
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic terrestrial DOM
ecosystem
landscape
bacterial community composition
DGGE
DOC
DOM bioavailability
Ecology and Evolutionary Biology
Science
spellingShingle terrestrial DOM
ecosystem
landscape
bacterial community composition
DGGE
DOC
DOM bioavailability
Ecology and Evolutionary Biology
Science
Judd, Kristin E.
Crump, Byron C.
Kling, George W.
Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition
topic_facet terrestrial DOM
ecosystem
landscape
bacterial community composition
DGGE
DOC
DOM bioavailability
Ecology and Evolutionary Biology
Science
description Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/117103/1/ecy20068782068.pdf
author2 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 USA
Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland 21613 USA
format Article in Journal/Newspaper
author Judd, Kristin E.
Crump, Byron C.
Kling, George W.
author_facet Judd, Kristin E.
Crump, Byron C.
Kling, George W.
author_sort Judd, Kristin E.
title Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition
title_short Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition
title_full Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition
title_fullStr Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition
title_full_unstemmed Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition
title_sort variation in dissolved organic matter controls bacterial production and community composition
publisher Ecological Society of America
publishDate 2006
url http://hdl.handle.net/2027.42/117103
https://doi.org/10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2
genre Arctic
genre_facet Arctic
op_relation Judd, Kristin E.; Crump, Byron C.; Kling, George W. (2006). "Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition." Ecology 87(8): 2068-2079.
0012-9658
1939-9170
http://hdl.handle.net/2027.42/117103
doi:10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2
Ecology
Schwalbach, M. S., I. Hewson, and J. A. Fuhrman. 2004. Viral effects on bacterial community composition in marine plankton microcosms. Aquatic Microbial Ecology 34: 117 – 127.
Patra, A. K. et al. 2005. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecological Monographs 75: 65 – 80.
Pinhassi, J., F. Azam, J. Hemphala, R. A. Long, J. Martinez, U. L. Zweifel, and A. Hagstrom. 1999. Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquatic Microbial Ecology 17: 13 – 26.
Polz, M. F., and C. M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology 64: 3724 – 3730.
Radajewski, S., P. Ineson, N. R. Parekh, and J. C. Murrell. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403: 646 – 648.
Saiki, R. K., D. H. Gelfand, S. J. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 487 – 491.
Sano, E., S. Carlson, L. Wegley, and F. Rohwer. 2004. Movement of viruses between biomes. Applied and Environmental Microbiology 70: 5842 – 5846.
SAS Institute. 2003. SAS 8. 2 SAS Institute, Cary, North Carolina, USA.
Schadt, C. W., A. P. Martin, D. A. Lipson, and S. K. Schmidt. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301: 1359 – 1362.
Schindler, D. W. 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897 – 899.
Shaver, G. R., and F. S. Chapin. 1991. Production-biomass relationships and element cycling in contrasting arctic vegetation types. Ecological Monographs 61: 1 – 31.
Shaver, G. R., L. C. Johnson, D. H. Cades, G. Murray, J. A. Laundre, E. B. Rastetter, K. J. Nadelhoffer, and A. E. Giblin. 1998. Biomass and CO 2 flux in wet sedge tundras: Responses to nutrients, temperature, and light. Ecological Monographs 68: 75 – 97.
Simon, M., and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201 – 213.
Sinsabaugh, R. L., T. Weiland, and A. E. Linkins. 1992. Enzymatic and molecular analysis of microbial communities associated with lotic particulate organic matter. Freshwater Biology 28: 393 – 404.
Stephan, A., A. H. Meyer, and B. Schmid. 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology 88: 988 – 998.
Sun, L., E. M. Perdue, J. L. Meyer, and J. Weiss. 1997. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnology and Oceanography 42: 714 – 721.
Suzuki, M. T., and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology 62: 625 – 630.
Thingstad, T. F. 2000. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnology and Oceanography 45: 1320 – 1328.
Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300 – 1302.
Torsvik, V., and L. Orveas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5: 240 – 245.
Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setala, W. H. van der Putten, and D. H. Wall. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 1629 – 1633.
Waterman, P. G., and S. Mole. 1994. Analysis of phenolic plant metabolites Blackwell Scientific Publications, Oxford, UK.
Weston, N. B., and S. B. Joye. 2005. Temperature-driven decoupling of key phases of organic matter degradation in marine sediments. Proceedings of the National Academy of Sciences (USA) 102: 17036 – 17040.
Wikner, J., R. Cuadros, and M. Jansson. 1999. Differences in consumption of allochthonous DOC under limnic and estuarine conditions in a watershed. Aquatic Microbial Ecology 17: 289 – 299.
Winter, C., A. Smit, G. J. Herndl, and M. G. Weinbauer. 2004. Impact of virioplankton on archaeal and bacterial community richness as assessed in seawater batch cultures. Applied and Environmental Microbiology 70: 804 – 813.
Zak, D. R., W. H. Holmes, D. C. White, A. D. Peacock, and D. Tilman. 2003. Plant diversity, soil microbial communities and ecosystem function: are there any links? Ecology 84: 2042 – 2050.
Amon, R. M. W., and R. Benner. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography 41: 41 – 51.
Benner, R. 2003. Molecular indicators of the bioavailability of dissolved organic matter. Pages 121 – 137 in S. E. G. Findlay and R. L. Sinsabaugh, editors Aquatic ecosystems: interactivity of dissolved organic matter Academic Press, San Diego, California, USA.
Burkert, U., F. Warnecke, D. Babenzien, E. Zwirnmann, and J. Pernthaler. 2003. Members of a readily enriched β-proteobacterial clade are common in surface waters of a humic lake. Applied and Environmental Microbiology 69: 6550 – 6559.
Carpenter, S. R., K. L. Cottingham, and D. E. Schindler. 1992. Biotic feedbacks in lake phosphorus cycles. Trends in Ecology and Evolution 1: 332 – 336.
Chadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert, and L. O. Hedin. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491 – 497.
Cottrell, M. T., and D. L. Kirchman. 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology 66: 1692 – 1697.
Crump, B. C., C. S. Hopkinson, M. L. Sogin, and J. E. Hobbie. 2004. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Applied and Environmental Microbiology 70: 1494 – 1505.
Crump, B. C., G. W. Kling, M. Bahr, and J. E. Hobbie. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Applied and Environmental Microbiology 69: 2253 – 2268.
Findlay, S. E. G., R. L. Sinsabaugh, and M. Hoostal. 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography 48: 1608 – 1617.
Gasol, J. M., M. Comerma, J. C. Garcia, J. Armengol, E. O. Casamayor, P. Kojecka, and K. Simek. 2002. A transplant experiment to identify the factors controlling bacterial abundance, activity, production, and community composition. Limnology and Oceanography 47: 62 – 77.
Hooper, D. U. et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3 – 35.
Judd, K. E. 2004. Dissolved organic matter dynamics in an arctic tundra catchment: linking DOM chemistry, bioavailability and microbial community composition. Dissertation University of Michigan, Ann Arbor, Michigan, USA.
Judd, K. E., and G. W. Kling. 2002. Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow. Biogeochemistry 60: 213 – 234.
Kaplan, L. A., and J. D. Newbold. 1995. Measurement of streamwater biodegradable dissolved organic carbon with a plug-flow bioreactor. Water Research 29: 2696 – 2796.
Kirchman, D. L. 1993. Leucine incorporation as a measure of biomass production by heterotrophic bacteria. Pages 509 – 512 in P. F. Kemp, B. F. Sherr, E. B. Sherr and J. J. Cole, editors Handbook of methods in aquatic microbial ecology Lewis Publishers, Boca Raton, Florida, USA.
Kirchman, D. L., A. I. Dittel, S. E. G. Findlay, and D. Fischer. 2004. Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquatic Microbial Ecology 35: 243 – 257.
Kling, G. W. 1995. Land–water linkages: the influence of terrestrial diversity on aquatic systems. Pages 297 – 310 in F. S. Chapin and C. Korner, editors Arctic and alpine biodiversity; patterns, causes, and ecosystem consequences Springer-Verlag, New York, New York, USA.
Kling, G. W., G. W. Kipphut, M. M. Miller, and W. J. O'Brien. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology 43: 477 – 497.
op_rights IndexNoFollow
op_doi https://doi.org/10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2
_version_ 1774713581094305792
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/117103 2023-08-20T04:03:10+02:00 Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition Judd, Kristin E. Crump, Byron C. Kling, George W. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 USA Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland 21613 USA 2006-08 application/pdf http://hdl.handle.net/2027.42/117103 https://doi.org/10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2 unknown Ecological Society of America Wiley Periodicals, Inc. Judd, Kristin E.; Crump, Byron C.; Kling, George W. (2006). "Variation In Dissolved Organic Matter Controls Bacterial Production And Community Composition." Ecology 87(8): 2068-2079. 0012-9658 1939-9170 http://hdl.handle.net/2027.42/117103 doi:10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2 Ecology Schwalbach, M. S., I. Hewson, and J. A. Fuhrman. 2004. Viral effects on bacterial community composition in marine plankton microcosms. Aquatic Microbial Ecology 34: 117 – 127. Patra, A. K. et al. 2005. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecological Monographs 75: 65 – 80. Pinhassi, J., F. Azam, J. Hemphala, R. A. Long, J. Martinez, U. L. Zweifel, and A. Hagstrom. 1999. Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquatic Microbial Ecology 17: 13 – 26. Polz, M. F., and C. M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology 64: 3724 – 3730. Radajewski, S., P. Ineson, N. R. Parekh, and J. C. Murrell. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403: 646 – 648. Saiki, R. K., D. H. Gelfand, S. J. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 487 – 491. Sano, E., S. Carlson, L. Wegley, and F. Rohwer. 2004. Movement of viruses between biomes. Applied and Environmental Microbiology 70: 5842 – 5846. SAS Institute. 2003. SAS 8. 2 SAS Institute, Cary, North Carolina, USA. Schadt, C. W., A. P. Martin, D. A. Lipson, and S. K. Schmidt. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301: 1359 – 1362. Schindler, D. W. 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897 – 899. Shaver, G. R., and F. S. Chapin. 1991. Production-biomass relationships and element cycling in contrasting arctic vegetation types. Ecological Monographs 61: 1 – 31. Shaver, G. R., L. C. Johnson, D. H. Cades, G. Murray, J. A. Laundre, E. B. Rastetter, K. J. Nadelhoffer, and A. E. Giblin. 1998. Biomass and CO 2 flux in wet sedge tundras: Responses to nutrients, temperature, and light. Ecological Monographs 68: 75 – 97. Simon, M., and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201 – 213. Sinsabaugh, R. L., T. Weiland, and A. E. Linkins. 1992. Enzymatic and molecular analysis of microbial communities associated with lotic particulate organic matter. Freshwater Biology 28: 393 – 404. Stephan, A., A. H. Meyer, and B. Schmid. 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology 88: 988 – 998. Sun, L., E. M. Perdue, J. L. Meyer, and J. Weiss. 1997. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnology and Oceanography 42: 714 – 721. Suzuki, M. T., and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology 62: 625 – 630. Thingstad, T. F. 2000. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnology and Oceanography 45: 1320 – 1328. Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300 – 1302. Torsvik, V., and L. Orveas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5: 240 – 245. Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setala, W. H. van der Putten, and D. H. Wall. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 1629 – 1633. Waterman, P. G., and S. Mole. 1994. Analysis of phenolic plant metabolites Blackwell Scientific Publications, Oxford, UK. Weston, N. B., and S. B. Joye. 2005. Temperature-driven decoupling of key phases of organic matter degradation in marine sediments. Proceedings of the National Academy of Sciences (USA) 102: 17036 – 17040. Wikner, J., R. Cuadros, and M. Jansson. 1999. Differences in consumption of allochthonous DOC under limnic and estuarine conditions in a watershed. Aquatic Microbial Ecology 17: 289 – 299. Winter, C., A. Smit, G. J. Herndl, and M. G. Weinbauer. 2004. Impact of virioplankton on archaeal and bacterial community richness as assessed in seawater batch cultures. Applied and Environmental Microbiology 70: 804 – 813. Zak, D. R., W. H. Holmes, D. C. White, A. D. Peacock, and D. Tilman. 2003. Plant diversity, soil microbial communities and ecosystem function: are there any links? Ecology 84: 2042 – 2050. Amon, R. M. W., and R. Benner. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography 41: 41 – 51. Benner, R. 2003. Molecular indicators of the bioavailability of dissolved organic matter. Pages 121 – 137 in S. E. G. Findlay and R. L. Sinsabaugh, editors Aquatic ecosystems: interactivity of dissolved organic matter Academic Press, San Diego, California, USA. Burkert, U., F. Warnecke, D. Babenzien, E. Zwirnmann, and J. Pernthaler. 2003. Members of a readily enriched β-proteobacterial clade are common in surface waters of a humic lake. Applied and Environmental Microbiology 69: 6550 – 6559. Carpenter, S. R., K. L. Cottingham, and D. E. Schindler. 1992. Biotic feedbacks in lake phosphorus cycles. Trends in Ecology and Evolution 1: 332 – 336. Chadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert, and L. O. Hedin. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491 – 497. Cottrell, M. T., and D. L. Kirchman. 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology 66: 1692 – 1697. Crump, B. C., C. S. Hopkinson, M. L. Sogin, and J. E. Hobbie. 2004. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Applied and Environmental Microbiology 70: 1494 – 1505. Crump, B. C., G. W. Kling, M. Bahr, and J. E. Hobbie. 2003. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Applied and Environmental Microbiology 69: 2253 – 2268. Findlay, S. E. G., R. L. Sinsabaugh, and M. Hoostal. 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography 48: 1608 – 1617. Gasol, J. M., M. Comerma, J. C. Garcia, J. Armengol, E. O. Casamayor, P. Kojecka, and K. Simek. 2002. A transplant experiment to identify the factors controlling bacterial abundance, activity, production, and community composition. Limnology and Oceanography 47: 62 – 77. Hooper, D. U. et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3 – 35. Judd, K. E. 2004. Dissolved organic matter dynamics in an arctic tundra catchment: linking DOM chemistry, bioavailability and microbial community composition. Dissertation University of Michigan, Ann Arbor, Michigan, USA. Judd, K. E., and G. W. Kling. 2002. Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow. Biogeochemistry 60: 213 – 234. Kaplan, L. A., and J. D. Newbold. 1995. Measurement of streamwater biodegradable dissolved organic carbon with a plug-flow bioreactor. Water Research 29: 2696 – 2796. Kirchman, D. L. 1993. Leucine incorporation as a measure of biomass production by heterotrophic bacteria. Pages 509 – 512 in P. F. Kemp, B. F. Sherr, E. B. Sherr and J. J. Cole, editors Handbook of methods in aquatic microbial ecology Lewis Publishers, Boca Raton, Florida, USA. Kirchman, D. L., A. I. Dittel, S. E. G. Findlay, and D. Fischer. 2004. Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquatic Microbial Ecology 35: 243 – 257. Kling, G. W. 1995. Land–water linkages: the influence of terrestrial diversity on aquatic systems. Pages 297 – 310 in F. S. Chapin and C. Korner, editors Arctic and alpine biodiversity; patterns, causes, and ecosystem consequences Springer-Verlag, New York, New York, USA. Kling, G. W., G. W. Kipphut, M. M. Miller, and W. J. O'Brien. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology 43: 477 – 497. IndexNoFollow terrestrial DOM ecosystem landscape bacterial community composition DGGE DOC DOM bioavailability Ecology and Evolutionary Biology Science Article 2006 ftumdeepblue https://doi.org/10.1890/0012-9658(2006)87[2068:VIDOMC]2.0.CO;2 2023-07-31T20:30:03Z Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/117103/1/ecy20068782068.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue