Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.

Two important factors that control snow albedo are snow grain growth and presence of light‐absorbing impurities (aerosols) in snow. However, current regional climate models do not include such processes in a physically based manner in their land surface models. We improve snow albedo calculations in...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Oaida, Catalina M., Xue, Yongkang, Flanner, Mark G., Skiles, S. McKenzie, De Sales, Fernando, Painter, Thomas H.
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge Univ. Press 2015
Subjects:
WRF
Online Access:https://hdl.handle.net/2027.42/111782
https://doi.org/10.1002/2014JD022444
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/111782
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic WRF
snow
regional climate
aerosols
dust
black carbon
Atmospheric and Oceanic Sciences
Science
spellingShingle WRF
snow
regional climate
aerosols
dust
black carbon
Atmospheric and Oceanic Sciences
Science
Oaida, Catalina M.
Xue, Yongkang
Flanner, Mark G.
Skiles, S. McKenzie
De Sales, Fernando
Painter, Thomas H.
Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.
topic_facet WRF
snow
regional climate
aerosols
dust
black carbon
Atmospheric and Oceanic Sciences
Science
description Two important factors that control snow albedo are snow grain growth and presence of light‐absorbing impurities (aerosols) in snow. However, current regional climate models do not include such processes in a physically based manner in their land surface models. We improve snow albedo calculations in the Simplified Simple Biosphere (SSiB) land surface model coupled with the Weather Research and Forecasting (WRF) regional climate model (RCM), by incorporating the physically based SNow ICe And Radiative (SNICAR) scheme. SNICAR simulates snow albedo evolution due to snow aging and presence of aerosols in snow. The land surface model is further modified to account for deposition, movement, and removal by meltwater of such impurities in the snowpack. This paper presents model development technique, validation with in situ observations, and preliminary results from RCM simulations investigating the impact of such impurities in snow on surface energy and water budgets. By including snow‐aerosol interactions, the new land surface model is able to realistically simulate observed snow albedo, snow grain size, dust in snow, and surface water and energy balances in offline simulations for a location in western U.S. Preliminary results with the fully coupled RCM show that over western U.S., realistic aerosol deposition in snow induces a springtime average radiative forcing of 16 W/m2 due to a 6% albedo reduction, a regional surface warming of 0.84°C, and a snowpack reduction of 11 mm.Key PointsIncluding snow aging and aerosols in snow improves offline and WRF snow simulationsDust and black/organic carbon exerts nontrivial radiative forcing in western U.S.RCM simulation shows temperature increase and snow mass loss from aerosols in snow Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/111782/1/jgrd52045.pdf
format Article in Journal/Newspaper
author Oaida, Catalina M.
Xue, Yongkang
Flanner, Mark G.
Skiles, S. McKenzie
De Sales, Fernando
Painter, Thomas H.
author_facet Oaida, Catalina M.
Xue, Yongkang
Flanner, Mark G.
Skiles, S. McKenzie
De Sales, Fernando
Painter, Thomas H.
author_sort Oaida, Catalina M.
title Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.
title_short Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.
title_full Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.
title_fullStr Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.
title_full_unstemmed Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.
title_sort improving snow albedo processes in wrf/ssib regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western u.s.
publisher Cambridge Univ. Press
publishDate 2015
url https://hdl.handle.net/2027.42/111782
https://doi.org/10.1002/2014JD022444
genre Arctic
genre_facet Arctic
op_relation Oaida, Catalina M.; Xue, Yongkang; Flanner, Mark G.; Skiles, S. McKenzie; De Sales, Fernando; Painter, Thomas H. (2015). "Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S." Journal of Geophysical Research: Atmospheres 120(8): 3228-3248.
2169-897X
2169-8996
https://hdl.handle.net/2027.42/111782
doi:10.1002/2014JD022444
Journal of Geophysical Research: Atmospheres
Shamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.‐Y. Huang, W. Wang, and J. G. Powers ( 2008 ), A description of the advanced research WRF version 3, NCAR Tech. Note. [Available at www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]
Qian, Y., M. G. Flanner, L. R. Leung, and W. Wang ( 2011 ), Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929 – 1948, doi:10.5194/acp-11-1929-2011.
Qian, Y., H. Wang, R. Zhang, M. G. Flanner, and P. J. Rasch ( 2014 ), A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China, Environ. Res. Lett., 9 ( 6 ), 064001, doi:10.1088/1748-9326/9/6/064001.
Qu, X., and A. Hall ( 2007 ), What controls the strength of snow‐albedo feedback?, J. Clim., 20, 3971 – 3981, doi:10.1175/JCLI4186.1.
Rangwala, I., and J. R. Miller ( 2012 ), Climate change in mountains: A review of elevation‐dependent warming and its potential causes, Clim. Change, 114, 527 – 547, doi:10.1007/s10584-012-0419-3.
Rasmussen, R. M., et al. ( 2011 ), High‐resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate, J. Clim., 24, 3015 – 3048, doi:10.1175/2010JCLI3985.1.
Reid, J. S., et al. ( 2003 ), Comparison of size and morphological measurements of dust particles from Africa, J. Geophys. Res., 108, 8593, doi:10.1029/2002JD002485.
Rutter, N., et al. ( 2009 ), Evaluation of forest snow processes models (SnowMIP2), J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.
Sellers, P. J., et al. ( 1996 ), A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation, J. Clim., 9, 676 – 705, doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.
Shrestha, M., L. Wang, T. Koike, Y. Xue, and Y. Hirabayashi ( 2012 ), Modeling the spatial distribution of snow cover in the Dudhkoshi region of the Nepal Himalaya, J. Hydrometeorol., 13, 204 – 222, doi:10.1175/JHM-D-10-05027.1.
Skiles, S. M. ( 2014 ), Dust and Black Carbon Radiative Forcing Controls on Snowmelt in the Colorado River Basin (Doctoral Dissertation), Univ. of California‐Los Angeles, Los Angeles, Publisher: ProQuest, document ID# 3637640.
Skiles, S. M., T. H. Painter, J. S. Deems, A. C. Bryant, and C. C. Landry ( 2012 ), Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates, Water Resour. Res., 48, W07522, doi:10.1029/2012WR011986.
Sterle, K. M., J. R. McConnell, J. Dozier, R. Edwards, and M. G. Flanner ( 2013 ), Retention and radiative forcing of black carbon in eastern Sierra Nevada snow, Cryosphere, 7, 365 – 374, doi:10.5194/tc-7-365-2013.
Sturm, M., and C. S. Benson ( 1997 ), Vapor transport, grain growth and depth‐hoar development in the subarctic snow, J. Glaciol., 43 ( 143 ), 42 – 59.
Sun, S., J. Jin, and Y. Xue ( 1999 ), A simple snow‐atmosphere‐soil transfer model, J. Geophys. Res., 104 ( D16 ), 19,587 – 19,597, doi:10.1029/1999JD900305.
Thompson, L. G., T. Yao, E. Mosley‐Thompson, K. A. Henderson, and P. N. Lin ( 2000 ), A high‐resolution millennial record of the south Asian monsoon from Himalayan ice cores, Science, 289, 1916 – 1919, doi:10.1126/science.289.5486.1916.
Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam ( 1989 ), Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94 ( D13 ), 16,287 – 16,301, doi:10.1029/JD094iD13p16287.
Warren, S. G., and W. J. Wiscombe ( 1980 ), A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols, J. Atmos. Sci., 37, 2734 – 2745, doi:10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.
Wiscombe, W. J., and S. G. Warren ( 1980 ), A model for the spectral albedo of snow. I: Pure snow, J. Atmos. Sci., 37, 2712 – 2733, doi:10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2.
Xu, B. Q., et al. ( 2009 ), Black soot and the survival of Tibetan glaciers, Proc. Natl. Acad. Sci. U.S.A., 106 ( 52 ), 22,114 – 22,118, doi:10.1073/pnas.0910444106.
Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla ( 1991 ), A simplified model for global climate studies, J. Clim., 4, 345 – 364, doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO:2.
Xue, Y., F. J. Zeng, K. Mitchell, Z. Janjic, and E. Rogers ( 2001 ), The impact of land surface processes on the simulation of the U.S. hydrological cycle: A case study of 1993 US flood using the Eta/SSiB regional model, Mon. Weather Rev., 129, 2833 – 2860, doi:10.1175/1520-0493(2001)129<2833:TIOLSP>2.0.CO;2.
Xue, Y., S. Sun, D. S. Kahan, and Y. Jiao ( 2003 ), Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites, J. Geophys. Res., 108 ( D22 ), 8859, doi:10.1029/2002JD003174.
Xue, Y., R. Vasic, Z. Janjic, F. Mesinger, and K. E. Mitchell ( 2007 ), Assessment of dynamic downscaling of the continental U.S. regional climate using the Eta/SSiB Regional Climate Model, J. Clim., 20, 4172 – 4193, doi:10.1175/JCLI4239.1.
Yang, F., A. Kumar, W. Wang, H.‐M. H. Juang, and M. Kanamitsu ( 2001 ), Snow‐albedo feedback and seasonal climate variability over North America, J. Clim., 14, 4245 – 4248, doi:10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2.
Zhang, W., and J. H. Scneibel ( 1995 ), The sintering of two particles by surface diffusion and grain boundary diffusion—A two‐dimensional numerical study, Acta Metall. Mater., 43 ( 12 ), 4377 – 4386, doi:10.1016/0956-7151(95)00115-C.
Zhao, C., et al. ( 2014 ), Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 11,475 – 11,491, doi:10.5194/acp-14-11475-2014.
Belnap, J., and D. A. Gillette ( 1998 ), Vulnerability of desert biological soil crusts to wind erosion: The influences of crust development, soil texture, and disturbance, J. Arid Environ., 39, 133 – 142, doi:10.1006/jare.1998.0388.
Belnap, J., R. L. Reynolds, M. C. Reheis, S. L. Phillips, F. E. Urban, and H. L. Goldstein ( 2009 ), Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi‐arid grassland, Colorado Plateau, USA, Aeolian Res., 1 ( 1–2 ), 27 – 43, doi:10.1016/j.aeolia.2009.03.001.
Blackford, J. R. ( 2007 ), Sintering and microstructure of ice: A review, J. Phys. D: Appl. Phys., 40, R355 – R385, doi:10.1088/0022-3727/40/21/R02.
Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann ( 2007 ), Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840.
Brun, E. ( 1989 ), Investigation of wet‐snow metamorphism in respect of liquid‐water content, Ann. Glaciol., 13, 22 – 26.
Budyko, M. I. ( 1969 ), The effect of solar radiation variations on the climate of the Earth, Tellus, 21, 611 – 619, doi:10.1111/j.2153-3490.1969.tb00466.x.
Chin, M., R. B. Rood, S.‐J. Lin, J.‐F. Müller, and A. Thompson ( 2000 ), Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, J. Geophys. Res., 105 ( D20 ), 24,671 – 24,687, doi:10.1029/2000JD900384.
Chin, M., P. Ginoux, S. Kinne, O. Torres, B. Holben, B. N. Duncan, R. V. Martin, J. Logan, A. Higurashi, and T. Nakajima ( 2002 ), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements, J. Atmos. Phys., 59, 461 – 483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.
Christensen, J. H., et al. ( 2007 ), Regional climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K., and New York.
Colbeck, S. C. ( 2001 ), Sintering of unequal grains, J. Appl. Phys., 89 ( 8 ), 4612 – 4618, doi:10.1063/1.1356427.
Conway, H., A. Gades, and C. F. Raymond ( 1996 ), Albedo of dirty snow during conditions of melt, Water Resour. Res., 32 ( 6 ), 1713 – 1718, doi:10.1029/96WR00712.
De Sales, F., and Y. Xue ( 2012 ), Dynamic downscaling of 22‐year CFS winter seasonal forecasts with the UCLA‐ETA regional climate model over the United States, Clim. Dyn., 41, 255 – 275, doi:10.1007/s00382-012-1567-x.
Doherty, S. J., T. C. Grenfell, S. Forsström, D. L. Hegg, R. E. Brandt, and S. G. Warren ( 2013 ), Observed vertical redistribution of black carbon and other insoluble light‐absorbing particles in melting snow, J. Geophys. Res. Atmos., 118, 5553 – 5569, doi:10.1002/jgrd.50235.
Flanner, M. G., and C. S. Zender ( 2005 ), Snowpack radiative heating: Influence on Tibetan Plateau climate, Geophys. Res. Lett., 32, L06501, doi:10.1029/2004GL022076.
Flanner, M. G., and C. S. Zender ( 2006 ), Linking snowpack microphysics and albedo evolution, J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834.
Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.
Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch ( 2009 ), Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481 – 2497, doi:10.5194/acp-9-2481-2009.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2014JD02244410.5194/acp-11-1929-201110.1088/1748-9326/9/6/06400110.1007/s10584-012-0419-310.1175/2010JCLI3985.110.1029/2002JD00248510.1029/2008JD01106310.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;210.1175/JHM-D-10-05027.110.1029/2
container_title Scientia Marina
container_volume 80
container_issue S1
container_start_page 173
op_container_end_page 193
_version_ 1774713609758179328
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/111782 2023-08-20T04:03:12+02:00 Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S. Oaida, Catalina M. Xue, Yongkang Flanner, Mark G. Skiles, S. McKenzie De Sales, Fernando Painter, Thomas H. 2015-04-27 application/pdf https://hdl.handle.net/2027.42/111782 https://doi.org/10.1002/2014JD022444 unknown Cambridge Univ. Press Wiley Periodicals, Inc. Oaida, Catalina M.; Xue, Yongkang; Flanner, Mark G.; Skiles, S. McKenzie; De Sales, Fernando; Painter, Thomas H. (2015). "Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S." Journal of Geophysical Research: Atmospheres 120(8): 3228-3248. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/111782 doi:10.1002/2014JD022444 Journal of Geophysical Research: Atmospheres Shamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.‐Y. Huang, W. Wang, and J. G. Powers ( 2008 ), A description of the advanced research WRF version 3, NCAR Tech. Note. [Available at www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.] Qian, Y., M. G. Flanner, L. R. Leung, and W. Wang ( 2011 ), Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929 – 1948, doi:10.5194/acp-11-1929-2011. Qian, Y., H. Wang, R. Zhang, M. G. Flanner, and P. J. Rasch ( 2014 ), A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China, Environ. Res. Lett., 9 ( 6 ), 064001, doi:10.1088/1748-9326/9/6/064001. Qu, X., and A. Hall ( 2007 ), What controls the strength of snow‐albedo feedback?, J. Clim., 20, 3971 – 3981, doi:10.1175/JCLI4186.1. Rangwala, I., and J. R. Miller ( 2012 ), Climate change in mountains: A review of elevation‐dependent warming and its potential causes, Clim. Change, 114, 527 – 547, doi:10.1007/s10584-012-0419-3. Rasmussen, R. M., et al. ( 2011 ), High‐resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate, J. Clim., 24, 3015 – 3048, doi:10.1175/2010JCLI3985.1. Reid, J. S., et al. ( 2003 ), Comparison of size and morphological measurements of dust particles from Africa, J. Geophys. Res., 108, 8593, doi:10.1029/2002JD002485. Rutter, N., et al. ( 2009 ), Evaluation of forest snow processes models (SnowMIP2), J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063. Sellers, P. J., et al. ( 1996 ), A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation, J. Clim., 9, 676 – 705, doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2. Shrestha, M., L. Wang, T. Koike, Y. Xue, and Y. Hirabayashi ( 2012 ), Modeling the spatial distribution of snow cover in the Dudhkoshi region of the Nepal Himalaya, J. Hydrometeorol., 13, 204 – 222, doi:10.1175/JHM-D-10-05027.1. Skiles, S. M. ( 2014 ), Dust and Black Carbon Radiative Forcing Controls on Snowmelt in the Colorado River Basin (Doctoral Dissertation), Univ. of California‐Los Angeles, Los Angeles, Publisher: ProQuest, document ID# 3637640. Skiles, S. M., T. H. Painter, J. S. Deems, A. C. Bryant, and C. C. Landry ( 2012 ), Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates, Water Resour. Res., 48, W07522, doi:10.1029/2012WR011986. Sterle, K. M., J. R. McConnell, J. Dozier, R. Edwards, and M. G. Flanner ( 2013 ), Retention and radiative forcing of black carbon in eastern Sierra Nevada snow, Cryosphere, 7, 365 – 374, doi:10.5194/tc-7-365-2013. Sturm, M., and C. S. Benson ( 1997 ), Vapor transport, grain growth and depth‐hoar development in the subarctic snow, J. Glaciol., 43 ( 143 ), 42 – 59. Sun, S., J. Jin, and Y. Xue ( 1999 ), A simple snow‐atmosphere‐soil transfer model, J. Geophys. Res., 104 ( D16 ), 19,587 – 19,597, doi:10.1029/1999JD900305. Thompson, L. G., T. Yao, E. Mosley‐Thompson, K. A. Henderson, and P. N. Lin ( 2000 ), A high‐resolution millennial record of the south Asian monsoon from Himalayan ice cores, Science, 289, 1916 – 1919, doi:10.1126/science.289.5486.1916. Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam ( 1989 ), Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94 ( D13 ), 16,287 – 16,301, doi:10.1029/JD094iD13p16287. Warren, S. G., and W. J. Wiscombe ( 1980 ), A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols, J. Atmos. Sci., 37, 2734 – 2745, doi:10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2. Wiscombe, W. J., and S. G. Warren ( 1980 ), A model for the spectral albedo of snow. I: Pure snow, J. Atmos. Sci., 37, 2712 – 2733, doi:10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2. Xu, B. Q., et al. ( 2009 ), Black soot and the survival of Tibetan glaciers, Proc. Natl. Acad. Sci. U.S.A., 106 ( 52 ), 22,114 – 22,118, doi:10.1073/pnas.0910444106. Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla ( 1991 ), A simplified model for global climate studies, J. Clim., 4, 345 – 364, doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO:2. Xue, Y., F. J. Zeng, K. Mitchell, Z. Janjic, and E. Rogers ( 2001 ), The impact of land surface processes on the simulation of the U.S. hydrological cycle: A case study of 1993 US flood using the Eta/SSiB regional model, Mon. Weather Rev., 129, 2833 – 2860, doi:10.1175/1520-0493(2001)129<2833:TIOLSP>2.0.CO;2. Xue, Y., S. Sun, D. S. Kahan, and Y. Jiao ( 2003 ), Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites, J. Geophys. Res., 108 ( D22 ), 8859, doi:10.1029/2002JD003174. Xue, Y., R. Vasic, Z. Janjic, F. Mesinger, and K. E. Mitchell ( 2007 ), Assessment of dynamic downscaling of the continental U.S. regional climate using the Eta/SSiB Regional Climate Model, J. Clim., 20, 4172 – 4193, doi:10.1175/JCLI4239.1. Yang, F., A. Kumar, W. Wang, H.‐M. H. Juang, and M. Kanamitsu ( 2001 ), Snow‐albedo feedback and seasonal climate variability over North America, J. Clim., 14, 4245 – 4248, doi:10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2. Zhang, W., and J. H. Scneibel ( 1995 ), The sintering of two particles by surface diffusion and grain boundary diffusion—A two‐dimensional numerical study, Acta Metall. Mater., 43 ( 12 ), 4377 – 4386, doi:10.1016/0956-7151(95)00115-C. Zhao, C., et al. ( 2014 ), Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 11,475 – 11,491, doi:10.5194/acp-14-11475-2014. Belnap, J., and D. A. Gillette ( 1998 ), Vulnerability of desert biological soil crusts to wind erosion: The influences of crust development, soil texture, and disturbance, J. Arid Environ., 39, 133 – 142, doi:10.1006/jare.1998.0388. Belnap, J., R. L. Reynolds, M. C. Reheis, S. L. Phillips, F. E. Urban, and H. L. Goldstein ( 2009 ), Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi‐arid grassland, Colorado Plateau, USA, Aeolian Res., 1 ( 1–2 ), 27 – 43, doi:10.1016/j.aeolia.2009.03.001. Blackford, J. R. ( 2007 ), Sintering and microstructure of ice: A review, J. Phys. D: Appl. Phys., 40, R355 – R385, doi:10.1088/0022-3727/40/21/R02. Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann ( 2007 ), Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840. Brun, E. ( 1989 ), Investigation of wet‐snow metamorphism in respect of liquid‐water content, Ann. Glaciol., 13, 22 – 26. Budyko, M. I. ( 1969 ), The effect of solar radiation variations on the climate of the Earth, Tellus, 21, 611 – 619, doi:10.1111/j.2153-3490.1969.tb00466.x. Chin, M., R. B. Rood, S.‐J. Lin, J.‐F. Müller, and A. Thompson ( 2000 ), Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, J. Geophys. Res., 105 ( D20 ), 24,671 – 24,687, doi:10.1029/2000JD900384. Chin, M., P. Ginoux, S. Kinne, O. Torres, B. Holben, B. N. Duncan, R. V. Martin, J. Logan, A. Higurashi, and T. Nakajima ( 2002 ), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements, J. Atmos. Phys., 59, 461 – 483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2. Christensen, J. H., et al. ( 2007 ), Regional climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K., and New York. Colbeck, S. C. ( 2001 ), Sintering of unequal grains, J. Appl. Phys., 89 ( 8 ), 4612 – 4618, doi:10.1063/1.1356427. Conway, H., A. Gades, and C. F. Raymond ( 1996 ), Albedo of dirty snow during conditions of melt, Water Resour. Res., 32 ( 6 ), 1713 – 1718, doi:10.1029/96WR00712. De Sales, F., and Y. Xue ( 2012 ), Dynamic downscaling of 22‐year CFS winter seasonal forecasts with the UCLA‐ETA regional climate model over the United States, Clim. Dyn., 41, 255 – 275, doi:10.1007/s00382-012-1567-x. Doherty, S. J., T. C. Grenfell, S. Forsström, D. L. Hegg, R. E. Brandt, and S. G. Warren ( 2013 ), Observed vertical redistribution of black carbon and other insoluble light‐absorbing particles in melting snow, J. Geophys. Res. Atmos., 118, 5553 – 5569, doi:10.1002/jgrd.50235. Flanner, M. G., and C. S. Zender ( 2005 ), Snowpack radiative heating: Influence on Tibetan Plateau climate, Geophys. Res. Lett., 32, L06501, doi:10.1029/2004GL022076. Flanner, M. G., and C. S. Zender ( 2006 ), Linking snowpack microphysics and albedo evolution, J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834. Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003. Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch ( 2009 ), Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481 – 2497, doi:10.5194/acp-9-2481-2009. IndexNoFollow WRF snow regional climate aerosols dust black carbon Atmospheric and Oceanic Sciences Science Article 2015 ftumdeepblue https://doi.org/10.1002/2014JD02244410.5194/acp-11-1929-201110.1088/1748-9326/9/6/06400110.1007/s10584-012-0419-310.1175/2010JCLI3985.110.1029/2002JD00248510.1029/2008JD01106310.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;210.1175/JHM-D-10-05027.110.1029/2 2023-07-31T20:42:35Z Two important factors that control snow albedo are snow grain growth and presence of light‐absorbing impurities (aerosols) in snow. However, current regional climate models do not include such processes in a physically based manner in their land surface models. We improve snow albedo calculations in the Simplified Simple Biosphere (SSiB) land surface model coupled with the Weather Research and Forecasting (WRF) regional climate model (RCM), by incorporating the physically based SNow ICe And Radiative (SNICAR) scheme. SNICAR simulates snow albedo evolution due to snow aging and presence of aerosols in snow. The land surface model is further modified to account for deposition, movement, and removal by meltwater of such impurities in the snowpack. This paper presents model development technique, validation with in situ observations, and preliminary results from RCM simulations investigating the impact of such impurities in snow on surface energy and water budgets. By including snow‐aerosol interactions, the new land surface model is able to realistically simulate observed snow albedo, snow grain size, dust in snow, and surface water and energy balances in offline simulations for a location in western U.S. Preliminary results with the fully coupled RCM show that over western U.S., realistic aerosol deposition in snow induces a springtime average radiative forcing of 16 W/m2 due to a 6% albedo reduction, a regional surface warming of 0.84°C, and a snowpack reduction of 11 mm.Key PointsIncluding snow aging and aerosols in snow improves offline and WRF snow simulationsDust and black/organic carbon exerts nontrivial radiative forcing in western U.S.RCM simulation shows temperature increase and snow mass loss from aerosols in snow Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/111782/1/jgrd52045.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Scientia Marina 80 S1 173 193