An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow u...

Full description

Bibliographic Details
Published in:Geochemistry, Geophysics, Geosystems
Main Authors: Arendt, Carli A., Aciego, Sarah M., Hetland, Eric A.
Format: Article in Journal/Newspaper
Language:unknown
Published: WIT Press 2015
Subjects:
Online Access:http://hdl.handle.net/2027.42/111937
https://doi.org/10.1002/2014GC005683
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/111937
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Athabasca Glacier
Monte Carlo
Bayesian
source contribution
isotope mixing model
Earth surface processes
Geological Sciences
Science
spellingShingle Athabasca Glacier
Monte Carlo
Bayesian
source contribution
isotope mixing model
Earth surface processes
Geological Sciences
Science
Arendt, Carli A.
Aciego, Sarah M.
Hetland, Eric A.
An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes
topic_facet Athabasca Glacier
Monte Carlo
Bayesian
source contribution
isotope mixing model
Earth surface processes
Geological Sciences
Science
description The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end‐members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end‐member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end‐member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.Key Points:Open source BMC model determines source contributions in Earth surface systemsEffectively applied to stable and radiogenic isotope systems in various settingsModel able to encompass end‐member uncertainties and multiple isotopic systems Peer Reviewed ...
format Article in Journal/Newspaper
author Arendt, Carli A.
Aciego, Sarah M.
Hetland, Eric A.
author_facet Arendt, Carli A.
Aciego, Sarah M.
Hetland, Eric A.
author_sort Arendt, Carli A.
title An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes
title_short An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes
title_full An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes
title_fullStr An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes
title_full_unstemmed An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes
title_sort open source bayesian monte carlo isotope mixing model with applications in earth surface processes
publisher WIT Press
publishDate 2015
url http://hdl.handle.net/2027.42/111937
https://doi.org/10.1002/2014GC005683
genre glacier
Greenland
Ice Sheet
genre_facet glacier
Greenland
Ice Sheet
op_relation Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A. (2015). "An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes." Geochemistry, Geophysics, Geosystems 16(5): 1274-1292.
1525-2027
http://hdl.handle.net/2027.42/111937
doi:10.1002/2014GC005683
Geochemistry, Geophysics, Geosystems
Shea, J. M., and S. J. Marshall ( 2007 ), Atmospheric flow indices, regional climate, and glacier mass balance in the Canadian Rocky Mountains, Int. J. Climatol., 27 ( 2 ), 233 – 247, doi:10.1002/joc.1398.
Parnell, A., D. Phillips, S. Bearhop, B. Semmens, E. Ward, J. Moore, A. Jackson, J. Grey, D. Kelly, and R. Inger ( 2013 ), Bayesian stable isotope mixing models, Environmetrics, 24 ( 6 ), 387 – 399, doi:10.1002/env.2221.
Parnell, A. C., R. Inger, S. Bearhop, and A. L. Jackson ( 2010 ), Source partitioning using stable isotopes: Coping with too much variation, Plos One, 5 ( 3 ), e9672, doi:10.1371/journal.pone.0009672.
Petit, J. R., et al. ( 1999 ), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429 – 436, doi:10.1038/20859.
Pichler, T. ( 2005 ), Stable and radiogenic isotopes as tracers for the origin, mixing, and subsurface history of fluids in submarine shallow‐water hydrothermal systems, J. Volcanol. Geotherm. Res., 139 ( 3–4 ), 211 – 226, doi:10.1016/j.jvolgeores.2004.08.007.
Rickli, J., M. Frank, A. R. Baker, S. Aciego, G. de Souza, R. B. Georg, and A. N. Halliday ( 2010 ), Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: Implications for sources and inputs of trace metals to the ocean, Geochim. Cosmochim. Acta, 74, 540 – 557, doi:10.1016/j.gca.2009.10.006.
Sharp, M., G. H. Brown, M. Tranter, I. C. Willis, and B. Hubbard ( 1995 ), Comments on the use of chemically based mixing models in glacier hydrology, J. Glaciol., 41 ( 138 ), 241 – 246.
Singh, B. P. ( 2013 ), Isotopic composition of water in precipitation in a region or place, Appl. Radiat. Isot., 75, 22 – 25, doi:10.1016/j.apradiso.2013.01.013.
Singh, P., and L. Bengtsson ( 2005 ), Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region, J. Hydrol., 300 ( 1–4 ), 140 – 154, doi:10.1016/j.jhydrol.2004.06.005.
Smart, C. C. ( 1983 ), The hydrology of Castleguard Karst, Columbia Icefields, Alberta, Canada, Arct. Alp. Res., 15 ( 4 ), 471 – 486.
Socki, R. A., H. R. Karlsson, and E. K. Gibson Jr. ( 1992 ), Extraction technique for the determination of O‐18 in water using preevacuated glass vials, Anal. Chem., 64 ( 7 ), 829 – 831, doi:10.1021/ac00031a026.
Souchez, R. ( 1984 ), On the isotopic composition in delta‐D and delta‐O‐18 of water and ice during freezing, J. Glaciol., 30 ( 106 ), 369 – 372.
Souchez, R. ( 2000 ), Basal ice formation and deformation in central Greenland: A review of existing and new ice core data, Geol. Soc. Spec. Publ., 176 ( 0305–8719 ), 13 – 22, doi:10.1144/GSL.SP.2000.176.01.02.
Souchez, R., M. Lemmens, J.‐L. Tison, R. Lorrain, and L. Janssens ( 1983 ), Reconstruction of basal boundary conditions at the Greenland Ice Sheet margin from gas composition in the ice, Earth Planet. Sci. Lett., 118 ( 1–4 ), 327 – 333, doi:10.1016/0012‐821X(93)90176‐A.
Soulsby, C., J. Petry, M. J. Brewer, S. M. Dunn, B. Ott, and I. A. Malcolm ( 2003 ), Identifying and assessing uncertainty in hydrological pathways: A novel approach to end member mixing in a Scottish agricultural catchment, J. Hydrol., 274 ( 1–4 ), 109 – 128, doi:10.1016/S0022‐1694(02)00398‐0.
Stewart, I. T. ( 2009 ), Changes in snowpack and snowmelt runoff for key mountain regions, Hydrol. Processes, 23 ( 1 ), 78 – 94, doi:10.1002/hyp.7128.
Tanaka, T., et al. ( 2000 ), JNdi‐1: A neodymium isotopic reference in consistency with LaJolla neodymium, Chem. Geol., 168, 279 – 281, doi:10.1016/S0009‐2541(00)00198‐4.
Taylor, S., X. Feng, J. W. Kirchner, R. Osterhuber, B. Klaue, and C. E. Renshaw ( 2001 ), Isotopic evolution of a seasonal snowpack and its melt, Water Resour. Res., 37 ( 3 ), 759 – 769, doi:10.1029/2000WR900341.
Thayyen, R. J., J. T. Gergan, and D. P. Dobhal ( 2007 ), Role of glaciers and snow cover on headwater river hydrology in monsoon regime—Micro‐scale study of Din Gad catchment, Garhwal Himalaya, India, Curr. Sci., 92 ( 3 ), 376 – 382.
Theakstone, W. H. ( 2003 ), Oxygen isotopes in glacier‐river water, Austre Okstindbreen, Norway, MS thesis, Univ. of Manchester, Manchester, U. K.
Unnikrishna, P. ( 2002 ), Isotope variations in a Sierra Nevada snowpack and their relation to meltwater, J. Hydrol., 260, 38 – 57, doi:10.1016/S0022‐1694(01)00596‐0.
Verbunt, M., J. Gurtz, K. Jasper, H. Lang, P. Warmerdam, and M. Zappa ( 2003 ), The hydrological role of snow and glaciers in alpine river basins and their distributed modeling, J. Hydrol., 282 ( 1–4 ), 36 – 55, doi:10.1016/S0022‐1694(03)00251‐8.
Wikle, C. K. ( 2003 ), Hierarchical models in environmental science, Int. Stat. Rev., 71 ( 2 ), 181 – 199, doi:10.1111/j.1751‐5823.2003.tb00192.x.
Aizen, V. B., E. M. Aizen, K. Fujita, S. A. Nikitin, K. J. Kreutz, and L. N. Takeuchi ( 2005 ), Stable‐isotope time series and precipitation origin from firn‐core and snow samples, Altai glaciers, Siberia, J. Glaciol., 51 ( 175 ), 637 – 654.
Barber, R. W., and M. J. Wearing ( 2001 ), A mathematical model for estimating the pollution exchange coefficient of small tidal embayments, in Water Resource Management, vol. 4, edited by C. A. Brebbia, pp. 331 – 340, WIT Press, Southampton, U. K.
Barnett, T. P., J. C. Adam, and D. P. Lettenmaier ( 2005 ), Potential impacts of a warming climate on water availability in snow‐dominated regions, Nature, 438 ( 7066 ), 303 – 309, doi:10.1038/nature04141.
Bhatia, M. P., S. B. Das, E. B. Kujawinski, P. Henderson, A. Burke, and M. A. Charette ( 2011 ), Seasonal evolution of water contributions to discharge from a Greenland outlet glacier: Insight from a new isotope‐mixing model, J. Glaciol., 57 ( 205 ), doi:10.3189/002214311798043861.
Biscaye, P. E., F. E. Grousset, M. Revel, S. Van der Gaast, G. A. Zielinski, A. Vaars and G. Kukla ( 1997 ), Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland, J. Geophys. Res., 102 ( C12 ), 26,765 – 26,781, doi:10.1029/97JC01249.
Brugmann, M. N., and M. M. Demuth ( 1994 ), Surface and basal topography of the Athabasca Glacier: A glaciological interpretation and recommendation for the location of near‐ice interpretive facilities, contract report, Jasper Natl. Park, pp. 190 – 193, Natl. Hydrol. Res. Inst., Saskatoon, Saskatchewan, Canada.
Butler, D. ( 1980 ), Shallow core snow chemistry of Athabasca Glacier, Alberta, J. Earth Sci., 17, 278 – 281, doi:10.1139/e80‐024.
Cable, J., K. Ogle, and D. Williams ( 2011 ), Contribution of glacier meltwater to streamflow in the Wind River Range, Wyoming, inferred via a Bayesian mixing model applied to isotopic measurements, Hydrol. Processes, 25 ( 14 ), 2228 – 2236, doi:10.1002/hyp.7982.
Canada National Climate Archive ( 2013 ), National climate data and information archive, technical report no. Alberta 5, 2011–7, 2011, Natl. Clim. Data Cent., Fredericton, New Brunswick, Canada.
Chadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert, and L. O. Hedin ( 1999 ), Changing sources of nutrients during four million years of ecosystem development, Nature, 397, 491 – 497, doi:10.1038/17276.
Chadwick, O. A., L. A. Derry, C. R. Bern, and P. M. Vitousek ( 2009 ), Changing sources of strontium to soils and ecosystems across the Hawaiian Islands, Chem. Geol., 267, 64 – 76, doi:10.1016/j.chemgeo.2009.01.009.
Clark, I., and P. Fritz ( 1997 ), Environmental Isotopes in Hydrogeology, pp. 1 – 331, CRC Press, Boca Raton, Fla.
Cooper, L. W. ( 1998 ), Isotope Tracers in Catchment Hydrology, Isotope fractionation in snowcover, chap. 4, edited by C. Kendall and J. J. McDonnell, 119 – 136, Elsevier Sci., Amsterdam, Netherlands.
Craig, H. ( 1961 ), Isotopic variations in meteoric waters, Science, 133 ( 3465 ), 1702 – 1703, doi:10.1126/science.133.3465.1702.
Dansgaard, W. ( 1964 ), Stable isotopes in precipitation, Tellus, 16 ( 4 ), 436 – 468, doi:10.1111/j.2153‐3490.1964.tb00181.x.
Falcone, M. D. ( 2007 ), Assessing hydrological processes controlling the water balance of lakes in the Peace‐Athabasca Delta, Alberta, Canada using water isotope tracers, PhD thesis, Univ. of Waterloo, Ont., Canada.
Ford, D. C., P. L. Smart and R. O. Ewers ( 1983 ), The physiography and speleogenesis of Castleguard Cave, Columbia Icefields, Alberta, Canada, Arct. Alp. Res., 15 ( 4 ), 437 – 450, doi:10.2307/1551231.
Fortner, S. K., W. B. Lyons, A. G. Fountain, K. A. Welch, and N. M. Kehrwald ( 2009 ), Trace element and major ion concentrations and dynamics in glacier snow and melt: Eliot Glacier, Oregon Cascades, Hydrol. Processes, 23, 2987 – 2996, doi:10.1002/hyp.7418.
Gat, J. R. ( 1996 ), Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Planet. Sci., 24 ( 1 ), 225 – 262, doi:10.1146/annurev.earth.24.1.225.
Grupe, G. ( 2014 ), Application of isotopic mixing models for palaeodietary and paleoecological studies, Anthropol. Anzeiger, 71, 21 – 39, doi:10.1127/0003‐5548/2014/0375.
Hanano, D. W., D. Weis, J. S. Scoates, S. Aciego and D. J. DePaolo ( 2010 ), Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala‐Mahukona and Mauna Kea–Hualalai, Geochem. Geophys. Geosyst., 11, Q01004, doi:10.1029/2009GC002782.
Hart, J. K. ( 2006 ), Athabasca Glacier, Canada—A field example of subglacial ice and till erosion?, Earth Surf. Processes Landforms, 31, 65 – 80, doi:10.1002/esp.1233.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2014GC00568310.1002/joc.139810.1002/env.222110.1371/journal.pone.000967210.1038/2085910.1016/j.jvolgeores.2004.08.00710.1016/j.gca.2009.10.00610.1016/j.apradiso.2013.01.01310.1016/j.jhydrol.2004.06.00510.1021/ac00031a02610.1144/GSL
container_title Geochemistry, Geophysics, Geosystems
container_volume 16
container_issue 5
container_start_page 1274
op_container_end_page 1292
_version_ 1810445126911131648
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/111937 2024-09-15T18:07:45+00:00 An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes Arendt, Carli A. Aciego, Sarah M. Hetland, Eric A. 2015-05 application/pdf http://hdl.handle.net/2027.42/111937 https://doi.org/10.1002/2014GC005683 unknown WIT Press Wiley Periodicals, Inc. Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A. (2015). "An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes." Geochemistry, Geophysics, Geosystems 16(5): 1274-1292. 1525-2027 http://hdl.handle.net/2027.42/111937 doi:10.1002/2014GC005683 Geochemistry, Geophysics, Geosystems Shea, J. M., and S. J. Marshall ( 2007 ), Atmospheric flow indices, regional climate, and glacier mass balance in the Canadian Rocky Mountains, Int. J. Climatol., 27 ( 2 ), 233 – 247, doi:10.1002/joc.1398. Parnell, A., D. Phillips, S. Bearhop, B. Semmens, E. Ward, J. Moore, A. Jackson, J. Grey, D. Kelly, and R. Inger ( 2013 ), Bayesian stable isotope mixing models, Environmetrics, 24 ( 6 ), 387 – 399, doi:10.1002/env.2221. Parnell, A. C., R. Inger, S. Bearhop, and A. L. Jackson ( 2010 ), Source partitioning using stable isotopes: Coping with too much variation, Plos One, 5 ( 3 ), e9672, doi:10.1371/journal.pone.0009672. Petit, J. R., et al. ( 1999 ), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429 – 436, doi:10.1038/20859. Pichler, T. ( 2005 ), Stable and radiogenic isotopes as tracers for the origin, mixing, and subsurface history of fluids in submarine shallow‐water hydrothermal systems, J. Volcanol. Geotherm. Res., 139 ( 3–4 ), 211 – 226, doi:10.1016/j.jvolgeores.2004.08.007. Rickli, J., M. Frank, A. R. Baker, S. Aciego, G. de Souza, R. B. Georg, and A. N. Halliday ( 2010 ), Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: Implications for sources and inputs of trace metals to the ocean, Geochim. Cosmochim. Acta, 74, 540 – 557, doi:10.1016/j.gca.2009.10.006. Sharp, M., G. H. Brown, M. Tranter, I. C. Willis, and B. Hubbard ( 1995 ), Comments on the use of chemically based mixing models in glacier hydrology, J. Glaciol., 41 ( 138 ), 241 – 246. Singh, B. P. ( 2013 ), Isotopic composition of water in precipitation in a region or place, Appl. Radiat. Isot., 75, 22 – 25, doi:10.1016/j.apradiso.2013.01.013. Singh, P., and L. Bengtsson ( 2005 ), Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region, J. Hydrol., 300 ( 1–4 ), 140 – 154, doi:10.1016/j.jhydrol.2004.06.005. Smart, C. C. ( 1983 ), The hydrology of Castleguard Karst, Columbia Icefields, Alberta, Canada, Arct. Alp. Res., 15 ( 4 ), 471 – 486. Socki, R. A., H. R. Karlsson, and E. K. Gibson Jr. ( 1992 ), Extraction technique for the determination of O‐18 in water using preevacuated glass vials, Anal. Chem., 64 ( 7 ), 829 – 831, doi:10.1021/ac00031a026. Souchez, R. ( 1984 ), On the isotopic composition in delta‐D and delta‐O‐18 of water and ice during freezing, J. Glaciol., 30 ( 106 ), 369 – 372. Souchez, R. ( 2000 ), Basal ice formation and deformation in central Greenland: A review of existing and new ice core data, Geol. Soc. Spec. Publ., 176 ( 0305–8719 ), 13 – 22, doi:10.1144/GSL.SP.2000.176.01.02. Souchez, R., M. Lemmens, J.‐L. Tison, R. Lorrain, and L. Janssens ( 1983 ), Reconstruction of basal boundary conditions at the Greenland Ice Sheet margin from gas composition in the ice, Earth Planet. Sci. Lett., 118 ( 1–4 ), 327 – 333, doi:10.1016/0012‐821X(93)90176‐A. Soulsby, C., J. Petry, M. J. Brewer, S. M. Dunn, B. Ott, and I. A. Malcolm ( 2003 ), Identifying and assessing uncertainty in hydrological pathways: A novel approach to end member mixing in a Scottish agricultural catchment, J. Hydrol., 274 ( 1–4 ), 109 – 128, doi:10.1016/S0022‐1694(02)00398‐0. Stewart, I. T. ( 2009 ), Changes in snowpack and snowmelt runoff for key mountain regions, Hydrol. Processes, 23 ( 1 ), 78 – 94, doi:10.1002/hyp.7128. Tanaka, T., et al. ( 2000 ), JNdi‐1: A neodymium isotopic reference in consistency with LaJolla neodymium, Chem. Geol., 168, 279 – 281, doi:10.1016/S0009‐2541(00)00198‐4. Taylor, S., X. Feng, J. W. Kirchner, R. Osterhuber, B. Klaue, and C. E. Renshaw ( 2001 ), Isotopic evolution of a seasonal snowpack and its melt, Water Resour. Res., 37 ( 3 ), 759 – 769, doi:10.1029/2000WR900341. Thayyen, R. J., J. T. Gergan, and D. P. Dobhal ( 2007 ), Role of glaciers and snow cover on headwater river hydrology in monsoon regime—Micro‐scale study of Din Gad catchment, Garhwal Himalaya, India, Curr. Sci., 92 ( 3 ), 376 – 382. Theakstone, W. H. ( 2003 ), Oxygen isotopes in glacier‐river water, Austre Okstindbreen, Norway, MS thesis, Univ. of Manchester, Manchester, U. K. Unnikrishna, P. ( 2002 ), Isotope variations in a Sierra Nevada snowpack and their relation to meltwater, J. Hydrol., 260, 38 – 57, doi:10.1016/S0022‐1694(01)00596‐0. Verbunt, M., J. Gurtz, K. Jasper, H. Lang, P. Warmerdam, and M. Zappa ( 2003 ), The hydrological role of snow and glaciers in alpine river basins and their distributed modeling, J. Hydrol., 282 ( 1–4 ), 36 – 55, doi:10.1016/S0022‐1694(03)00251‐8. Wikle, C. K. ( 2003 ), Hierarchical models in environmental science, Int. Stat. Rev., 71 ( 2 ), 181 – 199, doi:10.1111/j.1751‐5823.2003.tb00192.x. Aizen, V. B., E. M. Aizen, K. Fujita, S. A. Nikitin, K. J. Kreutz, and L. N. Takeuchi ( 2005 ), Stable‐isotope time series and precipitation origin from firn‐core and snow samples, Altai glaciers, Siberia, J. Glaciol., 51 ( 175 ), 637 – 654. Barber, R. W., and M. J. Wearing ( 2001 ), A mathematical model for estimating the pollution exchange coefficient of small tidal embayments, in Water Resource Management, vol. 4, edited by C. A. Brebbia, pp. 331 – 340, WIT Press, Southampton, U. K. Barnett, T. P., J. C. Adam, and D. P. Lettenmaier ( 2005 ), Potential impacts of a warming climate on water availability in snow‐dominated regions, Nature, 438 ( 7066 ), 303 – 309, doi:10.1038/nature04141. Bhatia, M. P., S. B. Das, E. B. Kujawinski, P. Henderson, A. Burke, and M. A. Charette ( 2011 ), Seasonal evolution of water contributions to discharge from a Greenland outlet glacier: Insight from a new isotope‐mixing model, J. Glaciol., 57 ( 205 ), doi:10.3189/002214311798043861. Biscaye, P. E., F. E. Grousset, M. Revel, S. Van der Gaast, G. A. Zielinski, A. Vaars and G. Kukla ( 1997 ), Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland, J. Geophys. Res., 102 ( C12 ), 26,765 – 26,781, doi:10.1029/97JC01249. Brugmann, M. N., and M. M. Demuth ( 1994 ), Surface and basal topography of the Athabasca Glacier: A glaciological interpretation and recommendation for the location of near‐ice interpretive facilities, contract report, Jasper Natl. Park, pp. 190 – 193, Natl. Hydrol. Res. Inst., Saskatoon, Saskatchewan, Canada. Butler, D. ( 1980 ), Shallow core snow chemistry of Athabasca Glacier, Alberta, J. Earth Sci., 17, 278 – 281, doi:10.1139/e80‐024. Cable, J., K. Ogle, and D. Williams ( 2011 ), Contribution of glacier meltwater to streamflow in the Wind River Range, Wyoming, inferred via a Bayesian mixing model applied to isotopic measurements, Hydrol. Processes, 25 ( 14 ), 2228 – 2236, doi:10.1002/hyp.7982. Canada National Climate Archive ( 2013 ), National climate data and information archive, technical report no. Alberta 5, 2011–7, 2011, Natl. Clim. Data Cent., Fredericton, New Brunswick, Canada. Chadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert, and L. O. Hedin ( 1999 ), Changing sources of nutrients during four million years of ecosystem development, Nature, 397, 491 – 497, doi:10.1038/17276. Chadwick, O. A., L. A. Derry, C. R. Bern, and P. M. Vitousek ( 2009 ), Changing sources of strontium to soils and ecosystems across the Hawaiian Islands, Chem. Geol., 267, 64 – 76, doi:10.1016/j.chemgeo.2009.01.009. Clark, I., and P. Fritz ( 1997 ), Environmental Isotopes in Hydrogeology, pp. 1 – 331, CRC Press, Boca Raton, Fla. Cooper, L. W. ( 1998 ), Isotope Tracers in Catchment Hydrology, Isotope fractionation in snowcover, chap. 4, edited by C. Kendall and J. J. McDonnell, 119 – 136, Elsevier Sci., Amsterdam, Netherlands. Craig, H. ( 1961 ), Isotopic variations in meteoric waters, Science, 133 ( 3465 ), 1702 – 1703, doi:10.1126/science.133.3465.1702. Dansgaard, W. ( 1964 ), Stable isotopes in precipitation, Tellus, 16 ( 4 ), 436 – 468, doi:10.1111/j.2153‐3490.1964.tb00181.x. Falcone, M. D. ( 2007 ), Assessing hydrological processes controlling the water balance of lakes in the Peace‐Athabasca Delta, Alberta, Canada using water isotope tracers, PhD thesis, Univ. of Waterloo, Ont., Canada. Ford, D. C., P. L. Smart and R. O. Ewers ( 1983 ), The physiography and speleogenesis of Castleguard Cave, Columbia Icefields, Alberta, Canada, Arct. Alp. Res., 15 ( 4 ), 437 – 450, doi:10.2307/1551231. Fortner, S. K., W. B. Lyons, A. G. Fountain, K. A. Welch, and N. M. Kehrwald ( 2009 ), Trace element and major ion concentrations and dynamics in glacier snow and melt: Eliot Glacier, Oregon Cascades, Hydrol. Processes, 23, 2987 – 2996, doi:10.1002/hyp.7418. Gat, J. R. ( 1996 ), Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Planet. Sci., 24 ( 1 ), 225 – 262, doi:10.1146/annurev.earth.24.1.225. Grupe, G. ( 2014 ), Application of isotopic mixing models for palaeodietary and paleoecological studies, Anthropol. Anzeiger, 71, 21 – 39, doi:10.1127/0003‐5548/2014/0375. Hanano, D. W., D. Weis, J. S. Scoates, S. Aciego and D. J. DePaolo ( 2010 ), Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala‐Mahukona and Mauna Kea–Hualalai, Geochem. Geophys. Geosyst., 11, Q01004, doi:10.1029/2009GC002782. Hart, J. K. ( 2006 ), Athabasca Glacier, Canada—A field example of subglacial ice and till erosion?, Earth Surf. Processes Landforms, 31, 65 – 80, doi:10.1002/esp.1233. IndexNoFollow Athabasca Glacier Monte Carlo Bayesian source contribution isotope mixing model Earth surface processes Geological Sciences Science Article 2015 ftumdeepblue https://doi.org/10.1002/2014GC00568310.1002/joc.139810.1002/env.222110.1371/journal.pone.000967210.1038/2085910.1016/j.jvolgeores.2004.08.00710.1016/j.gca.2009.10.00610.1016/j.apradiso.2013.01.01310.1016/j.jhydrol.2004.06.00510.1021/ac00031a02610.1144/GSL 2024-07-30T04:06:07Z The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end‐members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end‐member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end‐member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.Key Points:Open source BMC model determines source contributions in Earth surface systemsEffectively applied to stable and radiogenic isotope systems in various settingsModel able to encompass end‐member uncertainties and multiple isotopic systems Peer Reviewed ... Article in Journal/Newspaper glacier Greenland Ice Sheet University of Michigan: Deep Blue Geochemistry, Geophysics, Geosystems 16 5 1274 1292