Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model

Ventilation and dissolved oxygen in Lake Superior are key factors that determine the fate of various natural and anthropogenic inputs to the lake. We employ an idealized age tracer and biogeochemical tracers in a realistically configured numerical model of Lake Superior to characterize its ventilati...

Full description

Bibliographic Details
Published in:Geochemistry, Geophysics, Geosystems
Main Authors: Matsumoto, Katsumi, Tokos, Kathy S., Gregory, Chad
Format: Article in Journal/Newspaper
Language:unknown
Published: Eldigio 2015
Subjects:
Online Access:https://hdl.handle.net/2027.42/115919
https://doi.org/10.1002/2015GC005916
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/115919
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic ideal tracers
oxygen
ventilation
numerical model
Lake Superior
Geological Sciences
Science
spellingShingle ideal tracers
oxygen
ventilation
numerical model
Lake Superior
Geological Sciences
Science
Matsumoto, Katsumi
Tokos, Kathy S.
Gregory, Chad
Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model
topic_facet ideal tracers
oxygen
ventilation
numerical model
Lake Superior
Geological Sciences
Science
description Ventilation and dissolved oxygen in Lake Superior are key factors that determine the fate of various natural and anthropogenic inputs to the lake. We employ an idealized age tracer and biogeochemical tracers in a realistically configured numerical model of Lake Superior to characterize its ventilation and dissolved O2 cycle. Our results indicate that Lake Superior is preferentially ventilated over rough bathymetry and that spring overturning following a very cold winter does not completely ventilate the lake interior. While this is unexpected for a dimictic lake, no part of the lake remains isolated from the atmosphere for more than 300 days. Our results also show that Lake Superior's oxygen cycle is dominated by solubility changes; as a result, the expected relationship between biological consumption of dissolved O2 and ventilation age does not manifest.Key Points:Lake Superior is preferentially ventilated over rough bathymetryOverturning following an icy winter does not completely ventilate the lakeDissolved oxygen signal is dominated by physical processes Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/115919/1/ggge20818_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/115919/2/ggge20818.pdf
format Article in Journal/Newspaper
author Matsumoto, Katsumi
Tokos, Kathy S.
Gregory, Chad
author_facet Matsumoto, Katsumi
Tokos, Kathy S.
Gregory, Chad
author_sort Matsumoto, Katsumi
title Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model
title_short Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model
title_full Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model
title_fullStr Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model
title_full_unstemmed Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model
title_sort ventilation and dissolved oxygen cycle in lake superior: insights from a numerical model
publisher Eldigio
publishDate 2015
url https://hdl.handle.net/2027.42/115919
https://doi.org/10.1002/2015GC005916
genre Arctic
genre_facet Arctic
op_relation Matsumoto, Katsumi; Tokos, Kathy S.; Gregory, Chad (2015). "Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model." Geochemistry, Geophysics, Geosystems 16(9): 3097-3110.
1525-2027
https://hdl.handle.net/2027.42/115919
doi:10.1002/2015GC005916
Geochemistry, Geophysics, Geosystems
Schlitzer, R. ( 1986 ), 14C in the deep water of the eastern Atlantic, Radiocarbon, 28 ( 2A ), 391 – 396.
Matheson, D. H., and M. Munawar ( 1978 ), Lake Superior basin and development, J. Great Lakes Res., 4 ( 3‐4 ), 249 – 263.
Matsumoto, K. ( 2007 ), Radiocarbon‐based circulation of the world oceans, J. Geophys. Res., 112, C09004, doi:10.1029/2007JC004095.
McKinney, P., B. Holt, and K. Matsumoto ( 2012 ), Small eddies observed in Lake Superior using SAR and sea surface temperature data, J. Great Lakes Res., 38, 786 – 797.
McManus, J., E. A. Heinen, and M. M. Baehr ( 2003 ), Hypolimnetic oxidation rates in Lake Superior: Role of dissolved organic material on the lake's carbon budget, Limnol. Oceanogr. Res., 48 ( 4 ), 1624 – 1632.
Messias, M.‐J., C. Andrie, L. Memery, and H. Mercier ( 1999 ), Tracing the North Atlantic Deep Water through the Romanche and Chain fracture zones with chloroflouromethants, Deep Sea Res., Part I, 46, 1247 – 1278.
Peeters, F., D. Finger, M. Hofer, M. Brennwald, D. M. Livingstone, and R. Kipfer ( 2003 ), Deep‐water renewal in Lake Issyk‐Kul driven by differential cooling, Limnol. Oceanogr. Methods, 48 ( 4 ), 1419 – 1431.
Rhein, M., L. Stramma, and G. Krahmann ( 1998 ), The spreading of Antarctic Bottom Water in the tropical Atlantic, Deep Sea Res., Part I, 45, 507 – 527.
Russ, M. E., N. E. Ostrom, H. Gandhi, P. H. Ostrom, and N. R. Urban ( 2004 ), Temporal and spatial variations in R: P ratios in Lake Superior, an oligotrophic freshwater environment, J. Geophys. Res., 109, C10S12, doi:10.1029/2003JC001890.
Sarmiento, J. L., and N. Gruber ( 2006 ), Ocean Biogeochemical Dynamics, Princeton Univ. Press, Princeton, N. J.
Schmidt, M., N. M. Budnev, N. G. Granin, M. Sturm, M. Schurter, and A. Wuest ( 2008 ), Lake Baikal deepwater renewal mystery solved, Geophys. Res. Lett., 35, L09605, doi:10.1029/2008GL033223.
Shchepetkin, A. F., and J. C. McWilliams ( 2005 ), The regional ocean modeling system (ROMS): A split‐explicit, free surface, topography‐following coordinate ocean model, Ocean Modell., 9, 347 – 404.
Shimaraev, M. N., N. G. Granin, and A. A. Zhdanov ( 1993 ), Deep ventilation of Lake Baikal waters due to spring thermal bars, Limnol. Oceanogr., 38 ( 5 ), 1068 – 1072.
Small, G. E., J. B. Cotner, J. C. Finlay, R. A. Stark, and R. W. Sterner ( 2014 ), Nitrogen transformations at the sediment‐water interface across redox gradients in the Laurentian Great Lakes, Hydrobiolgia, 731, 95 – 108, doi:10.1007/s10750‐013‐1569‐7.
Sterner, R. W. ( 2010 ), In situ‐measured primary production in Lake Superior, J. Great Lakes Res., 36, 139 – 149.
Torgersen, T., Z. Top, B. Clarke, W. J. Jenkins, and W. S. Broecker ( 1977 ), A new method for physical limnology‐tritium‐helium 3 ages‐results for Lakes Erie, Huron, and Ontario, Limnol. Oceanogr., 22 ( 2 ), 181 – 193.
Ullman, D., J. Brown, P. Conillon, and T. Mavor ( 1998 ), Surface temperature fronts in the Great Lakes, J. Great Lakes Res., 24 ( 4 ), 753 – 775.
Urban, N. R., M. T. Auer, S. A. Green, X. Lu, D. S. Apul, K. D. Powell, and L. Bub ( 2005 ), Carbon cycling in Lake Superior, J. Geophys. Res., 110, C06S90, doi:10.1029/2003JC002230.
Weiss, R. F., E. C. Carmack, and V. M. Koropalov ( 1991 ), Deep‐water renewal and biological production in Lake Baikal, Nature, 349, 665 – 669.
White, B., and K. Matsumoto ( 2012 ), Causal mechanisms of the deep chlorophyll maximum in Lake Superior: A numerical modeling investigation, J. Great Lakes Res., 38, 504 – 513.
White, B., J. Austin, and K. Matsumoto ( 2012 ), A three dimensional model of Lake Superior with ice and biogeochemistry, J. Great Lakes Res., 38, 61 – 71.
Zigah, P. K., E. C. Minor, J. P. Werne, and S. L. McCallister ( 2011 ), Radiocarbon and stable carbon isotopic insights into provenance and cycling of carbon in Lake Superior, Limnol. Oceanogr. Methods, 56 ( 3 ), 867 – 886.
Aeschlback‐Hertig, W., R. Kipfer, M. Hofer, D. M. Imboden, and H. Bauer ( 1996 ), Density‐driven exchange between the basins of Lake Lucerne (Switzerland) traced with the 3H‐3He method, Limnol. Oceanogr., 41 ( 4 ), 707 – 721.
Assel, R. A. ( 2003 ), An electronic atlas of Great Lakes ice cover, Great Lakes Environmental Research Laboratory, Ann Arbor, Mich.
Beletsky, D., J. H. Saylor, and D. J. Schwab ( 1999 ), Mean circulation in the Great Lakes, J. Great Lakes Res., 25 ( 1 ), 78 – 93.
Bennett, E. B. ( 1978 ), Water budgets for Lake Superior and Whitefish Bay, J. Great Lakes Res., 4 ( 3‐4 ), 331 – 342.
Bennington, V., G. McKinley, and C. H. Wu ( 2010 ), General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006, J. Geophys. Res., 115, C12015, doi:10.1029/2010JC006261.
Bennington, V., G. McKinley, N. Urban, and C. P. McDonald ( 2012 ), Can spatial heterogeneity explain the perceived imbalance in Lake Superior's carbon budget? A model study, J. Geophys. Res., 117, G03020, doi:10.1029/2011JG001895.
Broecker, W. S., and T.‐H. Peng ( 1982 ), Tracers in the Sea, Eldigio, Palisades, N. Y.
Bryan, K., and L. J. Lewis ( 1979 ), A water mass model of the world ocean, J. Geophys. Res., 84, 2503 – 2518.
Chen, C. A., and F. Millero ( 1986 ), Precise thermodynamic properties for natural waters covering only the limnological range, Limnol. Oceanogr., 31, 657 – 662.
Chen, C. S., J. R. Zhu, E. Ralph, S. A. Green, J. W. Budd, and F. Y. Zhang ( 2001 ), Prognostic modeling studies of the Keweenaw current in Lake Superior. Part I: Formation and evolution, J. Phys. Oceanogr., 31 ( 2 ), 379 – 395.
Chen, C. S., J. R. Zhu, K. Y. Kang, H. D. Liu, E. Ralph, S. A. Green, and J. W. Budd ( 2002 ), Cross‐frontal transport along the Keweenaw coast in Lake Superior: A Lagrangian model study, Dyn. Atmos. Oceans, 36 ( 1‐3 ), 83 – 102.
Cotner, J. B., B. Biddanda, W. Makino, and E. Stets ( 2004 ), Organic carbon biogeochemistry of Lake Superior, Aquat. Ecosyst. Health Manage., 7 ( 4 ), 451 – 464.
England, M. H. ( 1995 ), The age of water and ventilation timescales in a global ocean model, J. Phys. Oceanogr., 25 ( 11 ), 2756 – 2777.
Fasham, M. J. R., H. W. Ducklow, and S. M. McKelvie ( 1990 ), A nitrogen‐based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48 ( 3 ), 591 – 639.
Fer, I., U. Lemmin, and S. A. Thorpe ( 2002 ), Winter cascading of cold water in Lake Geneva, J. Geophys. Res., 106 ( C6 ), 3060, doi:10.1029/2001JC000828.
Forel, F. A. ( 1880 ), La conglation des lacs Suisses et savoyards pendant l'hiver 1879‐1880, 11 ‐ Lac Leman Echo Alpes, 3, 149 – 161.
Francis, J. A., and S. J. Vavrus ( 2012 ), Evidence linking Arctic amplification to extreme weather in mid‐latitudes, Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.
Gargett, A. E., and G. Holloway ( 1984 ), Dissipation and diffusion by internal wave breaking, J. Mar. Res., 42 ( 1 ), 15 – 27.
Harrington, M. W. ( 1895 ), Surface currents of the Great Lakes, Bulletin B, Weather Bureau, U.S. Department of Agriculture, Washington, D. C.
Hecky, R. E. ( 2000 ), A biogeochemical comparison of Lakes Superior and Malawi and the limnological consequences of an endless summer, Aquat. Ecosyst. Health Manage., 3, 23 – 33.
Hofer, M., F. Peeters, W. Aeschlback‐Hertig, M. Brennwald, J. Holocher, D. M. Livingston, V. Romanovski, and R. Kipfer ( 2002 ), Rapid deep‐water renewal in Lake Issyk‐Kul (Kyrgyzstan) indicated by transient tracers, Limnol. Oceanogr., 47 ( 4 ), 1210 – 1216.
Hohmann, R., R. Kipfer, F. Peeters, G. Piepke, and D. M. Imboden ( 1997 ), Processes of deep‐water renewal in Lake Baikal, Limnol. Oceanogr., 42 ( 5 ), 841 – 855.
Hohmann, R., M. Hofer, R. Kipfer, F. Peeters, and D. M. Imboden ( 1998 ), Distribution of helium and tritium in Lake Baikal, J. Geophys. Res., 103, 12,823–12, 838.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2015GC00591610.1029/2007JC00409510.1029/2003JC00189010.1029/2008GL03322310.1007/s10750‐013‐1569‐710.1029/2003JC00223010.1029/2010JC00626110.1029/2001JC00082810.1029/2012GL051000
container_title Geochemistry, Geophysics, Geosystems
container_volume 16
container_issue 9
container_start_page 3097
op_container_end_page 3110
_version_ 1774713599845990400
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/115919 2023-08-20T04:03:12+02:00 Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model Matsumoto, Katsumi Tokos, Kathy S. Gregory, Chad 2015-09 application/pdf https://hdl.handle.net/2027.42/115919 https://doi.org/10.1002/2015GC005916 unknown Eldigio Wiley Periodicals, Inc. Matsumoto, Katsumi; Tokos, Kathy S.; Gregory, Chad (2015). "Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model." Geochemistry, Geophysics, Geosystems 16(9): 3097-3110. 1525-2027 https://hdl.handle.net/2027.42/115919 doi:10.1002/2015GC005916 Geochemistry, Geophysics, Geosystems Schlitzer, R. ( 1986 ), 14C in the deep water of the eastern Atlantic, Radiocarbon, 28 ( 2A ), 391 – 396. Matheson, D. H., and M. Munawar ( 1978 ), Lake Superior basin and development, J. Great Lakes Res., 4 ( 3‐4 ), 249 – 263. Matsumoto, K. ( 2007 ), Radiocarbon‐based circulation of the world oceans, J. Geophys. Res., 112, C09004, doi:10.1029/2007JC004095. McKinney, P., B. Holt, and K. Matsumoto ( 2012 ), Small eddies observed in Lake Superior using SAR and sea surface temperature data, J. Great Lakes Res., 38, 786 – 797. McManus, J., E. A. Heinen, and M. M. Baehr ( 2003 ), Hypolimnetic oxidation rates in Lake Superior: Role of dissolved organic material on the lake's carbon budget, Limnol. Oceanogr. Res., 48 ( 4 ), 1624 – 1632. Messias, M.‐J., C. Andrie, L. Memery, and H. Mercier ( 1999 ), Tracing the North Atlantic Deep Water through the Romanche and Chain fracture zones with chloroflouromethants, Deep Sea Res., Part I, 46, 1247 – 1278. Peeters, F., D. Finger, M. Hofer, M. Brennwald, D. M. Livingstone, and R. Kipfer ( 2003 ), Deep‐water renewal in Lake Issyk‐Kul driven by differential cooling, Limnol. Oceanogr. Methods, 48 ( 4 ), 1419 – 1431. Rhein, M., L. Stramma, and G. Krahmann ( 1998 ), The spreading of Antarctic Bottom Water in the tropical Atlantic, Deep Sea Res., Part I, 45, 507 – 527. Russ, M. E., N. E. Ostrom, H. Gandhi, P. H. Ostrom, and N. R. Urban ( 2004 ), Temporal and spatial variations in R: P ratios in Lake Superior, an oligotrophic freshwater environment, J. Geophys. Res., 109, C10S12, doi:10.1029/2003JC001890. Sarmiento, J. L., and N. Gruber ( 2006 ), Ocean Biogeochemical Dynamics, Princeton Univ. Press, Princeton, N. J. Schmidt, M., N. M. Budnev, N. G. Granin, M. Sturm, M. Schurter, and A. Wuest ( 2008 ), Lake Baikal deepwater renewal mystery solved, Geophys. Res. Lett., 35, L09605, doi:10.1029/2008GL033223. Shchepetkin, A. F., and J. C. McWilliams ( 2005 ), The regional ocean modeling system (ROMS): A split‐explicit, free surface, topography‐following coordinate ocean model, Ocean Modell., 9, 347 – 404. Shimaraev, M. N., N. G. Granin, and A. A. Zhdanov ( 1993 ), Deep ventilation of Lake Baikal waters due to spring thermal bars, Limnol. Oceanogr., 38 ( 5 ), 1068 – 1072. Small, G. E., J. B. Cotner, J. C. Finlay, R. A. Stark, and R. W. Sterner ( 2014 ), Nitrogen transformations at the sediment‐water interface across redox gradients in the Laurentian Great Lakes, Hydrobiolgia, 731, 95 – 108, doi:10.1007/s10750‐013‐1569‐7. Sterner, R. W. ( 2010 ), In situ‐measured primary production in Lake Superior, J. Great Lakes Res., 36, 139 – 149. Torgersen, T., Z. Top, B. Clarke, W. J. Jenkins, and W. S. Broecker ( 1977 ), A new method for physical limnology‐tritium‐helium 3 ages‐results for Lakes Erie, Huron, and Ontario, Limnol. Oceanogr., 22 ( 2 ), 181 – 193. Ullman, D., J. Brown, P. Conillon, and T. Mavor ( 1998 ), Surface temperature fronts in the Great Lakes, J. Great Lakes Res., 24 ( 4 ), 753 – 775. Urban, N. R., M. T. Auer, S. A. Green, X. Lu, D. S. Apul, K. D. Powell, and L. Bub ( 2005 ), Carbon cycling in Lake Superior, J. Geophys. Res., 110, C06S90, doi:10.1029/2003JC002230. Weiss, R. F., E. C. Carmack, and V. M. Koropalov ( 1991 ), Deep‐water renewal and biological production in Lake Baikal, Nature, 349, 665 – 669. White, B., and K. Matsumoto ( 2012 ), Causal mechanisms of the deep chlorophyll maximum in Lake Superior: A numerical modeling investigation, J. Great Lakes Res., 38, 504 – 513. White, B., J. Austin, and K. Matsumoto ( 2012 ), A three dimensional model of Lake Superior with ice and biogeochemistry, J. Great Lakes Res., 38, 61 – 71. Zigah, P. K., E. C. Minor, J. P. Werne, and S. L. McCallister ( 2011 ), Radiocarbon and stable carbon isotopic insights into provenance and cycling of carbon in Lake Superior, Limnol. Oceanogr. Methods, 56 ( 3 ), 867 – 886. Aeschlback‐Hertig, W., R. Kipfer, M. Hofer, D. M. Imboden, and H. Bauer ( 1996 ), Density‐driven exchange between the basins of Lake Lucerne (Switzerland) traced with the 3H‐3He method, Limnol. Oceanogr., 41 ( 4 ), 707 – 721. Assel, R. A. ( 2003 ), An electronic atlas of Great Lakes ice cover, Great Lakes Environmental Research Laboratory, Ann Arbor, Mich. Beletsky, D., J. H. Saylor, and D. J. Schwab ( 1999 ), Mean circulation in the Great Lakes, J. Great Lakes Res., 25 ( 1 ), 78 – 93. Bennett, E. B. ( 1978 ), Water budgets for Lake Superior and Whitefish Bay, J. Great Lakes Res., 4 ( 3‐4 ), 331 – 342. Bennington, V., G. McKinley, and C. H. Wu ( 2010 ), General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006, J. Geophys. Res., 115, C12015, doi:10.1029/2010JC006261. Bennington, V., G. McKinley, N. Urban, and C. P. McDonald ( 2012 ), Can spatial heterogeneity explain the perceived imbalance in Lake Superior's carbon budget? A model study, J. Geophys. Res., 117, G03020, doi:10.1029/2011JG001895. Broecker, W. S., and T.‐H. Peng ( 1982 ), Tracers in the Sea, Eldigio, Palisades, N. Y. Bryan, K., and L. J. Lewis ( 1979 ), A water mass model of the world ocean, J. Geophys. Res., 84, 2503 – 2518. Chen, C. A., and F. Millero ( 1986 ), Precise thermodynamic properties for natural waters covering only the limnological range, Limnol. Oceanogr., 31, 657 – 662. Chen, C. S., J. R. Zhu, E. Ralph, S. A. Green, J. W. Budd, and F. Y. Zhang ( 2001 ), Prognostic modeling studies of the Keweenaw current in Lake Superior. Part I: Formation and evolution, J. Phys. Oceanogr., 31 ( 2 ), 379 – 395. Chen, C. S., J. R. Zhu, K. Y. Kang, H. D. Liu, E. Ralph, S. A. Green, and J. W. Budd ( 2002 ), Cross‐frontal transport along the Keweenaw coast in Lake Superior: A Lagrangian model study, Dyn. Atmos. Oceans, 36 ( 1‐3 ), 83 – 102. Cotner, J. B., B. Biddanda, W. Makino, and E. Stets ( 2004 ), Organic carbon biogeochemistry of Lake Superior, Aquat. Ecosyst. Health Manage., 7 ( 4 ), 451 – 464. England, M. H. ( 1995 ), The age of water and ventilation timescales in a global ocean model, J. Phys. Oceanogr., 25 ( 11 ), 2756 – 2777. Fasham, M. J. R., H. W. Ducklow, and S. M. McKelvie ( 1990 ), A nitrogen‐based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48 ( 3 ), 591 – 639. Fer, I., U. Lemmin, and S. A. Thorpe ( 2002 ), Winter cascading of cold water in Lake Geneva, J. Geophys. Res., 106 ( C6 ), 3060, doi:10.1029/2001JC000828. Forel, F. A. ( 1880 ), La conglation des lacs Suisses et savoyards pendant l'hiver 1879‐1880, 11 ‐ Lac Leman Echo Alpes, 3, 149 – 161. Francis, J. A., and S. J. Vavrus ( 2012 ), Evidence linking Arctic amplification to extreme weather in mid‐latitudes, Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000. Gargett, A. E., and G. Holloway ( 1984 ), Dissipation and diffusion by internal wave breaking, J. Mar. Res., 42 ( 1 ), 15 – 27. Harrington, M. W. ( 1895 ), Surface currents of the Great Lakes, Bulletin B, Weather Bureau, U.S. Department of Agriculture, Washington, D. C. Hecky, R. E. ( 2000 ), A biogeochemical comparison of Lakes Superior and Malawi and the limnological consequences of an endless summer, Aquat. Ecosyst. Health Manage., 3, 23 – 33. Hofer, M., F. Peeters, W. Aeschlback‐Hertig, M. Brennwald, J. Holocher, D. M. Livingston, V. Romanovski, and R. Kipfer ( 2002 ), Rapid deep‐water renewal in Lake Issyk‐Kul (Kyrgyzstan) indicated by transient tracers, Limnol. Oceanogr., 47 ( 4 ), 1210 – 1216. Hohmann, R., R. Kipfer, F. Peeters, G. Piepke, and D. M. Imboden ( 1997 ), Processes of deep‐water renewal in Lake Baikal, Limnol. Oceanogr., 42 ( 5 ), 841 – 855. Hohmann, R., M. Hofer, R. Kipfer, F. Peeters, and D. M. Imboden ( 1998 ), Distribution of helium and tritium in Lake Baikal, J. Geophys. Res., 103, 12,823–12, 838. IndexNoFollow ideal tracers oxygen ventilation numerical model Lake Superior Geological Sciences Science Article 2015 ftumdeepblue https://doi.org/10.1002/2015GC00591610.1029/2007JC00409510.1029/2003JC00189010.1029/2008GL03322310.1007/s10750‐013‐1569‐710.1029/2003JC00223010.1029/2010JC00626110.1029/2001JC00082810.1029/2012GL051000 2023-07-31T20:45:35Z Ventilation and dissolved oxygen in Lake Superior are key factors that determine the fate of various natural and anthropogenic inputs to the lake. We employ an idealized age tracer and biogeochemical tracers in a realistically configured numerical model of Lake Superior to characterize its ventilation and dissolved O2 cycle. Our results indicate that Lake Superior is preferentially ventilated over rough bathymetry and that spring overturning following a very cold winter does not completely ventilate the lake interior. While this is unexpected for a dimictic lake, no part of the lake remains isolated from the atmosphere for more than 300 days. Our results also show that Lake Superior's oxygen cycle is dominated by solubility changes; as a result, the expected relationship between biological consumption of dissolved O2 and ventilation age does not manifest.Key Points:Lake Superior is preferentially ventilated over rough bathymetryOverturning following an icy winter does not completely ventilate the lakeDissolved oxygen signal is dominated by physical processes Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/115919/1/ggge20818_am.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/115919/2/ggge20818.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Geochemistry, Geophysics, Geosystems 16 9 3097 3110