Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. C...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Planets
Main Authors: Freissinet, C., Glavin, D. P., Mahaffy, P. R., Miller, K. E., Eigenbrode, J. L., Summons, R. E., Brunner, A. E., Buch, A., Szopa, C., Archer, P. D., Franz, H. B., Atreya, S. K., Brinckerhoff, W. B., Cabane, M., Coll, P., Conrad, P. G., Des Marais, D. J., Dworkin, J. P., Fairén, A. G., François, P., Grotzinger, J. P., Kashyap, S., Kate, I. L., Leshin, L. A., Malespin, C. A., Martin, M. G., Martin‐torres, F. J., McAdam, A. C., Ming, D. W., Navarro‐gonzález, R., Pavlov, A. A., Prats, B. D., Squyres, S. W., Steele, A., Stern, J. C., Sumner, D. Y., Sutter, B., Zorzano, M.‐p.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2015
Subjects:
MSL
SAM
Online Access:https://hdl.handle.net/2027.42/111191
https://doi.org/10.1002/2014JE004737
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/111191
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic oxychlorine
organic molecules
chlorobenzene
MSL
Mars
SAM
Geological Sciences
Science
spellingShingle oxychlorine
organic molecules
chlorobenzene
MSL
Mars
SAM
Geological Sciences
Science
Freissinet, C.
Glavin, D. P.
Mahaffy, P. R.
Miller, K. E.
Eigenbrode, J. L.
Summons, R. E.
Brunner, A. E.
Buch, A.
Szopa, C.
Archer, P. D.
Franz, H. B.
Atreya, S. K.
Brinckerhoff, W. B.
Cabane, M.
Coll, P.
Conrad, P. G.
Des Marais, D. J.
Dworkin, J. P.
Fairén, A. G.
François, P.
Grotzinger, J. P.
Kashyap, S.
Kate, I. L.
Leshin, L. A.
Malespin, C. A.
Martin, M. G.
Martin‐torres, F. J.
McAdam, A. C.
Ming, D. W.
Navarro‐gonzález, R.
Pavlov, A. A.
Prats, B. D.
Squyres, S. W.
Steele, A.
Stern, J. C.
Sumner, D. Y.
Sutter, B.
Zorzano, M.‐p.
Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
topic_facet oxychlorine
organic molecules
chlorobenzene
MSL
Mars
SAM
Geological Sciences
Science
description The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long‐term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles.Key PointsFirst in situ evidence of nonterrestrial organics in Martian surface sedimentsChlorinated hydrocarbons identified in the Sheepbed mudstone by SAMOrganics preserved in sample exposed to ionizing radiation and oxidative condition Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/111191/1/jgre20375.pdf
format Article in Journal/Newspaper
author Freissinet, C.
Glavin, D. P.
Mahaffy, P. R.
Miller, K. E.
Eigenbrode, J. L.
Summons, R. E.
Brunner, A. E.
Buch, A.
Szopa, C.
Archer, P. D.
Franz, H. B.
Atreya, S. K.
Brinckerhoff, W. B.
Cabane, M.
Coll, P.
Conrad, P. G.
Des Marais, D. J.
Dworkin, J. P.
Fairén, A. G.
François, P.
Grotzinger, J. P.
Kashyap, S.
Kate, I. L.
Leshin, L. A.
Malespin, C. A.
Martin, M. G.
Martin‐torres, F. J.
McAdam, A. C.
Ming, D. W.
Navarro‐gonzález, R.
Pavlov, A. A.
Prats, B. D.
Squyres, S. W.
Steele, A.
Stern, J. C.
Sumner, D. Y.
Sutter, B.
Zorzano, M.‐p.
author_facet Freissinet, C.
Glavin, D. P.
Mahaffy, P. R.
Miller, K. E.
Eigenbrode, J. L.
Summons, R. E.
Brunner, A. E.
Buch, A.
Szopa, C.
Archer, P. D.
Franz, H. B.
Atreya, S. K.
Brinckerhoff, W. B.
Cabane, M.
Coll, P.
Conrad, P. G.
Des Marais, D. J.
Dworkin, J. P.
Fairén, A. G.
François, P.
Grotzinger, J. P.
Kashyap, S.
Kate, I. L.
Leshin, L. A.
Malespin, C. A.
Martin, M. G.
Martin‐torres, F. J.
McAdam, A. C.
Ming, D. W.
Navarro‐gonzález, R.
Pavlov, A. A.
Prats, B. D.
Squyres, S. W.
Steele, A.
Stern, J. C.
Sumner, D. Y.
Sutter, B.
Zorzano, M.‐p.
author_sort Freissinet, C.
title Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
title_short Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
title_full Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
title_fullStr Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
title_full_unstemmed Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
title_sort organic molecules in the sheepbed mudstone, gale crater, mars
publisher Wiley Periodicals, Inc.
publishDate 2015
url https://hdl.handle.net/2027.42/111191
https://doi.org/10.1002/2014JE004737
long_lat ENVELOPE(-114.336,-114.336,62.367,62.367)
geographic Yellowknife
Yellowknife Bay
geographic_facet Yellowknife
Yellowknife Bay
genre Yellowknife
genre_facet Yellowknife
op_relation Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.
François, P.
Grotzinger, J. P.; Kashyap, S.; Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin‐torres, F. J.
McAdam, A. C.; Ming, D. W.; Navarro‐gonzález, R.
Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M.‐p. (2015). "Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars." Journal of Geophysical Research: Planets 120(3): 495-514.
2169-9097
2169-9100
https://hdl.handle.net/2027.42/111191
doi:10.1002/2014JE004737
Journal of Geophysical Research: Planets
Blake, D. F., et al. ( 2013 ), Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow, Science, 341 ( 6153 ), doi:10.1126/science.1239505.
Biemann, K., et al. ( 1977 ), The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res., 82 ( 28 ), 4641 – 4658, doi:10.1029/JS082i028p04641.
Biemann, K., et al. ( 1976 ), Search for organic and volatile inorganic‐compounds in 2 surface samples from Chryse‐Planitia Region of Mars, Science, 194 ( 4260 ), 72 – 76.
Biemann, K., and J. L. Bada ( 2011 ), Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro‐Gonzalez et al, J. Geophys. Res., 116, E12001, doi:10.1029/2011JE003869.
Benner, S. A., K. G. Devine, L. N. Matveeva, and D. H. Powell ( 2000 ), The missing organic molecules on Mars, Proc. Natl. Acad. Sci. U.S.A., 97 ( 6 ), 2425 – 2430.
Archer, P. D., et al. ( 2014 ), Abundances and implications of volatile‐bearing species from Evolved Gas Analysis of the Rocknest aeolian deposit, Gale Crater, Mars, J. Geophys. Res. Planets, 119, 237 – 254, doi:10.1002/2013JE004493.
Anderson, M. S., I. Katz, M. Petkov, B. Blakkolb, J. Mennella, S. D'Agostino, J. Crisp, J. Evans, J. Feldman, and D. Limonadi ( 2012 ), In situ cleaning of instruments for the sensitive detection of organics on Mars, Rev. Sci. Instrum., 83 ( 10 ), doi:10.1063/1061.4757861.
Grotzinger, J. P., et al. ( 2014 ), A habitable fluvio‐lacustrine environment at Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi:10.1126/science.1242777.
Grotzinger, J. P., et al. ( 2012 ), Mars Science Laboratory mission and science investigation, Space Sci. Rev., 170 ( 1–4 ), 5 – 56.
Glavin, D. P., et al. ( 2013 ), Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater, J. Geophys. Res. Planets, 118, 1955 – 1973, doi:10.1002/jgre.20144.
Glavin, D. P., H. J. Cleaves, M. Schubert, A. Aubrey, and J. L. Bada ( 2004 ), New method for estimating bacterial cell abundances in natural samples by use of sublimation, Appl. Environ. Microbiol., 70 ( 10 ), 5923 – 5928.
Gibson, E. K. ( 1992 ), Volatiles in interplanetary dust particles—A review, J. Geophys. Res., 97 ( E3 ), 3865 – 3875, doi:10.1029/92JE00033.
Farmer, J. D., and D. J. Des Marais ( 1999 ), Exploring for a record of ancient Martian life, J. Geophys. Res., 104 ( E11 ), 26,977 – 26,995, doi:10.1029/1998JE000540.
Farley, K. A., et al. ( 2014 ), In‐situ radiometric and exposure age dating of the Martian surface, Science, 343 ( 6169 ), doi:10.1126/science.1247166.
Deamer, D. W., and R. M. Pashley ( 1989 ), Amphiphilic components of the Murchison carbonaceous chondrite: Surface properties and membrane formation, Origins Life Evol. Biosphere, 19 ( 1 ), 21 – 38.
Carey, F. A. ( 1993 ), Organic Chemistry, 5th ed., McGraw‐Hill, Boston, Mass.
Bish, D. L., et al. ( 2013 ), X‐ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater, Science, 341 ( 6153 ), doi:10.1126/science.1238932.
Vaniman, D. T., et al. ( 2014 ), Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi:10.1126/science.1243480.
Summons, R. E., J. P. Amend, D. Bish, R. Buick, G. D. Cody, D. J. Des Marais, G. Dromart, J. L. Eigenbrode, A. H. Knoll, and D. Y. Sumner ( 2011 ), Preservation of Martian organic and environmental records: Final report of the Mars biosignature working group, Astrobiology, 11 ( 2 ), 157 – 181.
Steininger, H., F. Goesmann, and W. Goetz ( 2012 ), Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils, Planet. Space Sci., 71 ( 1 ), 9 – 17.
Steele, A., et al. ( 2012 ), A reduced organic carbon component in Martian basalts, Science, 337 ( 6091 ), 212 – 215.
Shock, E. L. ( 1990 ), Geochemical constraints on the origin of organic‐compounds in hydrothermal systems, Origins Life Evol. Biosphere, 20 ( 3–4 ), 331 – 367.
Sephton, M. A. ( 2012 ), Pyrolysis and mass spectrometry studies of meteoritic organic matter, Mass Spectrom. Rev., 31 ( 5 ), 560 – 569.
Pavlov, A. A., G. Vasilyev, V. M. Ostryakov, A. K. Pavlov, and P. Mahaffy ( 2012 ), Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays, Geophys. Res. Lett., 39, L13202, doi:10.1029/2012GL052166.
Oro, J., and G. Holzer ( 1979 ), Photolytic degradation and oxidation of organic‐compounds under simulated Martian conditions, J. Mol. Evol., 14 ( 1–3 ), 153 – 160.
Navarro‐Gonzalez, R., E. Vargas, J. de la Rosa, A. C. Raga, and C. P. McKay ( 2010 ), Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars, J. Geophys. Res., 115, E12010, doi:10.1029/2010JE003599.
Ming, D. W., et al. ( 2014 ), Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi:10.1126/science.1245267.
Miller, K. E., R. E. Summons, J. L. Eigenbrode, C. Freissinet, D. P. Glavin, and M. G. Martin ( 2013 ), Analogue experiments identify possible precursor compounds for chlorohydrocarbons detected in SAM, Abstract P23B‐1785 presented at 2013 Fall Meeting, AGU, San Francisco, Calif.
McLennan, S. M., et al. ( 2014 ), Elemental geochemistry of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi:10.1126/science.1244734.
McLafferty, F. W. ( 1959 ), Mass spectrometric analysis—Molecular rearrangements, Anal. Chem., 31 ( 1 ), 82 – 87.
Mahaffy, P. R., et al. ( 2012 ), The sample analysis at Mars investigation and instrument suite, Space Sci. Rev., 170 ( 1–4 ), 401 – 478.
Leshin, L. A., et al. ( 2013 ), Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover, Science, 341 ( 6153 ), doi:10.1126/science.1238937.
Kounaves, S. P., B. L. Carrier, G. D. O'Neil, S. T. Stroble, and M. W. Claire ( 2014 ), Evidence of Martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics, Icarus, 229, 206 – 213.
Keller, J. M., et al. ( 2006 ), Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res., 111, E03S08, doi:10.1029/2006JE002679.
Hecht, M. H., et al. ( 2009 ), Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site, Science, 325 ( 5936 ), 64 – 67.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2014JE00473710.1126/science.123950510.1029/JS082i028p0464110.1029/2011JE00386910.1002/2013JE00449310.1063/1061.475786110.1126/science.124277710.1002/jgre.2014410.1029/92JE0003310.1029/1998JE00054010.1126/science.124716610.1126/scie
container_title Journal of Geophysical Research: Planets
container_volume 120
container_issue 3
container_start_page 495
op_container_end_page 514
_version_ 1774724488138588160
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/111191 2023-08-20T04:10:22+02:00 Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars Freissinet, C. Glavin, D. P. Mahaffy, P. R. Miller, K. E. Eigenbrode, J. L. Summons, R. E. Brunner, A. E. Buch, A. Szopa, C. Archer, P. D. Franz, H. B. Atreya, S. K. Brinckerhoff, W. B. Cabane, M. Coll, P. Conrad, P. G. Des Marais, D. J. Dworkin, J. P. Fairén, A. G. François, P. Grotzinger, J. P. Kashyap, S. Kate, I. L. Leshin, L. A. Malespin, C. A. Martin, M. G. Martin‐torres, F. J. McAdam, A. C. Ming, D. W. Navarro‐gonzález, R. Pavlov, A. A. Prats, B. D. Squyres, S. W. Steele, A. Stern, J. C. Sumner, D. Y. Sutter, B. Zorzano, M.‐p. 2015-03 application/pdf https://hdl.handle.net/2027.42/111191 https://doi.org/10.1002/2014JE004737 unknown Wiley Periodicals, Inc. McGraw‐Hill Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G. François, P. Grotzinger, J. P.; Kashyap, S.; Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin‐torres, F. J. McAdam, A. C.; Ming, D. W.; Navarro‐gonzález, R. Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M.‐p. (2015). "Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars." Journal of Geophysical Research: Planets 120(3): 495-514. 2169-9097 2169-9100 https://hdl.handle.net/2027.42/111191 doi:10.1002/2014JE004737 Journal of Geophysical Research: Planets Blake, D. F., et al. ( 2013 ), Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow, Science, 341 ( 6153 ), doi:10.1126/science.1239505. Biemann, K., et al. ( 1977 ), The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res., 82 ( 28 ), 4641 – 4658, doi:10.1029/JS082i028p04641. Biemann, K., et al. ( 1976 ), Search for organic and volatile inorganic‐compounds in 2 surface samples from Chryse‐Planitia Region of Mars, Science, 194 ( 4260 ), 72 – 76. Biemann, K., and J. L. Bada ( 2011 ), Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro‐Gonzalez et al, J. Geophys. Res., 116, E12001, doi:10.1029/2011JE003869. Benner, S. A., K. G. Devine, L. N. Matveeva, and D. H. Powell ( 2000 ), The missing organic molecules on Mars, Proc. Natl. Acad. Sci. U.S.A., 97 ( 6 ), 2425 – 2430. Archer, P. D., et al. ( 2014 ), Abundances and implications of volatile‐bearing species from Evolved Gas Analysis of the Rocknest aeolian deposit, Gale Crater, Mars, J. Geophys. Res. Planets, 119, 237 – 254, doi:10.1002/2013JE004493. Anderson, M. S., I. Katz, M. Petkov, B. Blakkolb, J. Mennella, S. D'Agostino, J. Crisp, J. Evans, J. Feldman, and D. Limonadi ( 2012 ), In situ cleaning of instruments for the sensitive detection of organics on Mars, Rev. Sci. Instrum., 83 ( 10 ), doi:10.1063/1061.4757861. Grotzinger, J. P., et al. ( 2014 ), A habitable fluvio‐lacustrine environment at Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi:10.1126/science.1242777. Grotzinger, J. P., et al. ( 2012 ), Mars Science Laboratory mission and science investigation, Space Sci. Rev., 170 ( 1–4 ), 5 – 56. Glavin, D. P., et al. ( 2013 ), Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater, J. Geophys. Res. Planets, 118, 1955 – 1973, doi:10.1002/jgre.20144. Glavin, D. P., H. J. Cleaves, M. Schubert, A. Aubrey, and J. L. Bada ( 2004 ), New method for estimating bacterial cell abundances in natural samples by use of sublimation, Appl. Environ. Microbiol., 70 ( 10 ), 5923 – 5928. Gibson, E. K. ( 1992 ), Volatiles in interplanetary dust particles—A review, J. Geophys. Res., 97 ( E3 ), 3865 – 3875, doi:10.1029/92JE00033. Farmer, J. D., and D. J. Des Marais ( 1999 ), Exploring for a record of ancient Martian life, J. Geophys. Res., 104 ( E11 ), 26,977 – 26,995, doi:10.1029/1998JE000540. Farley, K. A., et al. ( 2014 ), In‐situ radiometric and exposure age dating of the Martian surface, Science, 343 ( 6169 ), doi:10.1126/science.1247166. Deamer, D. W., and R. M. Pashley ( 1989 ), Amphiphilic components of the Murchison carbonaceous chondrite: Surface properties and membrane formation, Origins Life Evol. Biosphere, 19 ( 1 ), 21 – 38. Carey, F. A. ( 1993 ), Organic Chemistry, 5th ed., McGraw‐Hill, Boston, Mass. Bish, D. L., et al. ( 2013 ), X‐ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater, Science, 341 ( 6153 ), doi:10.1126/science.1238932. Vaniman, D. T., et al. ( 2014 ), Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi:10.1126/science.1243480. Summons, R. E., J. P. Amend, D. Bish, R. Buick, G. D. Cody, D. J. Des Marais, G. Dromart, J. L. Eigenbrode, A. H. Knoll, and D. Y. Sumner ( 2011 ), Preservation of Martian organic and environmental records: Final report of the Mars biosignature working group, Astrobiology, 11 ( 2 ), 157 – 181. Steininger, H., F. Goesmann, and W. Goetz ( 2012 ), Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils, Planet. Space Sci., 71 ( 1 ), 9 – 17. Steele, A., et al. ( 2012 ), A reduced organic carbon component in Martian basalts, Science, 337 ( 6091 ), 212 – 215. Shock, E. L. ( 1990 ), Geochemical constraints on the origin of organic‐compounds in hydrothermal systems, Origins Life Evol. Biosphere, 20 ( 3–4 ), 331 – 367. Sephton, M. A. ( 2012 ), Pyrolysis and mass spectrometry studies of meteoritic organic matter, Mass Spectrom. Rev., 31 ( 5 ), 560 – 569. Pavlov, A. A., G. Vasilyev, V. M. Ostryakov, A. K. Pavlov, and P. Mahaffy ( 2012 ), Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays, Geophys. Res. Lett., 39, L13202, doi:10.1029/2012GL052166. Oro, J., and G. Holzer ( 1979 ), Photolytic degradation and oxidation of organic‐compounds under simulated Martian conditions, J. Mol. Evol., 14 ( 1–3 ), 153 – 160. Navarro‐Gonzalez, R., E. Vargas, J. de la Rosa, A. C. Raga, and C. P. McKay ( 2010 ), Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars, J. Geophys. Res., 115, E12010, doi:10.1029/2010JE003599. Ming, D. W., et al. ( 2014 ), Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi:10.1126/science.1245267. Miller, K. E., R. E. Summons, J. L. Eigenbrode, C. Freissinet, D. P. Glavin, and M. G. Martin ( 2013 ), Analogue experiments identify possible precursor compounds for chlorohydrocarbons detected in SAM, Abstract P23B‐1785 presented at 2013 Fall Meeting, AGU, San Francisco, Calif. McLennan, S. M., et al. ( 2014 ), Elemental geochemistry of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi:10.1126/science.1244734. McLafferty, F. W. ( 1959 ), Mass spectrometric analysis—Molecular rearrangements, Anal. Chem., 31 ( 1 ), 82 – 87. Mahaffy, P. R., et al. ( 2012 ), The sample analysis at Mars investigation and instrument suite, Space Sci. Rev., 170 ( 1–4 ), 401 – 478. Leshin, L. A., et al. ( 2013 ), Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover, Science, 341 ( 6153 ), doi:10.1126/science.1238937. Kounaves, S. P., B. L. Carrier, G. D. O'Neil, S. T. Stroble, and M. W. Claire ( 2014 ), Evidence of Martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics, Icarus, 229, 206 – 213. Keller, J. M., et al. ( 2006 ), Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res., 111, E03S08, doi:10.1029/2006JE002679. Hecht, M. H., et al. ( 2009 ), Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site, Science, 325 ( 5936 ), 64 – 67. IndexNoFollow oxychlorine organic molecules chlorobenzene MSL Mars SAM Geological Sciences Science Article 2015 ftumdeepblue https://doi.org/10.1002/2014JE00473710.1126/science.123950510.1029/JS082i028p0464110.1029/2011JE00386910.1002/2013JE00449310.1063/1061.475786110.1126/science.124277710.1002/jgre.2014410.1029/92JE0003310.1029/1998JE00054010.1126/science.124716610.1126/scie 2023-07-31T21:13:12Z The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long‐term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles.Key PointsFirst in situ evidence of nonterrestrial organics in Martian surface sedimentsChlorinated hydrocarbons identified in the Sheepbed mudstone by SAMOrganics preserved in sample exposed to ionizing radiation and oxidative condition Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/111191/1/jgre20375.pdf Article in Journal/Newspaper Yellowknife University of Michigan: Deep Blue Yellowknife Yellowknife Bay ENVELOPE(-114.336,-114.336,62.367,62.367) Journal of Geophysical Research: Planets 120 3 495 514